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In this note, we calculate all the basic invariants of the number field

K = Q(
3
√

3, ω),

where ω = (−1 +
√
−3)/2 is a primitive cube root of unity.

Here is the notation for the fields and Galois groups to be used. Let

k = Q(
3
√

3),

K = Q(
3
√

3, ω),

F = Q(ω) = Q(
√
−3),

G = Gal(K/Q) ∼= S3,

N = Gal(K/F ) ∼= A3,

H = Gal(K/k).

First we work out the basic invariants for the fields F and k.

Theorem 1. The field F = Q(ω) has ring of integers Z[ω], class number 1, discriminant
−3, and unit group {±1,±ω,±ω2}. The ramified prime 3 factors as 3 = −(

√
−3)2. For

p 6= 3, the way p factors in Z[ω] = Z[X]/(X2 +X + 1) is identical to the way X2 +X + 1
factors mod p, so p splits if p ≡ 1 mod 3 and p stays prime if p ≡ 2 mod 3.

We now turn to the field k.
As in [2], Ok = Z[ 3

√
3], so disc(Ok) = −Nk/Q(3( 3

√
3)2) = −35. The prime 3 is totally

ramified: 3 = ( 3
√

3)3.
The Minkowski bound for k is

3!

33

(
4

π

)
32
√

3 =
8
√

3

π
<

8(7/4)

π
=

14

π
< 5.

We saw 3 factors principally in K. To factor 2, we note

X3 − 3 ≡ X3 + 1 ≡ (X + 1)(X2 +X + 1) mod 2,

so 2 = pq where N p = 2, N q = 4. The norm form for k is

Nk/Q(a+ b
3
√

3 + c
3
√

9) = a3 + 3b3 + 9c3 − 9abc.

So Nk/Q(−1 + 3
√

3) = 2, from which we get principal generators for the prime factors of 2:

p = (−1 +
3
√

3), q = (1 +
3
√

3 +
3
√

9)

Therefore h(k) = 1.
Also note Nk/Q(2 + 3

√
3 = 3
√

9) = 2, leading to

2 +
3
√

3 +
3
√

9 = (−1 +
3
√

3)(4 + 3
3
√

3 + 2
3
√

9).
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Therefore u
def
= 4 + 3 3

√
3 + 2 3

√
9 ≈ 12.4 is a unit in Ok, with v

def
= 1/u = −2 + 3

√
9. Therefore

Trk/Q(u) = 12, Trk/Q(v) = −6, Nk/Q(u) = Nk/Q(v) = 1.

So the minimal polynomial for u over Q is

T 3 − 12T 2 − 6T − 1.

Therefore

disc(Z[u]) = −Nk/Q(3u2 − 24u− 6)

= −33 Nk/Q(u2 − 8u− 2)

= −33 Nk/Q(18 + 12
3
√

3 + 9
3
√

9)

= −33 Nk/Q(3
3
√

3) Nk/Q(4 + 3
3
√

3 + 2
3
√

3)

= −37.

So Ok 6= Z[u]. For U the fundamental unit of Ok,

U2 >

(
35

4
− 7

)2/3

≈ 14.242 > u,

so u is the fundamental unit of Ok by [2, Lemma 3].
We now turn to K. By [2, Corollay 7],

disc(K) = disc(F ) disc(k)2 = −311.

The prime 3 totally ramifies as (3) = (η)6 where η =
√
−3/ 3
√

3 = 6
√
−3. Since disc(Z[η]) =

NK/Q(6η5) = −26311, OK 6= Z[η]. As in [2],

OK = Ok⊕Ok θ,

where θ = (ω − 1)/ 3
√

3. Note η = −ωθ; θ and η are both sixth roots of −3. For what it is
worth, θ + θ = − 3

√
9 and θθ = 3

√
3.

The Minkowski bound on K is

6!

66

(
4

π

)3

35
√

3 =
240
√

3

π3
≈ 13.4.

A rational prime p factors principally in K unless perhaps p ≡ 1 mod 3 and 3(p−1)/3 ≡
1 mod p. This is not the case for any prime up to 13, so h(K) = 1. Hence

R(K) = (log u)2.

So the units u and σ(u) generate a subgroup of the units of K (mod torsion) with index
3h(K) = 3. This implies that there exists ε ∈ O×

K and ζ ∈ {1, ω, ω2} such that u/σ(u) = ζε3

or uσ(u) = ζε3, and then {u, ε} is a basis for the units. We now find ε explicitly.
(The slick trick that works for Q( 3

√
2, ω) in [2] and Q( 3

√
5, ω) in [3] fails here: for σ a

generator of Gal(K/F ), σ(η)/η = ω2 is a root of unity, not a unit of infinite order. In fact,
for η̃ = ζ

√
−3/ 3
√

3um = ζη/um equal to the ratio of any two generators for the prime ideals
in F and k lying over 3, σ(η̃)/η̃ = ω2(u/σu)m can’t be a basis for the units along with u,
since they generate a subgroup of index at least 3.)

The equation uσ(u) = ζε3 is ruled out since it implies L(σ2u) ∈ 3L, so then L(u), L(σu) ∈
3L, contradicting index 3. So u/σ(u) = ζε3. The prime ideal p = (−1 + 3

√
3) of k lying over

2 stays prime when extended to K, with residue field growing to F4. In OK /(−1 + 3
√

3),

u ≡ 1, σ(u) ≡ ω ⇒ 1

ω
≡ ζ.
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So

u/σ(u) = ζε3.

From this we apply various elements of Gal(K/Q) to get

2 log |ε| = log u, 2 log |σε| = 0, 2 log |σ2(ε)| = − log u.

Let’s find the polynomial for ε over k. We have NK/k(ε) = εε = u and TrK/k(ε3) =

(TrK/k(ε))3 − 3uTrK/k(ε), while more explicitly

TrK/k(ε3) = ω
u

σu
+ ω2 u

σ(u)

=
ωuσ2u+ ω2uσu

(σu)(σ2u)
· u
u

= u2(ωσ2u+ ω2σu)

= 26 + 18
3
√

3 + 12
3
√

9

= −2(1 + 3u).

So TrK/k(ε) is a root of T 3 − 3uT − 2(1 + 3u). Using PARI, one root of this is −1 − 3
√

3.

So the other two roots r1 and r2 satisfy r1 + r2 = 1 + 3
√

3 and r1r2 = −(11 + 7 3
√

3 + 5 3
√

9).
So by the quadratic formula, r1 and r2 equal

1

2

(
1 +

3
√

3±
√

45 + 30
3
√

3 + 21
3
√

9

)
.

Since the number under the square root should be a square in k and 45 + 30 3
√

3 + 21 3
√

9 =
( 3
√

9)2(10+7 3
√

3+5 3
√

9), with the norm of the second factor equal to 4, we expect the second
factor is the square of an algebraic integer with norm 2:

10 + 7
3
√

3 + 5
3
√

9 = (−1 +
3
√

3)2u2m.

Some computer calculations show m = 1 works, leading to

{r1, r2} = {2 + 2
3
√

3 +
3
√

9, −1− 3
√

3− 3
√

9}.

Thus

TrK/k(ε) = {−1− 3
√

3,−1− 3
√

3− 3
√

9, 2 + 2
3
√

3 +
3
√

9}.
Let’s try to find ε as a root of

T 2 + (1 +
3
√

3)T + u.

A root should generate the same field over k as K = k(
√
−3), so

(1 + 3
√

3)2 − 4u

−3
=

45 + 30 3
√

3 + 21 3
√

3

9

should be a square in k. Factoring out a ( 3
√

9)2 we have

45 + 30
3
√

3 + 21
3
√

3 = (
3
√

9)2(10 + 7
3
√

3 + 5
3
√

9) = (
3
√

9(−1 +
3
√

3)u)2.

So the roots of T 2 + (1 + 3
√

3)T + u are

1

2

(
−(1 +

3
√

3)±
√
−3 ·

3
√

9

3

(
2 +

3
√

3 +
3
√

9
))

.

Writing
√
−3 = 2ω + 1 = 3 + 2 3

√
3θ, we get the roots are

1 +
3
√

3 +
3
√

9 + (2 +
3
√

3 +
3
√

9)θ, −2− 2
3
√

3− 3
√

9− (2 +
3
√

3 +
3
√

9)θ.
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The cube of the first root is u/σu (the cube of the second is u/σ2u). So

ε
def
= 1 +

3
√

3 +
3
√

9 + (2 +
3
√

3 +
3
√

9)θ.

The minimal polynomial of ε over Q is

T 6 + 3T 5 + 15T 4 + 10T 3 + 15T 2 + 3T + 1,

which has discriminant −216311, so OK 6= Z[ε]. Similarly, ωε is a root of

T 6 + 3T 5 + 6T 4 − 17T 3 + 6T 2 + 3T + 1

with discriminant −21231152 and ω2ε is a root of

T 6 − 6T 5 + 6T 4 + 10T 3 + 6T 2 − 6T + 1

with discriminant −210311.
So ζε, for ζ any root of unity, never gives rise to a power basis for OK .

Theorem 2. The field K = Q( 3
√

3, ω) has class number 1, discriminant −311, and regulator
(log(4 + 3 3

√
3 + 2 3

√
9))2. The ramified prime 3 factors as

(3) = (η)6,

where η =
√
−3/ 3
√

3 = 6
√
−3.

The ring of integers of K is Ok⊕Ok θ, where θ = (ω − 1)/ 3
√

3. The unit group of OK

has six roots of unity, rank 2, and basis {ε, ε}, where

ε = 1 +
3
√

3 +
3
√

9 + (2 +
3
√

3 +
3
√

9)θ

has minimal polynomial

T 6 + 3T 5 + 15T 4 + 10T 3 + 15T 2 + 3T + 1.

There is no power basis for OK . In fact, the only pure cubic field whose splitting field
has a power basis for its ring of integers is Q( 3

√
2)! See [1].
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