THE SPLITTING FIELD OF $X^{3}-3$ OVER Q

KEITH CONRAD

In this note, we calculate all the basic invariants of the number field

$$
K=\mathbf{Q}(\sqrt[3]{3}, \omega)
$$

where $\omega=(-1+\sqrt{-3}) / 2$ is a primitive cube root of unity.
Here is the notation for the fields and Galois groups to be used. Let

$$
\begin{aligned}
k & =\mathbf{Q}(\sqrt[3]{3}) \\
K & =\mathbf{Q}(\sqrt[3]{3}, \omega) \\
F & =\mathbf{Q}(\omega)=\mathbf{Q}(\sqrt{-3}) \\
G & =\operatorname{Gal}(K / \mathbf{Q}) \cong S_{3} \\
N & =\operatorname{Gal}(K / F) \cong A_{3} \\
H & =\operatorname{Gal}(K / k)
\end{aligned}
$$

First we work out the basic invariants for the fields F and k.
Theorem 1. The field $F=\mathbf{Q}(\omega)$ has ring of integers $\mathbf{Z}[\omega]$, class number 1 , discriminant -3 , and unit group $\left\{ \pm 1, \pm \omega, \pm \omega^{2}\right\}$. The ramified prime 3 factors as $3=-(\sqrt{-3})^{2}$. For $p \neq 3$, the way p factors in $\mathbf{Z}[\omega]=\mathbf{Z}[X] /\left(X^{2}+X+1\right)$ is identical to the way $X^{2}+X+1$ factors $\bmod p$, so p splits if $p \equiv 1 \bmod 3$ and p stays prime if $p \equiv 2 \bmod 3$.

We now turn to the field k.
As in $[2], \mathcal{O}_{k}=\mathbf{Z}[\sqrt[3]{3}]$, so $\operatorname{disc}\left(\mathcal{O}_{k}\right)=-\mathrm{N}_{k / \mathbf{Q}}\left(3(\sqrt[3]{3})^{2}\right)=-3^{5}$. The prime 3 is totally ramified: $3=(\sqrt[3]{3})^{3}$.

The Minkowski bound for k is

$$
\frac{3!}{3^{3}}\left(\frac{4}{\pi}\right) 3^{2} \sqrt{3}=\frac{8 \sqrt{3}}{\pi}<\frac{8(7 / 4)}{\pi}=\frac{14}{\pi}<5
$$

We saw 3 factors principally in K. To factor 2 , we note

$$
X^{3}-3 \equiv X^{3}+1 \equiv(X+1)\left(X^{2}+X+1\right) \bmod 2
$$

so $2=\mathfrak{p q}$ where $\mathrm{N} \mathfrak{p}=2, \mathrm{Nq}=4$. The norm form for k is

$$
\mathrm{N}_{k / \mathbf{Q}}(a+b \sqrt[3]{3}+c \sqrt[3]{9})=a^{3}+3 b^{3}+9 c^{3}-9 a b c
$$

So $\mathrm{N}_{k / \mathbf{Q}}(-1+\sqrt[3]{3})=2$, from which we get principal generators for the prime factors of 2 :

$$
\mathfrak{p}=(-1+\sqrt[3]{3}), \mathfrak{q}=(1+\sqrt[3]{3}+\sqrt[3]{9})
$$

Therefore $h(k)=1$.
Also note $\mathrm{N}_{k / \mathbf{Q}}(2+\sqrt[3]{3}=\sqrt[3]{9})=2$, leading to

$$
2+\sqrt[3]{3}+\sqrt[3]{9}=(-1+\sqrt[3]{3})(4+3 \sqrt[3]{3}+2 \sqrt[3]{9})
$$

Therefore $u \stackrel{\text { def }}{=} 4+3 \sqrt[3]{3}+2 \sqrt[3]{9} \approx 12.4$ is a unit in \mathcal{O}_{k}, with $v \stackrel{\text { def }}{=} 1 / u=-2+\sqrt[3]{9}$. Therefore

$$
\operatorname{Tr}_{k / \mathbf{Q}}(u)=12, \quad \operatorname{Tr}_{k / \mathbf{Q}}(v)=-6, \quad \mathrm{~N}_{k / \mathbf{Q}}(u)=\mathrm{N}_{k / \mathbf{Q}}(v)=1
$$

So the minimal polynomial for u over \mathbf{Q} is

$$
T^{3}-12 T^{2}-6 T-1
$$

Therefore

$$
\begin{aligned}
\operatorname{disc}(\mathbf{Z}[u]) & =-\mathrm{N}_{k / \mathbf{Q}}\left(3 u^{2}-24 u-6\right) \\
& =-3^{3} \mathrm{~N}_{k / \mathbf{Q}}\left(u^{2}-8 u-2\right) \\
& =-3^{3} \mathrm{~N}_{k / \mathbf{Q}}(18+12 \sqrt[3]{3}+9 \sqrt[3]{9}) \\
& =-3^{3} \mathrm{~N}_{k / \mathbf{Q}}(3 \sqrt[3]{3}) \mathrm{N}_{k / \mathbf{Q}}(4+3 \sqrt[3]{3}+2 \sqrt[3]{3}) \\
& =-3^{7}
\end{aligned}
$$

So $\mathcal{O}_{k} \neq \mathbf{Z}[u]$. For U the fundamental unit of \mathcal{O}_{k},

$$
U^{2}>\left(\frac{3^{5}}{4}-7\right)^{2 / 3} \approx 14.242>u
$$

so u is the fundamental unit of \mathcal{O}_{k} by [2, Lemma 3].
We now turn to K. By [2, Corollay 7],

$$
\operatorname{disc}(K)=\operatorname{disc}(F) \operatorname{disc}(k)^{2}=-3^{11}
$$

The prime 3 totally ramifies as $(3)=(\eta)^{6}$ where $\eta=\sqrt{-3} / \sqrt[3]{3}=\sqrt[6]{-3}$. Since $\operatorname{disc}(\mathbf{Z}[\eta])=$ $\mathrm{N}_{K / \mathbf{Q}}\left(6 \eta^{5}\right)=-2^{6} 3^{11}, \mathcal{O}_{K} \neq \mathbf{Z}[\eta]$. As in [2],

$$
\mathcal{O}_{K}=\mathcal{O}_{k} \oplus \mathcal{O}_{k} \theta
$$

where $\theta=(\omega-1) / \sqrt[3]{3}$. Note $\eta=-\omega \theta ; \theta$ and η are both sixth roots of -3 . For what it is worth, $\theta+\bar{\theta}=-\sqrt[3]{9}$ and $\theta \bar{\theta}=\sqrt[3]{3}$.

The Minkowski bound on K is

$$
\frac{6!}{6^{6}}\left(\frac{4}{\pi}\right)^{3} 3^{5} \sqrt{3}=\frac{240 \sqrt{3}}{\pi^{3}} \approx 13.4
$$

A rational prime p factors principally in K unless perhaps $p \equiv 1 \bmod 3$ and $3^{(p-1) / 3} \equiv$ $1 \bmod p$. This is not the case for any prime up to 13 , so $h(K)=1$. Hence

$$
R(K)=(\log u)^{2} .
$$

So the units u and $\sigma(u)$ generate a subgroup of the units of K (mod torsion) with index $3 h(K)=3$. This implies that there exists $\varepsilon \in \mathcal{O}_{K}^{\times}$and $\zeta \in\left\{1, \omega, \omega^{2}\right\}$ such that $u / \sigma(u)=\zeta \varepsilon^{3}$ or $u \sigma(u)=\zeta \varepsilon^{3}$, and then $\{u, \varepsilon\}$ is a basis for the units. We now find ε explicitly.
(The slick trick that works for $\mathbf{Q}(\sqrt[3]{2}, \omega)$ in $[2]$ and $\mathbf{Q}(\sqrt[3]{5}, \omega)$ in [3] fails here: for σ a generator of $\operatorname{Gal}(K / F), \sigma(\eta) / \eta=\omega^{2}$ is a root of unity, not a unit of infinite order. In fact, for $\tilde{\eta}=\zeta \sqrt{-3} / \sqrt[3]{3} u^{m}=\zeta \eta / u^{m}$ equal to the ratio of any two generators for the prime ideals in F and k lying over $3, \sigma(\tilde{\eta}) / \tilde{\eta}=\omega^{2}(u / \sigma u)^{m}$ can't be a basis for the units along with u, since they generate a subgroup of index at least 3.)

The equation $u \sigma(u)=\zeta \varepsilon^{3}$ is ruled out since it implies $L\left(\sigma^{2} u\right) \in 3 L$, so then $L(u), L(\sigma u) \in$ $3 L$, contradicting index 3. So $u / \sigma(u)=\zeta \varepsilon^{3}$. The prime ideal $\mathfrak{p}=(-1+\sqrt[3]{3})$ of k lying over 2 stays prime when extended to K, with residue field growing to \mathbf{F}_{4}. In $\mathcal{O}_{K} /(-1+\sqrt[3]{3})$,

$$
u \equiv 1, \quad \sigma(u) \equiv \omega \Rightarrow \frac{1}{\omega} \equiv \zeta .
$$

So

$$
u / \sigma(u)=\zeta \varepsilon^{3} .
$$

From this we apply various elements of $\operatorname{Gal}(K / \mathbf{Q})$ to get

$$
2 \log |\varepsilon|=\log u, \quad 2 \log |\sigma \varepsilon|=0, \quad 2 \log \left|\sigma^{2}(\varepsilon)\right|=-\log u .
$$

Let's find the polynomial for ε over k. We have $\mathrm{N}_{K / k}(\varepsilon)=\varepsilon \bar{\varepsilon}=u$ and $\operatorname{Tr}_{K / k}\left(\varepsilon^{3}\right)=$ $\left(\operatorname{Tr}_{K / k}(\varepsilon)\right)^{3}-3 u \operatorname{Tr}_{K / k}(\varepsilon)$, while more explicitly

$$
\begin{aligned}
\operatorname{Tr}_{K / k}\left(\varepsilon^{3}\right) & =\omega \frac{u}{\sigma u}+\omega^{2} \frac{u}{\bar{\sigma}(u)} \\
& =\frac{\omega u \sigma^{2} u+\omega^{2} u \sigma u}{(\sigma u)\left(\sigma^{2} u\right)} \cdot \frac{u}{u} \\
& =u^{2}\left(\omega \sigma^{2} u+\omega^{2} \sigma u\right) \\
& =26+18 \sqrt[3]{3}+12 \sqrt[3]{9} \\
& =-2(1+3 u) .
\end{aligned}
$$

So $\operatorname{Tr}_{K / k}(\varepsilon)$ is a root of $T^{3}-3 u T-2(1+3 u)$. Using PARI, one root of this is $-1-\sqrt[3]{3}$. So the other two roots r_{1} and r_{2} satisfy $r_{1}+r_{2}=1+\sqrt[3]{3}$ and $r_{1} r_{2}=-(11+7 \sqrt[3]{3}+5 \sqrt[3]{9})$. So by the quadratic formula, r_{1} and r_{2} equal

$$
\frac{1}{2}(1+\sqrt[3]{3} \pm \sqrt{45+30 \sqrt[3]{3}+21 \sqrt[3]{9}})
$$

Since the number under the square root should be a square in k and $45+30 \sqrt[3]{3}+21 \sqrt[3]{9}=$ $(\sqrt[3]{9})^{2}(10+7 \sqrt[3]{3}+5 \sqrt[3]{9})$, with the norm of the second factor equal to 4 , we expect the second factor is the square of an algebraic integer with norm 2 :

$$
10+7 \sqrt[3]{3}+5 \sqrt[3]{9}=(-1+\sqrt[3]{3})^{2} u^{2 m}
$$

Some computer calculations show $m=1$ works, leading to

$$
\left\{r_{1}, r_{2}\right\}=\{2+2 \sqrt[3]{3}+\sqrt[3]{9},-1-\sqrt[3]{3}-\sqrt[3]{9}\}
$$

Thus

$$
\operatorname{Tr}_{K / k}(\varepsilon)=\{-1-\sqrt[3]{3},-1-\sqrt[3]{3}-\sqrt[3]{9}, 2+2 \sqrt[3]{3}+\sqrt[3]{9}\}
$$

Let's try to find ε as a root of

$$
T^{2}+(1+\sqrt[3]{3}) T+u
$$

A root should generate the same field over k as $K=k(\sqrt{-3})$, so

$$
\frac{(1+\sqrt[3]{3})^{2}-4 u}{-3}=\frac{45+30 \sqrt[3]{3}+21 \sqrt[3]{3}}{9}
$$

should be a square in k. Factoring out a $(\sqrt[3]{9})^{2}$ we have

$$
45+30 \sqrt[3]{3}+21 \sqrt[3]{3}=(\sqrt[3]{9})^{2}(10+7 \sqrt[3]{3}+5 \sqrt[3]{9})=(\sqrt[3]{9}(-1+\sqrt[3]{3}) u)^{2}
$$

So the roots of $T^{2}+(1+\sqrt[3]{3}) T+u$ are

$$
\frac{1}{2}\left(-(1+\sqrt[3]{3}) \pm \sqrt{-3} \cdot \frac{\sqrt[3]{9}}{3}(2+\sqrt[3]{3}+\sqrt[3]{9})\right)
$$

Writing $\sqrt{-3}=2 \omega+1=3+2 \sqrt[3]{3} \theta$, we get the roots are

$$
1+\sqrt[3]{3}+\sqrt[3]{9}+(2+\sqrt[3]{3}+\sqrt[3]{9}) \theta,-2-2 \sqrt[3]{3}-\sqrt[3]{9}-(2+\sqrt[3]{3}+\sqrt[3]{9}) \theta
$$

The cube of the first root is $u / \sigma u$ (the cube of the second is $u / \sigma^{2} u$). So

$$
\varepsilon \stackrel{\text { def }}{=} 1+\sqrt[3]{3}+\sqrt[3]{9}+(2+\sqrt[3]{3}+\sqrt[3]{9}) \theta
$$

The minimal polynomial of ε over \mathbf{Q} is

$$
T^{6}+3 T^{5}+15 T^{4}+10 T^{3}+15 T^{2}+3 T+1
$$

which has discriminant $-2^{16} 3^{11}$, so $\mathcal{O}_{K} \neq \mathbf{Z}[\varepsilon]$. Similarly, $\omega \varepsilon$ is a root of

$$
T^{6}+3 T^{5}+6 T^{4}-17 T^{3}+6 T^{2}+3 T+1
$$

with discriminant $-2^{12} 3^{11} 5^{2}$ and $\omega^{2} \varepsilon$ is a root of

$$
T^{6}-6 T^{5}+6 T^{4}+10 T^{3}+6 T^{2}-6 T+1
$$

with discriminant $-2^{10} 3^{11}$.
So $\zeta \varepsilon$, for ζ any root of unity, never gives rise to a power basis for \mathcal{O}_{K}.
Theorem 2. The field $K=\mathbf{Q}(\sqrt[3]{3}, \omega)$ has class number 1 , discriminant -3^{11}, and regulator $(\log (4+3 \sqrt[3]{3}+2 \sqrt[3]{9}))^{2}$. The ramified prime 3 factors as

$$
(3)=(\eta)^{6},
$$

where $\eta=\sqrt{-3} / \sqrt[3]{3}=\sqrt[6]{-3}$.
The ring of integers of K is $\mathcal{O}_{k} \oplus \mathcal{O}_{k} \theta$, where $\theta=(\omega-1) / \sqrt[3]{3}$. The unit group of \mathcal{O}_{K} has six roots of unity, rank 2 , and basis $\{\varepsilon, \bar{\varepsilon}\}$, where

$$
\varepsilon=1+\sqrt[3]{3}+\sqrt[3]{9}+(2+\sqrt[3]{3}+\sqrt[3]{9}) \theta
$$

has minimal polynomial

$$
T^{6}+3 T^{5}+15 T^{4}+10 T^{3}+15 T^{2}+3 T+1
$$

There is no power basis for \mathcal{O}_{K}. In fact, the only pure cubic field whose splitting field has a power basis for its ring of integers is $\mathbf{Q}(\sqrt[3]{2})$! See [1].

References

[1] M-L. Chang, Non-monogenity in a family of sextic fields, J. Number Theory 97 (2002), 252-268.
[2] K. Conrad, The Splitting Field of $X^{3}-2$ over Q. Online at https://kconrad.math.uconn.edu/blurbs/ gradnumthy/Qw2.pdf.
[3] K. Conrad, The Splitting Field of $X^{3}-5$ over Q. Online at https://kconrad.math.uconn.edu/blurbs/ gradnumthy/Qw5.pdf.

