THE SPLITTING FIELD OF $X^3 - 5$ OVER \mathbb{Q}

KEITH CONRAD

In this note, we calculate all the basic invariants of the number field

$$K = \mathbb{Q}(\sqrt[3]{5}, \omega),$$

where $\omega = (-1 + \sqrt{-3})/2$ is a primitive cube root of unity.

Here is the notation for the fields and Galois groups to be used. Let

$$k = \mathbb{Q}(\sqrt[3]{5}),$$
$$K = \mathbb{Q}(\sqrt[3]{5}, \omega),$$
$$F = \mathbb{Q}(\omega) = \mathbb{Q}(\sqrt{-3}),$$
$$G = \text{Gal}(K/\mathbb{Q}) \cong S_3,$$
$$N = \text{Gal}(K/F) \cong A_3,$$
$$H = \text{Gal}(K/k).$$

First we work out the basic invariants for the fields F and k.

Theorem 1. The field $F = \mathbb{Q}(\omega)$ has ring of integers $\mathbb{Z}[\omega]$, class number 1, discriminant -3, and unit group $\{\pm 1, \pm \omega, \pm \omega^2\}$. The ramified prime 3 factors as $3 = - (\sqrt{-3})^2$. For $p \neq 3$, the way p factors in $\mathbb{Z}[\omega]$ is identical to the way $X^2 + X + 1$ factors mod p, so p splits if $p \equiv 1 \pmod{3}$ and p stays prime if $p \equiv 2 \pmod{3}$.

We now turn to the field k. Its norm form is

$$N_k/\mathbb{Q}\left(a + b\sqrt[3]{5} + c\sqrt[3]{25}\right) = a^3 + 5b^3 + 25c^3 - 15abc.$$

Since $\text{disc}(\mathbb{Z}[\sqrt[3]{5}]) = - N_{k/\mathbb{Q}}(3(\sqrt[3]{5})^2) = -3^35^2$, only 3 and 5 can ramify in k. Since $X^3 - 5$ is Eisenstein at 5 and

$$(X - 1)^3 - 5 = X^3 - 3X^2 + 3X - 6$$

is Eisenstein at 3, both 3 and 5 are totally ramified. Therefore by the same local field argument as in [2], $\mathcal{O}_k = \mathbb{Z}[\sqrt[3]{5}]$, so $\text{disc}(\mathcal{O}_k) = -3^35^2$.

The factorization of 5 is $5\mathcal{O}_k = (\sqrt[3]{5})^3$. To factor 3, we use not (1) but a 3-Eisenstein polynomial whose constant term is ± 3:

$$(X - 2)^3 + 5 = X^3 - 6X^2 + 12X - 3.$$

Let $\pi \stackrel{\text{def}}{=} 2 - \sqrt[3]{5}$ be a root of this. Then

$$\pi^3 = 3 - 12\pi + 6\pi^2 = 3(1 - 4\pi + 2\pi^2) = 3(1 - 4\sqrt[3]{5} + 2\sqrt[3]{25}).$$

Since $N_{k/\mathbb{Q}}(\pi) = 3$, $v \stackrel{\text{def}}{=} 1 - 4\sqrt[3]{5} + 2\sqrt[3]{25}$ is a unit in \mathcal{O}_k with norm 1 and $3 = \pi^3/v$.

Let

$$u \stackrel{\text{def}}{=} \frac{1}{v} = 41 + 24\sqrt[3]{5} + 14\sqrt[3]{25},$$

1
so $3 = \pi^3 u$. We will show later that u is the fundamental unit of k. (For comparison, in $\mathbb{Q}(\sqrt[3]{2}, \omega)$ we had $3 = \pi^3 v$ where $v < 1$ was the reciprocal of the fundamental unit.)

The minimal polynomial of v over \mathbb{Q} is

$$m(T) = T^3 - \text{Tr}_{k/\mathbb{Q}}(v)T^2 + \text{Tr}_{k/\mathbb{Q}}(u)T - 1 = T^3 - 3T^2 + 123T - 1,$$

and the minimal polynomial for u over \mathbb{Q} is

$$T^3 - 123T^2 + 3T - 1.$$

It is not a surprise that $m(T)$ has a large linear coefficient, since $m(0) = -N_{k/\mathbb{Q}}(v) = -1$ but m has a zero $v \approx .008$ that is quite near 0, so $m'(0)$ ought to be large, in fact around $(m(v) - m(0))/v = 1/v \approx 1/0.008 \approx 122.9$. Since the minimal polynomial for u has a root mod 2, 2 | disc($\mathbb{Z}[u]$) so $\mathbb{Z}[u] \neq \mathcal{O}_k$. (In full, disc($\mathbb{Z}[u]$) = $-2^63^35^213^3$.)

To determine the class number of k, the Minkowski bound is

$$\frac{3!}{3^3} \left(\frac{4}{\pi}\right) 3 \cdot 5\sqrt{3} = \frac{40\sqrt{3}}{3\pi} < \frac{80}{3\pi} < \frac{27}{\pi} < 9.$$

So we must factor 2, 3, 5, 7. We already saw 3 and 5 have principal prime factorizations. Since $X^3 - 5$ is irreducible mod 7, (7) stays prime in \mathcal{O}_k. Mod 2,

$$X^3 - 5 \equiv X^3 + 1 \equiv (X + 1)(X^2 + X + 1).$$

So (2) = $p \mathcal{Q}$, where $N_p = 2$ and $N_q = 4$.

Seeking principal generators for p and q, we look for norms of elements divisible by 2. From $N_{k/\mathbb{Q}}(1 + \sqrt[3]{5}) = 6$ we must have $(1 + \sqrt[3]{5}) = p(\pi)$, so we compute

$$\frac{1 + \sqrt[3]{5}}{2 - \sqrt[3]{5}} = \frac{1 + \sqrt[3]{5} (2 - \sqrt[3]{5} \omega)(2 - \sqrt[3]{5} \omega^2)}{3} = 3 + 2\sqrt[3]{5} + \sqrt[3]{25}.$$

This is a generator for p, from which we get a generator for q: $2 = (3 + 2\sqrt[3]{5} + \sqrt[3]{25})(-1 - \sqrt[3]{5} + \sqrt[3]{25})$.

Thus k has class number 1.

Let $U > 1$ be the fundamental unit of k. As in [2, Lemma 3], $|\text{disc}(\mathcal{O}_K)|/4 < U^3 + 7$, so

$$U^2 > \left(\frac{3 \cdot 5^2}{4} - 7\right)^{2/3} \approx 29.6.$$

Alas, this is not greater than $u \approx 122.9$, so we can’t conclude that $U^2 > u$, and hence that $U = u$. Yet $U = u$ is true. How can this be proven?

Theorem 2. The fundamental unit of $k = \mathbb{Q}(\sqrt[3]{5})$ is $u = 41 + 24\sqrt[3]{5} + 14\sqrt[3]{25}$.

Proof. We use a technique taken from the tome of Delone and Faddeev on cubic fields [3, pp. 88-92]. (For a table of cubic number field data, including fundamental units, see [3, pp. 141-146]. For a list of fundamental units of pure cubic fields $\mathbb{Q}(\sqrt[3]{m})$ with $m \leq 250$, see [4]).

We will show u is a fundamental unit by showing u is not an jth power of an algebraic integer in \mathcal{O}_k for any $j > 1$.

Suppose $u = \rho^j$, where $\rho^3 + a\rho^2 + b\rho + c = 0$ for integers a, b, c. Since ρ must be some power of the fundamental unit, $c = -N_{k/\mathbb{Q}}(\rho) = -1$.

The key idea we’ll use is that symmetric functions in the \mathbb{Q}-conjugates of u are symmetric functions in the \mathbb{Q}-conjugates of ρ, and hence are integral polynomials in a and b (since $c = -1$ is known already). Studying such integral polynomials will impose conditions on the coefficients a, b.

We will denote the conjugates of u and ρ with prime notation, so

$$u + u' + u'' = 123, \quad uu' + uu'' + u'u'' = 3, \quad uu'u'' = 1,$$

$$\rho + \rho' + \rho'' = -a, \quad \rho\rho' + \rho\rho'' + \rho'\rho'' = b, \quad \rho\rho'\rho'' = -c = 1.$$

So if $u = \rho'$ then $123 = \text{Tr}_{k/\mathbb{Q}}(\rho') = F_j(a, b)$ and $3 = G_j(a, b)$ for some $F_j, G_j \in \mathbb{Z}[X, Y]$. When $j = 2$ and 3 we can work with F_j and G_j directly. But for larger j that becomes too cumbersome.

Let’s suppose $u = \rho^2$. Then

$$123 = \rho^2 + (\rho')^2 + (\rho'')^2 = (\rho + \rho' + \rho'')^2 - 2(\rho\rho' + \rho\rho'' + \rho'\rho'') = a^2 - 2b$$

and

$$3 = (\rho\rho')^2 + (\rho\rho'')^2 + (\rho'\rho'')^2 = b^2 - 2ac = b^2 + 2a.$$

Solving for a in terms of b and feeding that into the first equation,

$$123 = \left(\frac{3 - b^2}{4}\right)^2 - 2b \Rightarrow b^4 - 6b^2 - 8b - 483 = 0.$$

Therefore $b \mid 483 = 3 \cdot 7 \cdot 23$, but none of the divisors is a root of the quartic polynomial. So u is not a square.

Now suppose $u = \rho^3$. In general,

$$x^3 + y^3 + z^3 = (x + y + z)^3 - 3(x + y + z)(xy + xz + yz) + 3xyz.$$

Thus

$$123 = \rho^3 + (\rho')^3 + (\rho'')^3 = -a^3 + 3ab + 3$$

and

$$3 = (\rho\rho')^3 + (\rho\rho'')^3 + (\rho'\rho'')^3 = b^3 + 3ab + 3.$$

The second equation says $b = 0$ or $b^2 = -3a$. If $b = 0$, then $120 = -a^3$, which is impossible. So $b^2 = -3a$, hence

$$123 = b^4/27 - b^3 + 3 \Rightarrow b^4 - 27b^3 - 27 \cdot 120 = 0.$$

The roots of $T^2 - 27T - 27 \cdot 120$ are 72 and −45; neither is a cube. So u is not a cube.

Now suppose $u = \rho^p$ for an odd prime p. Then $u \pm 1$ is divisible by $\rho \pm 1$ in \mathcal{O}_k, so in \mathbb{Z}

$$N_{k/\mathbb{Q}}(\rho + 1) \mid N_{k/\mathbb{Q}}(u + 1) = 128, \quad N_{k/\mathbb{Q}}(\rho - 1) \mid N_{k/\mathbb{Q}}(u - 1) = 120.$$

Since $\rho > 1$, $N_{k/\mathbb{Q}}(\rho \pm 1)$ is positive. From the cubic polynomial satisfied by ρ,

$$N_{k/\mathbb{Q}}(\rho + 1) = 1 - a + b - c = 2 - a + b, \quad N_{k/\mathbb{Q}}(\rho - 1) = -1 - a - b - c = -a - b.$$

By the symmetric function theorem,

$$123 = \rho^p + (\rho')^p + (\rho'')^p = (\rho + \rho' + \rho'')^p + pA \equiv -a^p \mod p \equiv -a \mod p$$

for some integer A, and similarly

$$3 \equiv (\rho\rho' + \rho\rho'' + \rho'\rho'')^p \equiv b^p \equiv b \mod p.$$

By (4), the divisibility relations (3) concern not a and b but $2 - a + b$ and $-a - b$. For odd p, the congruences (5) and (6) are equivalent to

$$2 - a + b \equiv 128 \mod p, \quad -a - b \equiv 120 \mod p.$$

Coupled with the conditions

$$2 - a + b, \quad -a - b \in \mathbb{Z}^+, (2 - a + b) \mid 128, (128, -a - b) \mid 120,$$

we assemble a finite list of possibilities for $2 - a + b$ and for $-a - b$, along with the corresponding possibilities for p:
Larger primes appear less often (only 2, 3, 5, and 7 appear more than once), so we consider primes from largest to smallest.

First, we handle the “arbitrary” case, when \(2 - a + b = 128\) and \(-a - b = 120\). Then \(a = -123, b = 3,\) so \(\rho = u\) is a root of \(T^3 - 123T^3 + 3T - 1\), i.e. \(\rho = u\). This is useless.

If \(p = 127\) then \(2 - a + b = 1\) and \(-a - b = 120\). There is no solution; \(2 - a + b\) and \(-a - b\) have the same parity. Similarly, there is no solution when \(p = 23, 17, 13\).

If \(p = 59\) then \(2 - a + b = 128\) and \(-a - b = 2,\) so \(a = -64, b = 62\). We consider a root \(\rho\) of the polynomial \(T^3 - 64T^2 + 62T - 1\). If \(\rho \in \mathcal{O}_k\) and \(u = \rho^j\), then

\[
u = \rho^j \Rightarrow \mathbb{Z}[u] \subset \mathbb{Z}[\rho] \subset \mathcal{O}_k \Rightarrow 3^25^2 \mid \text{disc}(\mathbb{Z}[\rho]) | 2^63^35^213^2.
\]

Neither of these divisibility relations holds, since \(T^3 - 64T^2 + 62T - 1\) has discriminant equal to the prime 13814533.

We can similarly eliminate the possibility of other primes:

<table>
<thead>
<tr>
<th>(p)</th>
<th>polynomial</th>
<th>discriminant</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>(T^3 - 61T^2 - 59T - 1)</td>
<td>(2^3 \cdot 59 \cdot 71 \cdot 191)</td>
</tr>
<tr>
<td>29</td>
<td>(T^3 - 65T^2 + 61T - 1)</td>
<td>(2^4 \cdot 3 \cdot 43 \cdot 233)</td>
</tr>
<tr>
<td>19</td>
<td>(T^3 - 66T^2 + 60T - 1)</td>
<td>(3^3 \cdot 508847)</td>
</tr>
<tr>
<td>11</td>
<td>(T^3 - 68T^2 + 58T - 1)</td>
<td>(5^2 \cdot 13 \cdot 41809)</td>
</tr>
</tbody>
</table>

Now we need to handle the primes \(\leq 7\). The cases \(p = 2, 3\) have already been treated, so 5 and 7 remain.

To eliminate 5 and 7 by constructing cubic polynomials from the tables above will require over 25 cases. Instead of pursuing this idea further, we show \(u\) is not a fifth or seventh power in \(\mathcal{O}_k\) by showing it is not such a power in some residue field \(\mathcal{O}_k/\mathfrak{p} \cong \mathbb{F}_p\).

To show \(u\) is not a fifth power in some \(\mathbb{F}_p\), we want \(5 \mid p - 1\), so let’s try \(p = 11\). Since \(X^3 - 5\) has a (single) root \(3 \mod 11\), there is a prime ideal \(\mathfrak{p}_{11}\) with norm 11. In \(\mathcal{O}_k/\mathfrak{p}_{11}\),

\[u \equiv \rho^5 \equiv \pm 1 \Rightarrow 11 \mid N_{k/\mathbb{Q}}(u \pm 1).\]

Since \(N_{k/\mathbb{Q}}(u + 1) = 128\) and \(N_{k/\mathbb{Q}}(u - 1) = 120, u\) is not a fifth power.

For seventh powers, we want \(7 \mid p - 1\). Try \(p = 29\). Since \(X^3 - 5\) has a (single) root \(-7 \mod 29\), there is a prime ideal \(\mathfrak{p}_{29}\) with norm 29, and in its residue field

\[u \equiv \rho^7 \Rightarrow u^2 \equiv \rho^{14} \equiv \pm 1.\]

We already know \(u^2 - 1 = (u - 1)(u + 1)\) has norm not divisible by 29. Since \(N_{k/\mathbb{Q}}(u^2 + 1) = 2^3 \cdot 1861\), \(u\) is not a seventh power.

Theorem 3. The field \(k = \mathbb{Q}(\sqrt[3]{5})\) has ring of integers \(\mathcal{O}_k = \mathbb{Z}[\sqrt[3]{5}],\) class number 1, discriminant \(-3^35^2,\) and unit group \(\pm u^Z\) where \(u = 41 + 24\sqrt[3]{5} + 14\sqrt[3]{25}\). Also \(1/u = v = 1 - 4\sqrt[3]{5} + 2\sqrt[3]{25}\). The ramified primes 3 and 5 factor as \(3 = \pi^3 u\) and \(5 = (\sqrt[3]{5})^3,\) where \(\pi = 2 - \sqrt[3]{5}\). The minimal polynomials of \(\pi\) and \(u\) are respectively

\[T^3 - 6T^2 + 12T - 3,\ T^3 - 123T^2 + 3T - 1.\]
We now turn to K. The only ramified primes are 3 and 5. Just as in [2], $3 = (\eta)^6$ where $\eta = \sqrt[3]{3}/\pi$, so $\eta^2 = 3/\pi^2 = -\pi u$. (In [2], $\eta^2 = -\pi u$.) To find the minimal polynomial of η over \mathbb{Q}, we work out the one for $\eta^6 = -(12 + 7\sqrt{5} + 4\sqrt{25})$:

$$N_{\mathbb{K}/\mathbb{Q}}(-\pi u) = -N_{\mathbb{K}/\mathbb{Q}}(\pi) = -3, \quad \text{Tr}_{\mathbb{K}/\mathbb{Q}}(-\pi u) = -36.$$

The linear coefficient in the minimal polynomial for $-\pi u$ is

$$3 \text{Tr}_{\mathbb{K}/\mathbb{Q}}(1/\pi u) = 3 \text{Tr}_{\mathbb{K}/\mathbb{Q}}(\pi^2/3) = 12,$$

so the minimal polynomial for $-\pi u$ is $T^3 + 36T^2 + 12T + 1$, hence that for η is

$$T^6 + 36T^4 + 12T^2 + 3,$$

so $\text{disc}(\mathbb{Z}[\eta]) = -2^63^75^423^4$.

The discriminant of K/\mathbb{Q} can be calculated locally using completions at η and at $\sqrt{5}$ (which stays prime in K), but instead we can use [2, Corollary 7]:

$$\text{disc}(K) = \text{disc}(F) \text{disc}(k) = -3^75^4.$$

The ring of integers of K is computed by the same technique as in [2], with a similar result:

$$O_K = O_k \oplus O_k \theta,$$

where $\theta = (\omega - 1)/\pi$, so $\eta = -\omega \theta$. Since

$$\theta \bar{\theta} = \frac{3}{\pi^2} = \pi u = 12 + 7\sqrt{5} + 4\sqrt{25}, \quad \theta + \bar{\theta} = -\frac{3}{\pi} = -\pi^2 u = -(4 + 2\sqrt{5} + \sqrt{25}),$$

the minimal polynomial of θ over k is

$$f(T) = T^2 + \pi^2 u T + \pi u = T^2 + (4 + 2\sqrt{5} + \sqrt{25})T + (12 + 7\sqrt{5} + 4\sqrt{25}),$$

so the minimal polynomial of θ over \mathbb{Q} is

$$f(\sigma(f))\sigma^2(f) = T^6 + 12T^5 + 54T^4 + 72T^3 + 48T^2 + 18T + 3,$$

where $\sigma \in N = \text{Gal}(K/F)$ is an element of order 3. This polynomial has discriminant $-2^83^75^4$, so $O_K \neq \mathbb{Z}[\theta]$. Also $O_K \neq \mathbb{Z}[\eta]$.

Now we turn to class number computations. The Minkowski bound for K is

$$\frac{6!}{6^6} \left(\frac{4}{\pi}\right)^3 = \frac{523^3\sqrt{3}}{3\pi_3} \approx 37.2.$$

The factorization statements in [2] for $\mathbb{Q}(\sqrt{2}, \omega)$ apply similarly to $K = \mathbb{Q}(\sqrt{5}, \omega)$, so the only possible rational primes that don’t factor principally in K are those $p \equiv 1 \mod 3$ where 5 is a cube mod p, and such primes split completely in K. There is one prime ≤ 37 with these properties, $p = 13$, so $\text{Cl}(K)$ is generated by the prime ideal factors of 13. Since $N_{\mathbb{K}/\mathbb{Q}}(\theta - 1) = g(1) = 208 = 2^4\cdot 13$, there is a principal prime ideal factor of 13, so $h(K) = 1$.

(For the interested reader, we compute an explicit generator of a prime ideal over 13 by factoring $(\theta - 1)$.)

The factorization of 2 is $2O_K = p\sigma p\sigma^2 p$, where $p = (3 + 2\sqrt{5} + \sqrt{25})$, and $f_2(K/Q) = 2$.

Which of p and its conjugates divides $(\theta - 1)$? All three ideals have quotient F_4, so the cube roots of unity are all distinct in the corresponding residue fields.

In O_K/p, $1 + \sqrt{25} \equiv 0 \Rightarrow \sqrt{5} \equiv 1 \Rightarrow \theta \equiv \omega - 1 \equiv \omega^2 \neq 1$.

In $O_K/\sigma p$, $1 + \sqrt{25} \omega^2 \equiv 0 \Rightarrow \sqrt{5} \equiv \omega^2 \Rightarrow \theta \equiv (\omega - 1)/\omega^2 \equiv 1$.

In $O_K/\sigma^2 p$, $1 + \sqrt{25} \omega \equiv 0 \Rightarrow \sqrt{5} \equiv \omega \Rightarrow \theta \equiv (\omega - 1)/(-\omega) \equiv \omega \neq 1$.

Therefore $(\theta - 1) = (\sigma p)^2 \mathfrak{P}_{13}$, where $\mathfrak{P}_{13} \mid (13)$, so \mathfrak{P}_{13} is a principal ideal with

$$\beta \overset{\text{def}}{=} \frac{\theta - 1}{(3 + 2\sqrt{5} + \sqrt{25} \omega^2)^2} = -(9 + 10\sqrt{5} + 5\sqrt{25} + (1 + 7\sqrt{5} - \sqrt{25})\theta)$$
as a generator.)

Now we turn to the unit group of \mathcal{O}_K. Since the ideal \((\eta)\) is fixed by the Galois group of \(K/\mathbb{Q}\), let’s consider the unit

$$\delta \overset{\text{def}}{=} \frac{\sigma(\eta)}{\eta} = \frac{\pi}{\sigma(\pi)} \in \mathcal{O}_K^\times,$$

where \(\sigma \in \text{Gal}(K/F)\) sends \(\sqrt[5]{3}\) to \(\sqrt[5]{5}\). We have

$$\pi = 2 - \sqrt[5]{3}, \quad \sigma(\pi) = 2 - \sqrt[5]{3}, \quad \sigma^2(\pi) = 2 - \sqrt[5]{3} = \sigma(\pi).$$

Therefore

$$\delta = \frac{\pi}{\sigma(\pi)} = \frac{\pi}{\sigma^2(\pi)},$$

so

$$|\delta|^2 = \delta\overline{\delta} = \frac{\pi^2}{\sigma(\pi)\sigma^2(\pi)} = \frac{\pi^3}{3} = v,$$

so

$$v = N_{K/k}(\delta), \quad u = N_{K/k}(1/\delta).$$

The log map on \(\mathcal{O}_K^\times\) is given by

$$L(x) = (2 \log |x|, 2 \log |\sigma(x)|, 2 \log |\sigma^2(x)|).$$

We compute this for \(x = u, \delta, \sigma(\delta)\), keeping only the first two coordinates.

Since \(N_{K/\mathbb{Q}}(u) = u\sigma(u)\overline{\sigma}(u) = u|\sigma(u)|^2, 2 \log |\sigma(u)| = 2 \log |\sigma^2(u)| = -\log u.

Since

$$\sigma(\delta) = \frac{\sigma(\pi)}{\sigma^2(\pi)}, \quad \sigma^2(\delta) = \frac{\sigma^2(\pi)}{\pi},$$

we get

$$2 \log |\sigma(\delta)| = 0, \quad 2 \log |\sigma^2(\delta)| = -2 \log |\delta| = -\log v = \log u,$$

so

$$L(u) = (2 \log u, -\log u), \quad L(\sigma u) = (-\log u, -\log u),$$

$$L(\delta) = (-\log u, 0), \quad L(\overline{\delta}) = (-\log u, \log u),$$

$$L(\sigma(\delta)) = (0, \log u).$$

In particular, notice that \(L(\sigma(\delta)) = L(\overline{\delta}) - L(\delta)\), which means \(\sigma(\delta) = \zeta\overline{\delta}/\delta\), where \(\zeta\) is a root of unity in \(K\); in fact \(\sigma(\delta) = \overline{\delta}/\delta\). The regulator computations are:

<table>
<thead>
<tr>
<th>unit pair</th>
<th>regulator</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u, \delta)</td>
<td>((\log u)^2)</td>
</tr>
<tr>
<td>(\delta, \overline{\delta})</td>
<td>((\log u)^2)</td>
</tr>
<tr>
<td>(u, \sigma(u))</td>
<td>(3(\log u)^2)</td>
</tr>
</tbody>
</table>

By \([2, \text{Corollary 7}]\), \(h(K)R(K) = h(F)R(F)(h(k)R(k))^2 = (\log u)^2\), so

$$[\mathcal{O}_K^\times /\mu_K : \langle \delta, \overline{\delta} \rangle] = \frac{\text{Reg}(\delta, \overline{\delta})}{R(K)} = \frac{(\log u)^2}{R(K)} = h(K).$$

We already checked \(h(K) = 1\), so \(\{\delta, \overline{\delta}\}\) is a pair of fundamental units for \(K\).

To match the notation for fundamental units in \([2]\), let

$$\varepsilon \overset{\text{def}}{=} \omega^2 \delta = \omega^2 \frac{\pi}{\sigma(\pi)} = -7 + 4\sqrt[5]{3} + (7\sqrt[5]{3} - 12)\theta = 1 - 4\pi + (2 - 7\pi)\theta.$$

We know \(\{\varepsilon, \overline{\varepsilon}\}\) is a pair of fundamental units. Might \(\mathcal{O}_K = \mathbb{Z}[\varepsilon]?) Let’s find the polynomial for \(\varepsilon\) over \(k\), and then descend to \(\mathbb{Q}\).
We compute
\[\text{Tr}_{K/k}(\varepsilon) = \omega^2 \frac{\pi}{\sigma(\pi)} + \omega \frac{\pi}{\sigma^2(\pi)} = \frac{\pi^2}{3} (\omega^2 \sigma^2(\pi) + \omega \sigma(\pi)) = \frac{\pi^2}{3} (\pi) = -v. \]

So \(\varepsilon \) and \(\bar{\varepsilon} \) are both roots of \(f(T) = T^2 + vT + v \). (This is analogous to the role of the polynomial \(T^2 + uT + u \) in [2].) So the minimal polynomial of \(\varepsilon \) over \(\mathbb{Q} \) is
\[f(f)(f) = T^6 + 3T^5 + 126T^4 + 247T^3 + 126T^2 + 3T + 1. \]

Alas, the discriminant of this is \(-2^{12}3^75^413^6 \), so \(\mathcal{O}_K \not\equiv \mathbb{Z}[\varepsilon] \). (As an aside, the polynomial has symmetric coefficients, so \(\varepsilon^{-1} \) is a root, and in fact \(\varepsilon^{-1} = \overline{\sigma}(\varepsilon) \).

Theorem 4. The field \(K = \mathbb{Q}(\sqrt[3]{5}, \omega) \) has class number 1, discriminant \(-3^75^4 \), and regulator \((\log(41 + 24\sqrt{5} + 14\sqrt{25}))^2 \). The ramified primes 3 and 5 factor as
\[(3) = (\eta)^6, \ (5) = (\sqrt[3]{5})^3, \]
where \(\eta = \sqrt{-3}/\pi \), \(\pi = 2 - \sqrt[3]{5} \).

The ring of integers of \(K \) is \(\mathcal{O}_k \oplus \mathcal{O}_k \theta \), where \(\theta = (\omega - 1)/\pi \). The unit group of \(\mathcal{O}_K \) has six roots of unity, rank 2, and basis \(\{\varepsilon, \bar{\varepsilon}\} \), where
\[\varepsilon = \omega^2 / \sigma(\pi) \]
has minimal polynomial
\[g(T) = T^6 + 3T^5 + 126T^4 + 247T^3 + 126T^2 + 3T + 1. \]

There is no power basis for \(\mathcal{O}_K \). For a more general result, see [1].

We now return to the computation of \(\text{Cl}(K) \). We noted that \(\text{Cl}(K) \) is generated by the prime ideal factors of 13, and then showed those factors are principal, using the special element \(\theta \). Here is an alternative computation of \(h(K) = 1 \) that does not depend on knowing about \(\theta \).

Let’s assume \(h(K) \neq 1 \), i.e. none of the prime ideals over 13 in \(K \) is principal. Then the Galois group of \(K/Q \) acts transitively on the nonidentity classes of \(\text{Cl}(K) \), and we show by this action that \(h(K) = 3 \) if \(h(K) > 1 \).

Let \(\mathfrak{P} \) be a prime ideal in \(K \) lying over 13. Let \(\tau \) denote complex conjugation, so \(\tau \sigma = \sigma^2 \tau \). Since \(k \) has class number 1, \(\mathfrak{P} \tau(\mathfrak{P}) \sim 1 \). Therefore
\[\sigma(\mathfrak{P})\tau(\sigma(\mathfrak{P})) \sim 1 \Rightarrow \sigma(\mathfrak{P})\sigma^2(\tau(\mathfrak{P})) \sim 1 \Rightarrow \mathfrak{P}\sigma(\tau(\mathfrak{P})) \sim 1. \]

Therefore \(\tau(\mathfrak{P}) \sim \sigma(\tau(\mathfrak{P})) \sim 1 \). Since \([\mathfrak{P}] \in \text{Cl}(K) \) is fixed by \(\tau \sigma \tau = \sigma^2 \), so its stabilizer subgroup is either \(\{1, \sigma, \sigma^2\} \) or \(G \). Thus the number of nonidentity elements in \(\text{Cl}(K) \) is 1 or 2, so \(h(K) = 2 \) or 3. Since
\[\mathfrak{P}\sigma(\mathfrak{P})\sigma^2(\mathfrak{P}) = N_{K/F}(\mathfrak{P}) = (1 \pm 2\sqrt{-3}) \sim 1, \]
\([\mathfrak{P}]^3 = 1 \), hence 3 \(\mid h(K) \). So if \(h(K) > 1 \) then \(\text{Cl}(K) = \{1, [\mathfrak{P}], [\tau(\mathfrak{P})]\} \) is cyclic of size 3.

We saw earlier that \([\mathcal{O}_K^x / \mu_K : \langle \delta, \overline{\delta} \rangle] = h(K) \). Assume \(h(K) = 3 \). We shall apply the results in [2, Theorem 8] about index 3 sublattices of \(\mathbb{Z}^2 \). In particular, neither \(L(\delta) \) nor \(L(\overline{\delta}) \) is in 3\(\mathbb{L} \), so if the index is 3 then there is a basis \(\{\delta, \xi\} \) of \(\mathcal{O}_K^x / \mu_K \), where
\[\overline{\delta} = \zeta \xi^3 \quad \text{or} \quad \delta / \overline{\delta} = \zeta \xi^3 \]
for some root of unity \(\zeta \). Applying \(N_{K/k} \) to the first possibility yields \(v^2 = (N_{K/k}(\xi))^3 \) in \(\mathcal{O}_K^x \), which is absurd since \(v \) is a generator of \(\mathcal{O}_K^x \). Applying the log map to the second possibility yields
\[L(\delta) = L(\overline{\delta}) = -L(\sigma(\delta)) \in 3\mathbb{L}, \]
so by Galois action we have $L(\delta), L(\overline{\delta}) \in 3L$, a contradiction of $|L(O_K^\times) : L(\delta)\mathbb{Z} + L(\overline{\delta})\mathbb{Z}| = 3$. Therefore $h(K) = 1$.

Here’s another point of view on the link between $h(K) = 1$ and principal factorization of $13O_K$. Since $N_{K/Q}(2 + \sqrt{5}) = 13$,

(9) \[13 = (2 + \sqrt{5})(2 + \sqrt{5}\omega)(2 + \sqrt{5}\omega^2) = (2 + \sqrt{5})(4 - 2\sqrt{5} + \sqrt{25}). \]

We want to factor the second term on the right in O_k. Since $N_{k/Q}(1 + \sqrt{25}) = 26$ and $h(k) = 1$, by (2) we must have a numerical factorization

\[1 + \sqrt{25} = (3 + 2\sqrt{5} + \sqrt{25})(a + b\sqrt{5} + c\sqrt{25}) \]

for some $a, b, c \in \mathbb{Z}$. Multiplying the two terms on the right we get a solution $a = -3, b = -2, c = 0$, i.e. $N_{k/Q}(-3 + 2\sqrt{5}) = 13$. Guided by (9), we divide $-3 + 2\sqrt{5}$ into $4 - 2\sqrt{5} + \sqrt{25}$ to get the principal (in fact, numerical) factorization of 13 in $\mathbb{Z}[\sqrt{5}]$:

(10) \[13 = (2 + \sqrt{5})(-3 + 2\sqrt{5})(2 + 2\sqrt{5} + \sqrt{25}). \]

So 13 has principal prime factors in O_K if and only if the ideal $(2 + \sqrt{5})$ of k is the norm of a principal ideal in K, i.e. there is some $\alpha \in O_K$ such that

\[N_{K/k}(\alpha) = \pm(2 + \sqrt{5})u^m \]

for some $m \in \mathbb{Z}$. The norm must be positive, so the plus sign must hold. Since $u = N_{K/k}(1/\delta)$, $h(K) = 1$ if and only if $2 + \sqrt{5}$ is a norm from K.

To explicitly exhibit $2 + \sqrt{5}$ as a norm from K, we consider the generator β of one of the prime factors of $13O_K$. Does $N_{K/k}(\beta) = 2 + \sqrt{5}$? No, since $N_{K/k}(\beta) = 342 + 200\sqrt{5} + 117\sqrt{25}$, which is much larger than $2 + \sqrt{5}$. By (10), $N_{K/k}(\beta)$ must equal $(2 + \sqrt{5})u^m$, $(-3 + 2\sqrt{5})u^m$, or $(2 + 2\sqrt{5} + \sqrt{25})u^m$ for some integer m. Taking logarithms to check in each case whether the unknown m is an integer, we find that

\[N_{K/k}(\beta) = (2 + 2\sqrt{5} + \sqrt{25})u. \]

The prime ideals in O_K lying over $(2 + \sqrt{5})$ and $(2 + 2\sqrt{5} + \sqrt{25})$ are conjugate by σ or σ^2, so let’s consider $N_{K/k}(\sigma\beta)$. Using PARI, $\sigma(\theta) = -4 + \sqrt{25} - (6 - 2\sqrt{25})\theta$, from which we compute

\[N_{K/k}(\sigma\beta) = \sigma(\beta)\overline{\sigma}(\beta) = (2 + 3\sqrt{5})u^{-2}. \]

Thus

(11) \[2 + \sqrt{5} = N_{K/k}(\sigma\beta)u^2 = N_{K/k}((\sigma\beta)/\delta^2). \]

References

