THE SPLITTING FIELD OF $X^{3}-6$ OVER Q

KEITH CONRAD

In this note, we calculate all the basic invariants of the number field

$$
K=\mathbf{Q}(\sqrt[3]{6}, \omega)
$$

where $\omega=(-1+\sqrt{-3}) / 2$ is a primitive cube root of unity.
Here is the notation for the fields and Galois groups to be used. Let

$$
\begin{aligned}
k & =\mathbf{Q}(\sqrt[3]{6}) \\
K & =\mathbf{Q}(\sqrt[3]{6}, \omega) \\
F & =\mathbf{Q}(\omega)=\mathbf{Q}(\sqrt{-3}) \\
G & =\operatorname{Gal}(K / \mathbf{Q}) \cong S_{3} \\
N & =\operatorname{Gal}(K / F) \cong A_{3} \\
H & =\operatorname{Gal}(K / k)
\end{aligned}
$$

First we work out the basic invariants for the fields F and k.
Theorem 1. The field $F=\mathbf{Q}(\omega)$ has ring of integers $\mathbf{Z}[\omega]$, class number 1 , discriminant -3 , and unit group $\left\{ \pm 1, \pm \omega, \pm \omega^{2}\right\}$. The ramified prime 3 factors as $3=-(\sqrt{-3})^{2}$. For $p \neq 3$, the way p factors in $\mathbf{Z}[\omega]=\mathbf{Z}[X] /\left(X^{2}+X+1\right)$ is identical to the way $X^{2}+X+1$ factors $\bmod p$, so p splits if $p \equiv 1 \bmod 3$ and p stays prime if $p \equiv 2 \bmod 3$.

We now turn to the field k.
Since $\operatorname{disc}(\mathbf{Z}[\sqrt[3]{6}])=-\mathrm{N}_{k / \mathbf{Q}}\left(3(\sqrt[3]{6})^{2}\right)=-3^{3} 6^{2}$, only 2 and 3 can ramify in k. Since $X^{3}-6$ is Eisenstein at 2 and 3 , both 2 and 3 are totally ramified: $(2)=\mathfrak{p}_{2}^{3},(3)=\mathfrak{p}_{3}^{3}$. So $\mathcal{O}_{k}=\mathbf{Z}[\sqrt[3]{6}]$ and $\operatorname{disc}\left(\mathcal{O}_{k}\right)=-2^{2} 3^{5}$.

The Minkowski bound on k is

$$
\frac{3!}{3^{3}}\left(\frac{4}{\pi}\right) 2 \cdot 3^{2} \sqrt{3} \approx 8.82
$$

So we want to factor the primes $2,3,5,7$. We already know 2 and 3 are totally ramified. $\operatorname{Mod} 5, X^{3}-6 \equiv(X-1)\left(X^{2}+X+1\right)$, so $(5)=\mathfrak{p}_{5} \mathfrak{p}_{5}^{\prime}$, where $\mathrm{Np}_{5}=5$, $\mathrm{N} \mathfrak{p}_{5}^{\prime}=25$. Since $X^{3}-6 \equiv(X+1)(X+2)(X-3) \bmod 7,7$ splits completely.

The norm form for k is

$$
\begin{equation*}
\mathrm{N}_{k / \mathbf{Q}}(a+b \sqrt[3]{6}+\sqrt[3]{36})=a^{3}+6 b^{3}+36 c^{3}-18 a b c \tag{1}
\end{equation*}
$$

so

$$
\begin{gathered}
(1+\sqrt[3]{6})=\mathfrak{p}_{7}, \quad(-1+\sqrt[3]{6})=\mathfrak{p}_{5}, \quad(2+\sqrt[3]{6})=\mathfrak{p}_{2} \mathfrak{p}_{7}^{\prime}, \quad(2-\sqrt[3]{6})=\mathfrak{p}_{2} \\
(1+2 \sqrt[3]{6})=\left(\mathfrak{p}_{7}^{\prime \prime}\right)^{2}, \quad(3-\sqrt[3]{6})=\mathfrak{p}_{3} \mathfrak{p}_{7}^{\prime \prime}, \quad(4+\sqrt[3]{6})=\mathfrak{p}_{2} \mathfrak{p}_{5} \mathfrak{p}_{7}^{\prime \prime}, \quad(-3+\sqrt[3]{36})=\mathfrak{p}_{3}^{2}
\end{gathered}
$$

Therefore all prime factors of $2,3,5,7$ are principal, so $h(k)=1$. The ratio

$$
\frac{(2-\sqrt[3]{6})^{3}}{2}=1-6 \sqrt[3]{6}+3 \sqrt[3]{36} \approx .003
$$

is a unit, and its reciprocal is

$$
u \stackrel{\text { def }}{=} 109+60 \sqrt[3]{6}+33 \sqrt[3]{36} \approx 326.99
$$

The minimal polynomial of $2-\sqrt[3]{6}$ is $T^{3}+6 T^{2}+12 T-2$, while the minimal polynomial of u is $T^{3}-327 T^{2}+3 T-1$.

Other explicit principal ideals also give rise to u. For instance, \mathfrak{p}_{3} is generated by

$$
\frac{3}{-3+\sqrt[3]{36}}=3+2 \sqrt[3]{6}+\sqrt[3]{36} \approx 9.9
$$

which has norm 3 , and we get a unit >1 from

$$
\frac{(3+2 \sqrt[3]{6}+\sqrt[3]{36})^{3}}{3}=109+60 \sqrt[3]{6}+33 \sqrt[3]{36}
$$

The ideal $\mathfrak{p}_{7}^{\prime \prime}$ is generated by

$$
\frac{3-\sqrt[3]{6}}{3+2 \sqrt[3]{6}+\sqrt[3]{36}}=-5+\sqrt[3]{6}+\sqrt[3]{36} \approx .119
$$

and also by

$$
\frac{4+\sqrt[3]{6}}{(2-\sqrt[3]{6})(-1+\sqrt[3]{6})}=13+7 \sqrt[3]{6}+4 \sqrt[3]{36} \approx 38.9
$$

So the ratio is a unit of \mathcal{O}_{k}. To get a unit >1, we compute

$$
\frac{13+7 \sqrt[3]{6}+4 \sqrt[3]{36}}{-5+\sqrt[3]{6}+\sqrt[3]{36}}=109+60 \sqrt[3]{6}+33 \sqrt[3]{36}
$$

It turns out that u is a fundamental unit of \mathcal{O}_{k}, but [2, Lemma 3] does not apply, since for the fundamental unit $U, U^{2}>\left(3^{5}-7\right)^{2 / 3} \approx 38.189$, a lower bound that is too small to conclude $U^{2}>u$.

Theorem 2. The fundamental unit of $\mathbf{Z}[\sqrt[3]{6}]$ is $u=109+60 \sqrt[3]{6}+33 \sqrt[3]{36}$.
Proof. We follow the same approach as [3, Thm. 2], essentially just replacing 123 in [3] by 327. Write $u=\rho^{j}$ with $\rho^{3}+a \rho^{2}+b \rho+c, c=-1$.

If $u=\rho^{2}$ then $327=a^{2}-2 b, 3=b^{2}+2 a$. Solving for a in the second equation turns the first one into

$$
b^{4}-6 b^{2}-8 b-1299=0,
$$

so $b \mid 1299=3 \cdot 433$. No divisor works.
If $u=\rho^{3}$ then $327=-a^{3}+3 a b+3$ and $3=b^{3}+3 a b+3$, and there is no solution by the same method as in [3].

If $u=\rho^{p}$ for p an odd prime, then $\mathrm{N}_{k / \mathbf{Q}}(\rho+1)=2-a+b$ is a positive integer that divides $\mathrm{N}_{k / \mathbf{Q}}(u+1)=332=2^{2} 83, \mathrm{~N}_{k / \mathbf{Q}}(\rho-1)=-a-b$ is a positive integer that divides $\mathrm{N}_{k / \mathbf{Q}}(u-1)=324=2^{2} 3^{4}$, and

$$
327 \equiv-a \bmod p, \quad 3 \equiv b \bmod p .
$$

This is the same as

$$
2-a+b \equiv 332 \bmod p, \quad-a-b \equiv 324 \bmod p .
$$

Here is the table of values of $2-a+b$ and $-a-b$ along with the corresponding primes p :

$$
\begin{array}{c|cccccc}
2-a+b & 1 & 2 & 4 & 83 & 166 & 332 \\
\hline p & 331 & 2,3,5,11 & 2,41 & 3,83 & 2,83 & \text { arb. }
\end{array}
$$

$-a-b$	1	2	3	4	6	9	12	18
p	17,19	$2,7,23$	3,107	2,5	$2,3,53$	$3,5,7$	$2,3,13$	$2,3,17$
$-a-b$	27	36	54	81	108	162	324	
p	3,11	2,3	$2,3,5$	3	2,3	2,3	arb.	

Following the same procedure as in [3], we eliminate primes $p \geq 7$ by checking the resulting cubic polynomial for a putative ρ has discriminant not divisible by $\operatorname{disc}\left(\mathcal{O}_{k}\right)=2^{2} 3^{5}$ (it also must be a divisor of $\operatorname{disc}(\mathbf{Z}[u])=-2^{4} 3^{11} 7^{2}$, but this won't be needed). We already eliminated $p=2,3$. The prime 5 appears often in the above tables, so we handle it instead by finding a residue field $\mathcal{O}_{k} / \mathfrak{p} \cong \mathbf{F}_{p}$ where u is not a fifth power. Choose $p \equiv 1 \bmod 5$, say $p=11$. Since $X^{3}-6 \equiv(X+3)\left(X^{2}+8 X+9\right) \bmod 11$, there is \mathfrak{p} with norm 11. Then

$$
u=\rho^{5} \Rightarrow u \equiv \rho^{5} \bmod \mathfrak{p} \equiv \pm 1
$$

However, neither $\mathrm{N}_{k / \mathbf{Q}}(u+1)$ nor $\mathrm{N}_{k / \mathbf{Q}}(u-1)$ is divisible by 11 , so $u \neq \rho^{5}$.
Theorem 3. The field $k=\mathbf{Q}(\sqrt[3]{6})$ has ring of integers $\mathbf{Z}[\sqrt[3]{6}]$, class number 1 , discriminant $-2^{2} 3^{5}$, and fundamental unit $u=109+60 \sqrt[3]{6}+33 \sqrt[3]{36}$. The ramified primes 2 and 3 factor as

$$
2=(2-\sqrt[3]{6})^{3} u, \quad 3=\pi^{3} v
$$

where $\pi=3+2 \sqrt[3]{6}+\sqrt[3]{36}$ and $v=1 / u$. The minimal polynomial of u over \mathbf{Q} is $T^{3}-$ $327 T^{2}+3 T-1$ and of π is $T^{3}-9 T^{2}-9 T-3$.

We now turn to K. Following [2],

$$
\begin{equation*}
\operatorname{disc}(K)=\operatorname{disc}(F) \operatorname{disc}(k)^{2}=-2^{4} 3^{11}, \quad h(K) R(K)=(h(k) R(k))^{2}=(\log u)^{2} \tag{2}
\end{equation*}
$$

The prime 3 is totally ramified: $3 \mathcal{O}_{K}=(\eta)^{6}$, where $\eta \stackrel{\text { def }}{=} \sqrt{-3} / \pi$. The (principal) prime factor of 2 in \mathcal{O}_{k} remains prime in $\mathcal{O}_{K}: 2 \mathcal{O}_{K}=(2-\sqrt[3]{6})^{3}$.

As in [2], $\mathcal{O}_{K}=\mathcal{O}_{k} \oplus \mathcal{O}_{k} \theta$, where $\theta \stackrel{\text { def }}{=}(\omega-1) / \pi$. Since

$$
\theta \bar{\theta}=\frac{3}{\pi^{2}}=\pi v=3+2 \sqrt[3]{6}-2 \sqrt[3]{36}, \quad \theta+\bar{\theta}=-\frac{3}{\pi}=-\pi^{2} v=3-\sqrt[3]{36},
$$

the minimal polynomial of θ over k is $f(T)=T^{2}-(3-\sqrt[3]{36}) T+(3+2 \sqrt[3]{6}-2 \sqrt[3]{36})$, so the minimal polynomial of θ over \mathbf{Q} is

$$
g(T)=f \sigma(f) \sigma^{2}(f)=T^{6}-9 T^{5}+36 T^{4}-81 T^{3}+72 T^{2}+27 T+3 .
$$

Since $\operatorname{disc}(g(T))=-2^{8} 3^{11} 5^{2} 7^{2}, \mathcal{O}_{K} \neq \mathbf{Z}[\theta]$.
The Minkowski bound for K is

$$
\frac{6!}{6^{6}}\left(\frac{4}{\pi}\right)^{3} 2^{2} 3^{5} \sqrt{3}=\frac{960 \sqrt{3}}{\pi^{3}} \approx 53.626 .
$$

So we want to factor all primes ≤ 53, hopefully many will have principal ideal factors.
We already checked the ramified primes 2 and 3 have principal prime factors in \mathcal{O}_{K}, so we turn to unramified primes p. The only time p might not have a principal prime factor in \mathcal{O}_{K} is if $p \equiv 1 \bmod 3$ and $X^{3}-6 \bmod p$ has a root (hence 3 roots). For $p \leq 53$, this happens only for $p=7,37$:

$$
X^{3}-6 \equiv(X+1)(X+2)(X+4) \bmod 7, \quad X^{3}-6 \equiv(X+6)(X+8)(X+23) \bmod 37
$$

Thus 7 and 37 split completely in \mathcal{O}_{K}. To determine if they have principal prime factors, we compute $\mathrm{N}_{K / k}(\theta-m)=g(m)$ for various integers m, hoping to see a 7 or 37 arise. This would correspond to $m \bmod 7$ or $m \bmod 37$ being a root of $g(T)$. Since $g(-1) \equiv 0 \bmod 7$, we compute $\mathrm{N}_{K / \mathbf{Q}}(\theta+1)=g(-1)=5^{2} 7$. Therefore 7 factors principally. Since $g(-2) \equiv$ $0 \bmod 37$, we compute $\mathrm{N}_{K / \mathbf{Q}}(\theta+2)=7^{2} 37$. Thus 37 factors principally, so $h(K)=1$.

By $(2), R(K)=(\log u)^{2}$, so u and σu generate a subgroup of index 3 in the units of $\mathcal{O}_{K}(\bmod$ torsion). To find a unit that together with u forms a pair of fundamental units, consider

$$
\delta \stackrel{\text { def }}{=} \frac{\sigma \eta}{\eta}=\frac{\pi}{\sigma \pi} .
$$

By exactly the same calculations as in [3], $\{u, \delta\}$ and $\{\delta, \bar{\delta}\}$ are both pairs of fundamental units.

Theorem 4. The field $K=\mathbf{Q}(\sqrt[3]{6}, \omega)$ has class number 1 , discriminant $-2^{4} 3^{11}$, and regulator $(\log u)^{2}$, where $u=109+60 \sqrt[3]{6}+33 \sqrt[3]{36}$. The ramified primes 2 and 3 factor as

$$
2=(2-\sqrt[3]{6})^{3}, \quad 3=(\eta)^{6},
$$

where $\eta=\sqrt{-3} / \pi, \pi=3+2 \sqrt[3]{6}+\sqrt[3]{36}$. The ring of integers of K is

$$
\mathcal{O}_{K}=\mathcal{O}_{k} \oplus \mathcal{O}_{k} \theta
$$

where $\theta=(\omega-1) / \pi$. The unit group of \mathcal{O}_{K} has six roots of unity, rank 2 , and bases $\{u, \delta\}$ and $\{\delta, \bar{\delta}\}$, where $\delta=\pi / \sigma(\pi)$.

There is no power basis for \mathcal{O}_{K}. See [1].

References

[1] M-L Chang., Non-monogeneity in a family of sextic fields, J. Number Theory 97 (2002), 252-268.
[2] K. Conrad, The Splitting Field of $X^{3}-2$ over Q. Online at https://kconrad.math.uconn.edu/blurbs/ gradnumthy/Qw2.pdf.
[3] K. Conrad, The Splitting Field of $X^{3}-5$ over Q. Online at https://kconrad.math.uconn.edu/blurbs/ gradnumthy/Qw5.pdf.

