THE SPLITTING FIELD OF $X^{3}-5$ OVER \mathbf{Q}

KEITH CONRAD

In this note, we calculate all the basic invariants of the number field

$$
K=\mathbf{Q}(\sqrt[3]{5}, \omega)
$$

where $\omega=(-1+\sqrt{-3}) / 2$ is a primitive cube root of unity.
Here is the notation for the fields and Galois groups to be used. Let

$$
\begin{aligned}
k & =\mathbf{Q}(\sqrt[3]{5}) \\
K & =\mathbf{Q}(\sqrt[3]{5}, \omega) \\
F & =\mathbf{Q}(\omega)=\mathbf{Q}(\sqrt{-3}) \\
G & =\operatorname{Gal}(K / \mathbf{Q}) \cong S_{3} \\
N & =\operatorname{Gal}(K / F) \cong A_{3} \\
H & =\operatorname{Gal}(K / k)
\end{aligned}
$$

First we work out the basic invariants for the fields F and k.
Theorem 1. The field $F=\mathbf{Q}(\omega)$ has ring of integers $\mathbf{Z}[\omega]$, class number 1 , discriminant -3 , and unit group $\left\{ \pm 1, \pm \omega, \pm \omega^{2}\right\}$. The ramified prime 3 factors as $3=-(\sqrt{-3})^{2}$. For $p \neq 3$, the way p factors in $\mathbf{Z}[\omega]=\mathbf{Z}[X] /\left(X^{2}+X+1\right)$ is identical to the way $X^{2}+X+1$ factors $\bmod p$, so p splits if $p \equiv 1 \bmod 3$ and p stays prime if $p \equiv 2 \bmod 3$.

We now turn to the field k. Its norm form is

$$
\mathrm{N}_{k / \mathbf{Q}}(a+b \sqrt[3]{5}+c \sqrt[3]{25})=a^{3}+5 b^{3}+25 c^{3}-15 a b c
$$

Since $\operatorname{disc}(\mathbf{Z}[\sqrt[3]{5}])=-\mathrm{N}_{k / \mathbf{Q}}\left(3(\sqrt[3]{5})^{2}\right)=-3^{3} 5^{2}$, only 3 and 5 can ramify in k. Since $X^{3}-5$ is Eisenstein at 5 and

$$
\begin{equation*}
(X-1)^{3}-5=X^{3}-3 X^{2}+3 X-6 \tag{1}
\end{equation*}
$$

is Eisenstein at 3 , both 3 and 5 are totally ramified. Therefore by the same local field argument as in $[2], \mathcal{O}_{k}=\mathbf{Z}[\sqrt[3]{5}]$, so $\operatorname{disc}\left(\mathcal{O}_{k}\right)=-3^{3} 5^{2}$.

The factorization of 5 is $5 \mathcal{O}_{k}=(\sqrt[3]{5})^{3}$. To factor 3 , we use not (1) but a 3 -Eisenstein polynomial whose constant term is ± 3 :

$$
(X-2)^{3}+5=X^{3}-6 X^{2}+12 X-3
$$

Let $\pi \stackrel{\text { def }}{=} 2-\sqrt[3]{5}$ be a root of this. Then

$$
\begin{aligned}
\pi^{3} & =3-12 \pi+6 \pi^{2} \\
& =3\left(1-4 \pi+2 \pi^{2}\right) \\
& =3(1-4 \sqrt[3]{5}+2 \sqrt[3]{25})
\end{aligned}
$$

Since $\mathrm{N}_{k / \mathbf{Q}}(\pi)=3, v \stackrel{\text { def }}{=} 1-4 \sqrt[3]{5}+2 \sqrt[3]{25}$ is a unit in \mathcal{O}_{k} with norm 1 and $3=\pi^{3} / v$.
Let

$$
u \stackrel{\text { def }}{=} \frac{1}{v}=41+24 \sqrt[3]{5}+14 \sqrt[3]{25}
$$

so $3=\pi^{3} u$. We will show later that u is the fundamental unit of k. (For comparison, in $\mathbf{Q}(\sqrt[3]{2}, \omega)$ we had $3=\pi^{3} v$ where $v<1$ was the reciprocal of the fundamental unit.)

The minimal polynomial of v over \mathbf{Q} is

$$
m(T)=T^{3}-\operatorname{Tr}_{k / \mathbf{Q}}(v) T^{2}+\operatorname{Tr}_{k / \mathbf{Q}}(u) T-1=T^{3}-3 T^{2}+123 T-1,
$$

and the minimal polynomial for u over \mathbf{Q} is

$$
T^{3}-123 T^{2}+3 T-1
$$

It is not a surprise that $m(T)$ has a large linear coefficient, since $m(0)=-\mathrm{N}_{k / \mathbf{Q}}(v)=-1$ but m has a zero $v \approx .008$ that is quite near 0 , so $m^{\prime}(0)$ ought to be large, in fact around $(m(v)-m(0)) / v=1 / v \approx 1 / .008 \approx 122.9$. Since the minimal polynomial for u has a root $\bmod 2,2 \mid \operatorname{disc}(\mathbf{Z}[u])$ so $\mathbf{Z}[u] \neq \mathcal{O}_{k}$. (In full, $\operatorname{disc}(\mathbf{Z}[u])=-2^{6} 3^{3} 5^{2} 13^{2}$.)

To determine the class number of k, the Minkowski bound is

$$
\frac{3!}{3^{3}}\left(\frac{4}{\pi}\right) 3 \cdot 5 \sqrt{3}=\frac{40 \sqrt{3}}{3 \pi}<\frac{80}{3 \pi}<\frac{27}{\pi}<9 .
$$

So we must factor $2,3,5,7$. We already saw 3 and 5 have principal prime factorizations. Since $X^{3}-5$ is irreducible $\bmod 7,(7)$ stays prime in \mathcal{O}_{k}. $\operatorname{Mod} 2$,

$$
X^{3}-5 \equiv X^{3}+1 \equiv(X+1)\left(X^{2}+X+1\right) .
$$

So (2) $=\mathfrak{p q}$, where $\mathrm{N} \mathfrak{p}=2$ and $\mathrm{Nq}=4$.
Seeking principal generators for \mathfrak{p} and \mathfrak{q}, we look for norms of elements divisible by 2 . From $\mathrm{N}_{k / \mathbf{Q}}(1+\sqrt[3]{5})=6$ we must have $(1+\sqrt[3]{5})=\mathfrak{p}(\pi)$, so we compute

$$
\frac{1+\sqrt[3]{5}}{\pi}=\frac{1+\sqrt[3]{5}}{2-\sqrt[3]{5}}=\frac{(1+\sqrt[3]{5})(2-\sqrt[3]{5} \omega)\left(2-\sqrt[3]{5} \omega^{2}\right)}{3}=3+2 \sqrt[3]{5}+\sqrt[3]{25}
$$

This is a generator for \mathfrak{p}, from which we get a generator for \mathfrak{q} :

$$
\begin{equation*}
2=(3+2 \sqrt[3]{5}+\sqrt[3]{25})(-1-\sqrt[3]{5}+\sqrt[3]{25}) \tag{2}
\end{equation*}
$$

Thus k has class number 1.
Let $U>1$ be the fundamental unit of k. As in [2, Lemma 3], $\left|\operatorname{disc}\left(\mathcal{O}_{K}\right)\right| / 4<U^{3}+7$, so

$$
U^{2}>\left(\frac{3^{3} 5^{2}}{4}-7\right)^{2 / 3} \approx 29.6
$$

Alas, this is not greater than $u \approx 122.9$, so we can't conclude that $U^{2}>u$, and hence that $U=u$. Yet $U=u$ is true. How can this be proven?
Theorem 2. The fundamental unit of $k=\mathbf{Q}(\sqrt[3]{5})$ is $u=41+24 \sqrt[3]{5}+14 \sqrt[3]{25}$.
Proof. We use a technique taken from the tome of Delone and Faddeev on cubic fields [3, pp. 88-92]. (For a table of cubic number field data, including fundamental units, see [3, pp. 141-146]. For a list of fundamental units of pure cubic fields $\mathbf{Q}(\sqrt[3]{m})$ with $m \leq 250$, see [4].)

We will show u is a fundamental unit by showing u is not an j th power of an algebraic integer in \mathcal{O}_{k} for any $j>1$.

Suppose $u=\rho^{j}$, where $\rho^{3}+a \rho^{2}+b \rho+c=0$ for integers a, b, c. Since ρ must be some power of the fundamental unit, $c=-\mathrm{N}_{k / \mathbf{Q}}(\rho)=-1$.

The key idea we'll use is that symmetric functions in the \mathbf{Q}-conjugates of u are symmetric functions in the \mathbf{Q}-conjugates of ρ, and hence are integral polynomials in a and b (since $c=-1$ is known already). Studying such integral polynomials will impose conditions on the coefficients a, b.

We will denote the conjugates of u and ρ with prime notation, so

$$
\begin{gathered}
u+u^{\prime}+u^{\prime \prime}=123, \quad u u^{\prime}+u u^{\prime \prime}+u^{\prime} u^{\prime \prime}=3, \quad u u^{\prime} u^{\prime \prime}=1, \\
\rho+\rho^{\prime}+\rho^{\prime \prime}=-a, \quad \rho \rho^{\prime}+\rho \rho^{\prime \prime}+\rho^{\prime} \rho^{\prime \prime}=b, \quad \rho \rho^{\prime} \rho^{\prime \prime}=-c=1 .
\end{gathered}
$$

So if $u=\rho^{j}$ then $123=\operatorname{Tr}_{k / \mathbf{Q}}\left(\rho^{j}\right)=F_{j}(a, b)$ and $3=G_{j}(a, b)$ for some $F_{j}, G_{j} \in \mathbf{Z}[X, Y]$. When $j=2$ and 3 we can work with F_{j} and G_{j} directly. But for larger j that becomes too cumbersome.

Let's suppose $u=\rho^{2}$. Then

$$
123=\rho^{2}+\left(\rho^{\prime}\right)^{2}+\left(\rho^{\prime \prime}\right)^{2}=\left(\rho+\rho^{\prime}+\rho^{\prime \prime}\right)^{2}-2\left(\rho \rho^{\prime}+\rho \rho^{\prime \prime}+\rho^{\prime} \rho^{\prime \prime}\right)=a^{2}-2 b
$$

and

$$
3=\left(\rho \rho^{\prime}\right)^{2}+\left(\rho \rho^{\prime \prime}\right)^{2}+\left(\rho^{\prime} \rho^{\prime \prime}\right)^{2}=b^{2}-2 a c=b^{2}+2 a .
$$

Solving for a in terms of b and feeding that into the first equation,

$$
123=\frac{\left(3-b^{2}\right)^{2}}{4}-2 b \Rightarrow b^{4}-6 b^{2}-8 b-483=0
$$

Therefore $b \mid 483=3 \cdot 7 \cdot 23$, but none of the divisors is a root of the quartic polynomial. So u is not a square.

Now suppose $u=\rho^{3}$. In general,

$$
x^{3}+y^{3}+z^{3}=(x+y+z)^{3}-3(x+y+z)(x y+x z+y z)+3(x y z) .
$$

Thus

$$
123=\rho^{3}+\left(\rho^{\prime}\right)^{3}+\left(\rho^{\prime \prime}\right)^{3}=-a^{3}+3 a b+3
$$

and

$$
3=\left(\rho \rho^{\prime}\right)^{3}+\left(\rho \rho^{\prime \prime}\right)^{3}+\left(\rho^{\prime} \rho^{\prime \prime}\right)^{3}=b^{3}+3 a b+3
$$

The second equation says $b=0$ or $b^{2}=-3 a$. If $b=0$, then $120=-a^{3}$, which is impossible. So $b^{2}=-3 a$, hence

$$
123=b^{6} / 27-b^{3}+3 \Rightarrow b^{6}-27 b^{3}-27 \cdot 120=0
$$

The roots of $T^{2}-27 T-27 \cdot 120$ are 72 and -45 ; neither is a cube. So u is not a cube.
Now suppose $u=\rho^{p}$ for an odd prime p. Then $u \pm 1$ is divisible by $\rho \pm 1$ in \mathcal{O}_{k}, so in \mathbf{Z}

$$
\begin{equation*}
\mathrm{N}_{k / \mathbf{Q}}(\rho+1)\left|\mathrm{N}_{k / \mathbf{Q}}(u+1)=128, \quad \mathrm{~N}_{k / \mathbf{Q}}(\rho-1)\right| \mathrm{N}_{k / \mathbf{Q}}(u-1)=120 \tag{3}
\end{equation*}
$$

Since $\rho>1, \mathbf{N}_{k / \mathbf{Q}}(\rho \pm 1)$ is positive. From the cubic polynomial satisfied by ρ,

$$
\begin{equation*}
\mathrm{N}_{k / \mathbf{Q}}(\rho+1)=1-a+b-c=2-a+b, \quad \mathrm{~N}_{k / \mathbf{Q}}(\rho-1)=-1-a-b-c=-a-b . \tag{4}
\end{equation*}
$$

By the symmetric function theorem,

$$
\begin{equation*}
123=\rho^{p}+\left(\rho^{\prime}\right)^{p}+\left(\rho^{\prime \prime}\right)^{p}=\left(\rho+\rho^{\prime}+\rho^{\prime \prime}\right)^{p}+p A \equiv-a^{p} \bmod p \equiv-a \bmod p \tag{5}
\end{equation*}
$$

for some integer A, and similarly

$$
\begin{equation*}
3 \equiv\left(\rho \rho^{\prime}+\rho \rho^{\prime \prime}+\rho^{\prime} \rho^{\prime \prime}\right)^{p} \equiv b^{p} \equiv b \bmod p \tag{6}
\end{equation*}
$$

By (4), the divisibility relations (3) concern not a and b but $2-a+b$ and $-a-b$. For odd p, the congruences (5) and (6) are equivalent to

$$
\begin{equation*}
2-a+b \equiv 128 \bmod p, \quad-a-b \equiv 120 \bmod p \tag{7}
\end{equation*}
$$

Coupled with the conditions

$$
\begin{equation*}
\left.\left.2-a+b,-a-b \in \mathbf{Z}^{+},(2-a+b) \mid 128,\right)-a-b\right) \mid 120, \tag{8}
\end{equation*}
$$

we assemble a finite list of possibilities for $2-a+b$ and for $-a-b$, along with the corresponding possibilities for p :

	$2-a+b$	1	2	4	8	16	32	64	128
	p	127	$2,3,7$	2,31	$2,3,5$	2,7	2,3	2	arb.
$-a-b$	1	2	3	4	5	6	8	10	
p	7,17	2,59	3,13	2,29	5,23	$2,3,19$	2,7	$2,5,11$	
$-a-b$	12	15	20	24	30	40	60	120	
p	2,3	$3,5,7$	2,5	2,3	$2,3,5$	2,5	$2,3,5$	arb.	

Larger primes appear less often (only 2, 3, 5, and 7 appear more than once), so we consider primes from largest to smallest.

First, we handle the "arbitrary" case, when $2-a+b=128$ and $-a-b=120$. Then $a=-123, b=3$, so ρ is a root of $T^{3}-123 T^{3}+3 T-1$, i.e. $\rho=u$. This is useless.

If $p=127$ then $2-a+b=1$ and $-a-b=120$. There is no solution; $2-a+b$ and $-a-b$ have the same parity. Similarly, there is no solution when $p=23,17,13$.

If $p=59$ then $2-a+b=128$ and $-a-b=2$, so $a=-64, b=62$. We consider a root ρ of the polynomial $T^{3}-64 T^{2}+62 T-1$. If $\rho \in \mathcal{O}_{k}$ and $u=\rho^{j}$, then

$$
u=\rho^{j} \Rightarrow \mathbf{Z}[u] \subset \mathbf{Z}[\rho] \subset \mathcal{O}_{k} \Rightarrow 3^{3} 5^{2}|\operatorname{disc}(\mathbf{Z}[\rho])| 2^{6} 3^{3} 5^{2} 13^{2} .
$$

Neither of these divisibility relations holds, since $T^{3}-64 T^{2}+62 T-1$ has discriminant equal to the prime 13814533.

We can similarly eliminate the possibility of other primes:

p	polynomial	discriminant
31	$T^{3}-61 T^{2}-59 T-1$	$2^{4} \cdot 59 \cdot 71 \cdot 191$
29	$T^{3}-65 T^{2}+61 T-1$	$2^{5} \cdot 43 \cdot 233$
19	$T^{3}-66 T^{2}+60 T-1$	$3^{3} \cdot 508847$
11	$T^{3}-68 T^{2}+58 T-1$	$5^{2} \cdot 13 \cdot 41809$

Now we need to handle the primes ≤ 7. The cases $p=2,3$ have already been treated, so 5 and 7 remain.

To eliminate 5 and 7 by constructing cubic polynomials from the tables above will require over 25 cases. Instead of pursuing this idea further, we show u is not a fifth or seventh power in \mathcal{O}_{k} by showing it is not such a power in some residue field $\mathcal{O}_{k} / \mathfrak{p} \cong \mathbf{F}_{p}$.

To show u is not a fifth power in some \mathbf{F}_{p}, we want $5 \mid p-1$, so let's try $p=11$. Since $X^{3}-5$ has a (single) root $3 \bmod 11$, there is a prime ideal \mathfrak{p}_{11} with norm 11. In $\mathcal{O}_{k} / \mathfrak{p}_{11}$,

$$
u \equiv \rho^{5} \equiv \pm 1 \Rightarrow 11 \mid \mathrm{N}_{k / \mathbf{Q}}(u \pm 1)
$$

Since $\mathrm{N}_{k / \mathbf{Q}}(u+1)=128$ and $\mathrm{N}_{k / \mathbf{Q}}(u-1)=120, u$ is not a fifth power.
For seventh powers, we want $7 \mid p-1$. Try $p=29$. Since $X^{3}-5$ has a (single) root $-7 \bmod 29$, there is a prime ideal \mathfrak{p}_{29} with norm 29 , and in its residue field

$$
u \equiv \rho^{7} \Rightarrow u^{2} \equiv \rho^{14} \equiv \pm 1
$$

We already know $u^{2}-1=(u-1)(u+1)$ has norm not divisible by 29 . Since $\mathbf{N}_{k / \mathbf{Q}}\left(u^{2}+1\right)=$ $2^{3} \cdot 1861, u$ is not a seventh power.

Theorem 3. The field $k=\mathbf{Q}(\sqrt[3]{5})$ has ring of integers $\mathcal{O}_{k}=\mathbf{Z}[\sqrt[3]{5}]$, class number 1 , discriminant $-3^{3} 5^{2}$, and unit group $\pm u^{\mathbf{Z}}$ where $u=41+24 \sqrt[3]{5}+14 \sqrt[3]{25}$. Also $1 / u=v=$ $1-4 \sqrt[3]{5}+2 \sqrt[3]{25}$. The ramified primes 3 and 5 factor as $3=\pi^{3} u$ and $5=(\sqrt[3]{5})^{3}$, where $\pi=2-\sqrt[3]{5}$. The minimal polynomials of π and u are respectively

$$
T^{3}-6 T^{2}+12 T-3, \quad T^{3}-123 T^{2}+3 T-1
$$

We now turn to K. The only ramified primes are 3 and 5 . Just as in [2], $(3)=(\eta)^{6}$ where $\eta=\sqrt{-3} / \pi$, so $\eta^{2}=-3 / \pi^{2}=-\pi u$. (In [2], $\eta^{2}=-\pi v$.) To find the minimal polynomial of η over \mathbf{Q}, we work out the one for $\eta^{2}=-\pi u=-(12+7 \sqrt[3]{5}+4 \sqrt[3]{25})$:

$$
\mathrm{N}_{k / \mathbf{Q}}(-\pi u)=-\mathrm{N}_{k / \mathbf{Q}}(\pi)=-3, \quad \operatorname{Tr}_{k / \mathbf{Q}}(-\pi u)=-36
$$

The linear coefficient in the minimal polynomial for $-\pi u$ is

$$
3 \operatorname{Tr}_{k / \mathbf{Q}}(1 / \pi u)=3 \operatorname{Tr}_{k / \mathbf{Q}}\left(\pi^{2} / 3\right)=12
$$

so the minimal polynomial for $-\pi u$ us $T^{3}+36 T^{2}+12 T+1$, hence that for η is

$$
T^{6}+36 T^{4}+12 T^{2}+3
$$

so $\operatorname{disc}(\mathbf{Z}[\eta])=-2^{6} 3^{7} 5^{4} 23^{4}$.
The discriminant of K / \mathbf{Q} can be calculated locally using completions at η and at $\sqrt[3]{5}$ (which stays prime in K), but instead we can use [2, Corollary 7]:

$$
\operatorname{disc}(K)=\operatorname{disc}(F) \operatorname{disc}(k)^{2}=-3^{7} 5^{4}
$$

The ring of integers of K is computed by the same technique as in [2], with a similar result:

$$
\mathcal{O}_{K}=\mathcal{O}_{k} \oplus \mathcal{O}_{k} \theta
$$

where $\theta=(\omega-1) / \pi$, so $\eta=-\omega \theta$. Since

$$
\theta \bar{\theta}=\frac{3}{\pi^{2}}=\pi u=12+7 \sqrt[3]{5}+4 \sqrt[3]{25}, \quad \theta+\bar{\theta}=-\frac{3}{\pi}=-\pi^{2} u=-(4+2 \sqrt[3]{5}+\sqrt[3]{25})
$$

the minimal polynomial of θ over k is

$$
f(T)=T^{2}+\pi^{2} u T+\pi u=T^{2}+(4+2 \sqrt[3]{5}+\sqrt[3]{25}) T+(12+7 \sqrt[3]{5}+4 \sqrt[3]{25})
$$

so the minimal polynomial of θ over \mathbf{Q} is

$$
f \sigma(f) \sigma^{2}(f)=T^{6}+12 T^{5}+54 T^{4}+72 T^{3}+48 T^{2}+18 T+3
$$

where $\sigma \in N=\operatorname{Gal}(K / F)$ is an element of order 3. This polynomial has discriminant $-2^{8} 3^{7} 5^{4}$, so $\mathcal{O}_{k} \neq \mathbf{Z}[\theta]$. Also $\mathcal{O}_{K} \neq \mathbf{Z}[\eta]$.

Now we turn to class number computations. The Minkowski bound for K is

$$
\frac{6!}{6^{6}}\left(\frac{4}{\pi}\right)^{3} 5^{2} 3^{3} \sqrt{3}=\frac{2^{4} 5^{3} \sqrt{3}}{3 \pi^{3}} \approx 37.2
$$

The factorization statements in $[2]$ for $\mathbf{Q}(\sqrt[3]{2}, \omega)$ apply similarly to $K=\mathbf{Q}(\sqrt[3]{5}, \omega)$, so the only possible rational primes that don't factor principally in K are those $p \equiv 1 \bmod 3$ where 5 is a cube $\bmod p$, and such primes split completely in K. There is one prime ≤ 37 with these properties, $p=13$, so $\mathrm{Cl}(K)$ is generated by the prime ideal factors of 13 . Since $\mathrm{N}_{K / \mathbf{Q}}(\theta-1)=g(1)=208=2^{4} \cdot 13$, there is a principal prime ideal factor of 13 , so $h(K)=1$.
(For the interested reader, we compute an explicit generator of a prime ideal over 13 by factoring $(\theta-1)$.

The factorization of 2 is $2 \mathcal{O}_{K}=\mathfrak{p} \sigma \mathfrak{p} \sigma^{2} \mathfrak{p}$, where $\mathfrak{p}=(3+2 \sqrt[3]{5}+\sqrt[3]{25})$, and $f_{2}(K / \mathbf{Q})=2$. Which of \mathfrak{p} and its conjugates divides $(\theta-1)$? All three ideals have quotient \mathbf{F}_{4}, so the cube roots of unity are all distinct in the corresponding residue fields.

In $\mathcal{O}_{K} / \mathfrak{p}, 1+\sqrt[3]{25} \equiv 0 \Rightarrow \sqrt[3]{5} \equiv 1 \Rightarrow \theta \equiv \omega-1 \equiv \omega^{2} \not \equiv 1$.
In $\mathcal{O}_{K} / \sigma \mathfrak{p}, 1+\sqrt[3]{25} \omega^{2} \equiv 0 \Rightarrow \sqrt[3]{5} \equiv \omega^{2} \Rightarrow \theta \equiv(\omega-1) / \omega^{2} \equiv 1$.
In $\mathcal{O}_{K} / \sigma^{2} \mathfrak{p}, 1+\sqrt[3]{25} \omega \equiv 0 \Rightarrow \sqrt[3]{5} \equiv \omega \Rightarrow \theta \equiv(\omega-1) /(-\omega) \equiv \omega \not \equiv 1$.
Therefore $(\theta-1)=(\sigma \mathfrak{p})^{2} \mathfrak{P}_{13}$, where $\mathfrak{P}_{13} \mid(13)$, so \mathfrak{P}_{13} is a principal ideal with

$$
\beta \stackrel{\text { def }}{=} \frac{\theta-1}{\left(3+2 \sqrt[3]{5} \omega+\sqrt[3]{25} \omega^{2}\right)^{2}}=-(9+10 \sqrt[3]{5}+5 \sqrt[3]{25}+(1+7 \sqrt[3]{5}-\sqrt[3]{25}) \theta)
$$

as a generator.)
Now we turn to the unit group of \mathcal{O}_{K}. Since the ideal (η) is fixed by the Galois group of K / \mathbf{Q}, let's consider the unit

$$
\delta \stackrel{\text { def }}{=} \frac{\sigma(\eta)}{\eta}=\frac{\pi}{\sigma(\pi)} \in \mathcal{O}_{K}^{\times},
$$

where $\sigma \in \operatorname{Gal}(K / F)$ sends $\sqrt[3]{5}$ to $\sqrt[3]{5} \omega$. We have

$$
\pi=2-\sqrt[3]{5}, \quad \sigma(\pi)=2-\sqrt[3]{5} \omega, \quad \sigma^{2}(\pi)=2-\sqrt[3]{5} \omega^{2}=\bar{\sigma}(\pi)
$$

Therefore

$$
\bar{\delta}=\frac{\pi}{\bar{\sigma}(\pi)}=\frac{\pi}{\sigma^{2} \pi},
$$

so

$$
|\delta|^{2}=\delta \bar{\delta}=\frac{\pi^{2}}{\sigma(\pi) \sigma^{2}(\pi)}=\frac{\pi^{3}}{3}=v
$$

so

$$
v=\mathrm{N}_{K / k}(\delta), \quad u=\mathrm{N}_{K / k}(1 / \delta)
$$

The \log map on \mathcal{O}_{K}^{\times}is given by

$$
L(x)=\left(2 \log |x|, 2 \log |\sigma(x)|, 2 \log \left|\sigma^{2}(x)\right|\right) .
$$

We compute this for $x=u, \delta, \sigma(\delta)$, keeping only the first two coordinates.
Since $\mathrm{N}_{k / \mathbf{Q}}(u)=u \sigma(u) \bar{\sigma}(u)=u|\sigma(u)|^{2}, 2 \log |\sigma(u)|=2 \log \left|\sigma^{2}(u)\right|=-\log u$.
Since

$$
\sigma(\delta)=\frac{\sigma(\pi)}{\sigma^{2}(\pi)}, \quad \sigma^{2}(\delta)=\frac{\sigma^{2}(\pi)}{\pi}
$$

we get

$$
2 \log |\sigma(\delta)|=0, \quad 2 \log \left|\sigma^{2}(\delta)\right|=-2 \log |\delta|=-\log v=\log u
$$

so

$$
\begin{aligned}
L(u) & =(2 \log u,-\log u), \\
L(\sigma u) & =(-\log u,-\log u), \\
L(\delta) & =(-\log u, 0), \\
L(\bar{\delta}) & =(-\log u, \log u), \\
L(\sigma(\delta)) & =(0, \log u) .
\end{aligned}
$$

In particular, notice that $L(\sigma(\delta))=L(\bar{\delta})-L(\delta)$, which means $\sigma(\delta)=\zeta \bar{\delta} / \delta$, where ζ is a root of unity in K; in fact $\sigma(\delta)=\bar{\delta} / \delta$. The regulator computations are:

$$
\begin{array}{c|c}
\text { unit pair } & \text { regulator } \\
\hline u, \delta & (\log u)^{2} \\
\delta, \bar{\delta} & (\log u)^{2} \\
u, \sigma(u) & 3(\log u)^{2}
\end{array}
$$

By [2, Corollary 7], $h(K) R(K)=h(F) R(F)(h(k) R(k))^{2}=(\log u)^{2}$, so

$$
\left[\mathcal{O}_{K}^{\times} / \mu_{K}:\langle\delta, \bar{\delta}\rangle\right]=\frac{\operatorname{Reg}(\delta, \bar{\delta})}{R(K)}=\frac{(\log u)^{2}}{R(K)}=h(K) .
$$

We already checked $h(K)=1$, so $\{\delta, \bar{\delta}\}$ is a pair of fundamental units for K.
To match the notation for fundamental units in [2], let

$$
\varepsilon \stackrel{\text { def }}{=} \omega^{2} \delta=\omega^{2} \frac{\pi}{\sigma(\pi)}=-7+4 \sqrt[3]{5}+(7 \sqrt[3]{5}-12) \theta=1-4 \pi+(2-7 \pi) \theta
$$

We know $\{\varepsilon, \bar{\varepsilon}\}$ is a pair of fundamental units. Might $\mathcal{O}_{K}=\mathbf{Z}[\varepsilon]$? Let's find the polynomial for ε over k, and then descend to \mathbf{Q}.

We compute

$$
\operatorname{Tr}_{K / k}(\varepsilon)=\omega^{2} \frac{\pi}{\sigma(\pi)}+\omega \frac{\pi}{\sigma^{2}(\pi)}=\frac{\pi^{2}}{3}\left(\omega^{2} \sigma^{2}(\pi)+\omega \sigma(\pi)\right)=\frac{\pi^{2}}{3}(-\pi)=-v .
$$

So ε and $\bar{\varepsilon}$ are both roots of $f(T)=T^{2}+v T+v$. (This is analogous to the role of the polynomial $T^{2}+u T+u$ in [2].) So the minimal polynomial of ε over \mathbf{Q} is

$$
f \sigma(f) \sigma^{2}(f)=T^{6}+3 T^{5}+126 T^{4}+247 T^{3}+126 T^{2}+3 T+1
$$

Alas, the discriminant of this is $-2^{12} 3^{7} 5^{4} 13^{6}$, so $\mathcal{O}_{K} \neq \mathbf{Z}[\varepsilon]$. (As an aside, the polynomial has symmetric coefficients, so ε^{-1} is a root, and in fact $\varepsilon^{-1}=\bar{\sigma}^{2}(\varepsilon)$.)

Theorem 4. The field $K=\mathbf{Q}(\sqrt[3]{5}, \omega)$ has class number 1 , discriminant $-3^{7} 5^{4}$, and regulator $(\log (41+24 \sqrt[3]{5}+14 \sqrt[3]{25}))^{2}$. The ramified primes 3 and 5 factor as

$$
(3)=(\eta)^{6}, \quad(5)=(\sqrt[3]{5})^{3}
$$

where $\eta=\sqrt{-3} / \pi, \pi=2-\sqrt[3]{5}$.
The ring of integers of K is $\mathcal{O}_{k} \oplus \mathcal{O}_{k} \theta$, where $\theta=(\omega-1) / \pi$. The unit group of \mathcal{O}_{K} has six roots of unity, rank 2 , and basis $\{\varepsilon, \bar{\varepsilon}\}$, where

$$
\varepsilon=\omega^{2} \pi / \sigma(\pi)
$$

has minimal polynomial

$$
g(T)=T^{6}+3 T^{5}+126 T^{4}+247 T^{3}+126 T^{2}+3 T+1
$$

There is no power basis for \mathcal{O}_{K}. For a more general result, see [1].
We now return to the computation of $\mathrm{Cl}(K)$. We noted that $\mathrm{Cl}(K)$ is generated by the prime ideal factors of 13 , and then showed those factors are principal, using the special element θ. Here is an alternative computation of $h(K)=1$ that does not depend on knowing about θ.

Let's assume $h(K) \neq 1$, i.e. none of the prime ideals over 13 in K is principal. Then the Galois group of K / \mathbf{Q} acts transitively on the nonidentity classes of $\mathrm{Cl}(K)$, and we show by this action that $h(K)=3$ if $h(K)>1$.

Let \mathfrak{P} be one prime ideal in K lying over 13. Let τ denote complex conjugation, so $\tau \sigma=\sigma^{2} \tau$. Since k has class number $1, \mathfrak{P} \tau(\mathfrak{P}) \sim 1$. Therefore

$$
\sigma(\mathfrak{P}) \tau(\sigma(\mathfrak{P})) \sim 1 \Rightarrow \sigma(\mathfrak{P}) \sigma^{2}(\tau \mathfrak{P}) \sim 1 \Rightarrow \mathfrak{P} \sigma(\tau \mathfrak{P}) \sim 1 .
$$

Therefore $\tau \mathfrak{P} \sim \sigma(\tau \mathfrak{P})$, so $\tau \sigma \tau(\mathfrak{P}) \sim 1$. So $[\mathfrak{P}] \in \mathrm{Cl}(K)$ is fixed by $\tau \sigma \tau=\sigma^{2}$, so its stabilizer subgroup is either $\left\{1, \sigma, \sigma^{2}\right\}$ or G. Thus the number of nonidentity elements in $\mathrm{Cl}(K)$ is 1 or 2 , so $h(K)=2$ or 3 . Since

$$
\mathfrak{P} \sigma(\mathfrak{P}) \sigma^{2}(\mathfrak{P})=\mathrm{N}_{K / F}(\mathfrak{P})=(1 \pm 2 \sqrt{-3}) \sim 1,
$$

$[\mathfrak{P}]^{3}=1$, hence $3 \mid h(K)$. So if $h(K) \geq 1$ then $\operatorname{Cl}(K)=\{1,[\mathfrak{P}],[\tau \mathfrak{P}]\}$ is cyclic of size 3 .
We saw earlier that $\left[\mathcal{O}_{K}^{\times} / \mu_{K}:\langle\delta, \bar{\delta}\rangle\right]=h(K)$. Assume $h(K)=3$. We shall apply the results in [2, Theorem 8] about index 3 sublattices of \mathbf{Z}^{2}. In particular, neither $L(\delta)$ nor $L(\bar{\delta})$ is in $3 L$, so if the index is 3 then there is a basis $\{\delta, \xi\}$ of $\mathcal{O}_{K}^{\times} / \mu_{K}$, where

$$
\delta \bar{\delta}=\zeta \xi^{3} \quad \text { or } \quad \delta / \bar{\delta}=\zeta \xi^{3}
$$

for some root of unity ζ. Applying $\mathrm{N}_{K / k}$ to the first possibility yields $v^{2}=\left(\mathrm{N}_{K / k}(\xi)\right)^{3}$ in \mathcal{O}_{k}^{\times}, which is absurd since v is a generator of \mathcal{O}_{k}^{\times}. Applying the log map to the second possibility yields

$$
L(\delta)-L(\bar{\delta})=-L(\sigma(\delta)) \in 3 L
$$

so by Galois action we have $L(\delta), L(\bar{\delta}) \in 3 L$, a contradiction of $\left[L\left(\mathcal{O}_{K}^{\times}\right): L(\delta) \mathbf{Z}+L(\bar{\delta}) \mathbf{Z}\right]=3$. Therefore $h(K)=1$.

Here's another point of view on the link between $h(K)=1$ and principal factorization of $13 \mathcal{O}_{K}$. Since $\mathrm{N}_{k / \mathbf{Q}}(2+\sqrt[3]{5})=13$,

$$
\begin{equation*}
13=(2+\sqrt[3]{5})(2+\sqrt[3]{5} \omega)\left(2+\sqrt[3]{5} \omega^{2}\right)=(2+\sqrt[3]{5})(4-2 \sqrt[3]{5}+\sqrt[3]{25}) \tag{9}
\end{equation*}
$$

We want to factor the second term on the right in \mathcal{O}_{k}. Since $\mathrm{N}_{k / \mathbf{Q}}(1+\sqrt[3]{25})=26$ and $h(k)=1$, by (2) we must have a numerical factorization

$$
1+\sqrt[3]{25}=(3+2 \sqrt[3]{5}+\sqrt[3]{25})(a+b \sqrt[3]{5}+c \sqrt[3]{25})
$$

for some $a, b, c \in \mathbf{Z}$. Multiplying the two terms on the right we get a solution $a=-3, b=$ $-2, c=0$, i.e. $\mathrm{N}_{k / \mathbf{Q}}(-3+2 \sqrt[3]{5})=13$. Guided by (9), we divide $-3+2 \sqrt[3]{5}$ into $4-2 \sqrt[3]{5}+\sqrt[3]{25}$ to get the principal (in fact, numerical) factorization of 13 in $\mathbf{Z}[\sqrt[3]{5}]$:

$$
\begin{equation*}
13=(2+\sqrt[3]{5})(-3+2 \sqrt[3]{5})(2+2 \sqrt[3]{5}+\sqrt[3]{25}) \tag{10}
\end{equation*}
$$

So 13 has principal prime factors in \mathcal{O}_{K} if and only if the ideal $(2+\sqrt[3]{5})$ of k is the norm of a principal ideal in K, i.e. there is some $\alpha \in \mathcal{O}_{K}$ such that

$$
\mathrm{N}_{K / k}(\alpha)= \pm(2+\sqrt[3]{5}) u^{m}
$$

for some $m \in \mathbf{Z}$. The norm must be positive, so the plus sign must hold. Since $u=$ $\mathrm{N}_{K / k}(1 / \delta), h(K)=1$ if and only if $2+\sqrt[3]{5}$ is a norm from K.

To explicitly exhibit $2+\sqrt[3]{5}$ as a norm from K, we consider the generator β of one of the prime factors of $13 \mathcal{O}_{K}$. Does $\mathrm{N}_{K / k}(\beta)=2+\sqrt[3]{5}$? No, since $\mathrm{N}_{K / k}(\beta)=342+200 \sqrt[3]{5}+$ $117 \sqrt[3]{25}$, which is much larger than $2+\sqrt[3]{5}$. By (10), $\mathrm{N}_{K / k}(\beta)$ must equal $(2+\sqrt[3]{5}) u^{m}$, $(-3+2 \sqrt[3]{5}) u^{m}$, or $(2+2 \sqrt[3]{5}+\sqrt[3]{25}) u^{m}$ for some integer m. Taking logarithms to check in each case whether the unknown m is an integer, we find that

$$
\mathrm{N}_{K / k}(\beta)=(2+2 \sqrt[3]{5}+\sqrt[3]{25}) u
$$

The prime ideals in \mathcal{O}_{K} lying over $(2+\sqrt[3]{5})$ and $(2+2 \sqrt[3]{5}+\sqrt[3]{25})$ are conjugate by σ or σ^{2}, so let's consider $\mathrm{N}_{K / k}(\sigma \beta)$. Using PARI, $\sigma(\theta)=-4+\sqrt[3]{25}-(6-2 \sqrt[3]{25}) \theta$, from which we compute

$$
\mathrm{N}_{K / k}(\sigma \beta)=\sigma(\beta) \bar{\sigma}(\beta)=(2+\sqrt[3]{5}) u^{-2}
$$

Thus

$$
\begin{equation*}
2+\sqrt[3]{5}=\mathrm{N}_{K / k}(\sigma \beta) u^{2}=\mathrm{N}_{K / k}\left((\sigma \beta) / \delta^{2}\right) \tag{11}
\end{equation*}
$$

References

[1] M-L. Chang, Non-monogeneity in a family of sextic fields, J. Number Theory 97 (2002), 252-268.
[2] K. Conrad, The Splitting Field of $X^{3}-2$ over Q. Online at https://kconrad.math.uconn.edu/blurbs/ gradnumthy/Qw2.pdf.
[3] B. N. Delone and D. K. Faddeev, "The Theory of Irrationalities of the Third Degree," Amer. Math. Soc., Providence, 1964.
[4] H. Wada, A Table of Fundamental Units of Purely Cubic Fields, Proceedings of the Japan Academy, 46 (1970), 1135-1140.

