
THE SPLITTING FIELD OF X3 − 2 OVER Q

KEITH CONRAD

In this note, we calculate all the basic invariants of the number field

K = Q(
3
√

2, ω),

where ω = (−1 +
√
−3)/2 is a primitive cube root of unity. For example, the unit group

has rank 2 by the Dirichlet Unit Theorem, and we’ll find a basis.
Here is the notation for the fields and Galois groups to be used. Let

k = Q(
3
√

2),

K = Q(
3
√

2, ω),

F = Q(ω) = Q(
√
−3),

G = Gal(K/Q) ∼= S3,

N = Gal(K/F ) ∼= A3,

H = Gal(K/k).

First we work out the basic invariants for the fields F and k.

Theorem 1. The field F = Q(ω) has ring of integers Z[ω], class number 1, discriminant
−3, and unit group {±1,±ω,±ω2}. The ramified prime 3 factors as 3 = −(

√
−3)2. For

p 6= 3, the way p factors in Z[ω] = Z[X]/(X2 +X + 1) is identical to the way X2 +X + 1
factors mod p, so p splits if p ≡ 1 mod 3 and p stays prime if p ≡ 2 mod 3.

We now turn to the field k, which will be discussed in more detail.
Though we will show below that Ok = Z[ 3

√
2], the inclusion Z[ 3

√
2] ⊂ Ok already is useful

for computing the class number. It tells us that |disc(k)| ≤ |disc(1, 3
√

2, 3
√

4)| = 108 = 2233,
so the Minkowski bound for k is at most

3!

33

(
4

π

)√
|disc(k)| = 16

√
3

3π
≈ 2.94.

In Ok, the rational prime 2 has the principal prime factorization (2) = ( 3
√

2)3, so k has class
number 1: the ring Ok has unique factorization.

Next we show Ok = Z[ 3
√

2].
Let α = a+b 3

√
2+c 3

√
4 be an algebraic integer, with a, b, c all rational. Computing Trk/Q

of α, α 3
√

2, and α 3
√

4 we see 3a, 6b, 6c ∈ Z. So the denominators of a, b, and c involve at
most 2 and 3. To show 2 and 3 do not appear in the denominator, we consider the situation
p-adically for p = 2 and p = 3.

Lemma 2. Let L/L′ be an extension of local fields. If L/L′ is unramified and a is any
integer of L that generates the residue field extension, then OL = OL′ [a]. If L/L′ is totally
ramified and λ is any prime of L, then OL = OL′ [λ].

Proof. By [2, Prop. 3, p. 59], which can be applied since the residue field extension is
separable, if λ is any prime of L and a is any integer of L that generates the residue field

1
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of L over that of L′, then powers of a or powers of a + λ generate OL as an OL′-algebra.
When L/L′ is unramified, let λ be a prime of L′. When L/L′ is totally ramified, let a = 1
(or 0). �

We apply this with L′ = Q2 or Q3 and L = L′( 3
√

2). Since X3 − 2 is Eisenstein in
Q2[X] and (X − 1)3 − 2 = X3 − 3X2 + 3X − 3 is Eisenstein in Q3[X], by Lemma 2 the
ring of integers of Q2(

3
√

2) is Z2[
3
√

2] and the ring of integers of Q3(
3
√

2) = Q3(1 + 3
√

2) is
Z3[1 + 3

√
2] = Z3[

3
√

2].
Using this to calculate the ring of integers of Q( 3

√
2), we see that the coefficients of α

have denominators prime to 2 and 3, hence Ok = Z[ 3
√

2] and

disc(k) = disc(1,
3
√

2,
3
√

4) = −108

For a different approach (pun intended) to calculating the integers of k, see [2, Example,
pp. 67-68].

We now turn to factorization of rational primes in Ok. First let’s treat the ramified
primes, 2 and 3.

In Q3(
3
√

2), 3 is totally ramified and 1 + 3
√

2 is a prime element. This number also

generates the global prime ideal factor of 3 in Ok. Indeed, let π
def
= 1 + 3

√
2 be the root of

(X − 1)3 − 2 in k. Expanding this polynomial and substituting X = π, we see

(1) π3 = 3π2 − 3π + 3 = 3(π2 − π + 1) = 3(1 +
3
√

2 +
3
√

4).

The number u
def
= 1 + 3

√
2 + 3
√

4 has inverse v
def
= 3
√

2− 1, so u ∈ O×k and

(2) 3 = π3v.

Two calculations that we’ll be using later are

(3) πv =
3
√

4− 1, π2v = 1− 3
√

2 +
3
√

4.

The way p factors in Z[ 3
√

2] can be described by how X3 − 2 factors mod p [2, Prop.
25, p. 27]. We need to know when 2 is a cube mod p and, if so (and p 6= 2), when there
is a primitive cube root of unity mod p. The latter condition (for p 6= 3) is the same
as determining when −3 is a square mod p, which by quadratic reciprocity occurs when
p ≡ 1 mod 3. (Alternatively, that

√
−3 ∈ Z/pZ⇔ (Z/pZ)× contains an element of order 3,

i.e., that 3 | p− 1, proves a particular case of quadratic reciprocity: (−3p ) = (p3).)

Now we factor primes p ≥ 5 (so p is unramified).
If p ≡ 2 mod 3, then 2 is a cube mod p and there is no primitive cube root of unity in

Z/pZ, so (since h(k) = 1)

(p) = (x1)(x2), N(x1) = p, N(x2) = p2.

Here, N denotes the norm of an ideal. Passing to norms of elements, since −1 is a norm from
k we can choose suitable unit multiples so p = x1x2 where p = Nk/Q(x1), p

2 = Nk/Q(x2).
For example,

5 = (1 +
3
√

4)(1 + 2
3
√

4− 3
√

4).

If p ≡ 1 mod 3 and 2(p−1)/3 ≡ 1 mod p (the smallest such p is 31) then X3 − 2 splits
completely mod p and

p = x1x2x3, Nk/Q(xi) = p.

If p ≡ 1 mod 3 and 2(p−1)/3 6≡ 1 mod p then X3 − 2 is irreducible mod p and p is prime
in Ok.

What is the unit group of Z[ 3
√

2]? The only roots of unity are ±1, and by Dirichlet the
unit group has rank 1, so there is a single fundamental unit > 1. We already have found a
unit greater than 1, namely u, and happily this turns out to be the fundamental unit. To
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prove this, we’ll show u is less than the square of the fundamental unit, so it must equal
the fundamental unit.

(The unit u is not so hard to discover independently of any considerations of how 3
factors, which was the way we came across it. The norm form for k is

(4) Nk/Q(a+ b
3
√

2 + c
3
√

4) = a3 + 2b3 + 4c3 − 6abc.

Glancing at the coefficients 1, 2, 4,−6 on the right hand side, we see they add up to 1, so
1 + 3
√

2 + 3
√

4 is a unit of Z[ 3
√

2], with norm 1.)

Lemma 3. Let k/Q be a cubic extension that is not Galois, with negative discriminant d,
i.e., k has only one real embedding. View k as a subfield of R by its unique real embedding.
Then for the fundamental unit U > 1 of Ok, |d|/4 < U3 + 7.

Proof. Let σ : k → C be one of the complex embeddings of k, so Nk/Q(U) = Uσ(U)σ(U) =

U |σ(U)|2 > 0, so Nk/Q(U) = 1.

Let x = |σ(U)| = 1√
U
∈ (0, 1). Write

σ(U) = xeiy, σ(U) = xe−iy, U =
1

x2
.

Since Z[U ] ⊂ Ok, |d| ≤ |disc(1, U, U2)|. We calculate the latter:

disc(1, U, U2) =

∣∣∣∣∣∣
1 U U2

1 σ(U) σ(U)2

1 σ(U) σ(U)2

∣∣∣∣∣∣
2

= ((σ(U)− σ(U))(σ(U)− U)(σ(U)− U))2

= −4 sin2(y)(x3 + 1/x3 − 2 cos y)2

< 0.

Taking absolute values,

1

4
|d| ≤ sin2(y)(x3 + 1/x3 − 2 cos y)2

= (1− c2)(z − 2c)2 (c = cos y, z = x3 + 1/x3 > 2)

= (z2 − 4cz + 4c2)(1− c2)
= z2 − c2z2 − 4cz(1− c2) + 4c2(1− c2)
= z2 − (cz + 2(1− c2))2 + 4(1− c2)2 + 4c2(1− c2)
= z2 + 4− (cz + 2(1− c2))2

< z2 + 4

= x6 + 6 +
1

x6

= U3 + 6 + x6

< U3 + 7. �

Remark 4. With more care, the inequality can be sharpened to |d|/4 < U3 + 6. See The-
orem 4.4 in https://kconrad.math.uconn.edu/blurbs/gradnumthy/unittheorem.pdf.

Applying Lemma 3 to k = Q( 3
√

2), the fundamental unit U > 1 of Ok satisfies 108/4 <
U3 + 7, so U > 2, hence U2 > 4 > 1 + 3

√
2 + 3
√

4 = u. Thus U = u.

https://kconrad.math.uconn.edu/blurbs/gradnumthy/unittheorem.pdf
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By an explicit calculation, disc(1, u, u2) = −108 so Z[u] = Z[ 3
√

2], which also follows from
the transition matrix from {1, 3

√
2, 3
√

4} to {1, u, u2} having determinant −1; explicitly,
3
√

2 = u2 − 3u+ 2. The minimal polynomial for u over Q can be found as follows:

(5) u =
1

3
√

2− 1
⇒
(

1

u
+ 1

)3

= 2⇒ u3 − 3u2 − 3u− 1 = 0.

Theorem 5. The field Q( 3
√

2) has ring of integers Z[ 3
√

2], class number 1, discriminant
−2233, unit group ±uZ where u = 1 + 3

√
2 + 3
√

4. The ramified primes 2 and 3 factor as
2 = ( 3

√
2)3, 3 = π3v where π = 1 + 3

√
2 and v = 1/u = 3

√
2− 1. Also

Z[
3
√

2] = Z[π] = Z[u]

and the minimal polynomials of π and u are

T 3 − 3T 2 + 3T − 3, T 3 − 3T 2 − 3T − 1.

Now we turn our attention to the field K = Q( 3
√

2, ω). It is the composite of F and k, so
the only rational primes that ramify in K are 2 and 3. Let’s determine how these primes
factor in K.

Since 2 totally ramifies in k with ramification index 3 and its residue field degree in F is
2, we see (2) = ( 3

√
2)3 is the prime factorization of 2 in K: ( 3

√
2) stays prime when extended

from k to K. (Locally, Q2(
3
√

2, ω) is obtained from Q2(
3
√

2) by adjoining a root of unity of
order prime to 2, so it is unramified and 3

√
2 stays prime in the splitting field.)

Since 3 totally ramifies in F and in k with respective ramification indices 2 and 3, it must
totally ramify in K: 3OK = P6.

Is P principal? Extending both (principal) factorizations of 3 in k and in F to K, we
have

P6 = (
√
−3)2 = (π)3.

Therefore P3 = (
√
−3) and P2 = (π). So P = (

√
−3/π) is principal. We let η

def
=
√
−3/π,

so by (2) and (3)

η2 = −πv = 1− 3
√

4.

Thus (η2 − 1)3 = −4, so η is a root of

(6) T 6 − 3T 4 + 3T 2 + 3,

which is Eisenstein with respect to 3, as expected.
Explicitly,

η =

√
−3π2v

3
=

(2ω + 1)(1− 3
√

2 + 3
√

4)

3

=
1− 3
√

2 + 3
√

4

3
+

2(1− 3
√

2 + 3
√

4)

3
ω.

The element η does not lie in Z[ 3
√

2, ω], so this is not the full ring of integers. We’ll see later
that OK 6= Z[η] either.

To determine the class number of K, we want to compute the Minkowski bound. In lieu
of knowing the discriminant of K, we can use the upper bound

|disc(K)| ≤ | disc(1,
3
√

2,
3
√

4, ω, ω
3
√

2, ω
3
√

4)| = 2439

to get

n!

nn

(
4

π

)r2√
|disc(K)| ≤ 320

√
3

π3
≈ 17.87.
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So we want to factor all (positive) rational primes ≤ 17 into prime factors in K.
We’ve already factored 2 and 3, so we now need to factor p = 5, 7, 11, 13, and 17. All

prime ideal factors of p in K are Galois-conjugate, so p factors principally when there is at
least one principal prime ideal factor.

Let’s combine information about how p 6= 2, 3 factors (principally!) in F and k to make
conclusions about factorization in K.

Recall that in F ,

p ≡ 1 mod 3 =⇒ p = αα, p ≡ 2 mod 3 =⇒ p inert

and in k

p ≡ 2 mod 3 =⇒ (p) = (x1)(x2), N(x1) = p, N(x2) = p2,

p ≡ 1 mod 3, 2(p−1)/3 ≡ 1 mod 3 =⇒ (p) = (x1)(x2)(x3), N(xi) = p,

p ≡ 1 mod 3, 2(p−1)/3 6≡ 1 mod 3 =⇒ p inert.

For a prime p 6= 2, 3 in K we have fpgp = 6. If p ≡ 2 mod 3, then by looking in k we
have 2 | fp, gp ≥ 2. Therefore gp = 3, so the ideal (x1) over p of degree 1 stays prime in K,
so p factors principally. If p ≡ 1 mod 3 and 2 mod p is not a cube, then looking in F shows
gp ≥ 2 while looking in k shows 3 | fp, so fp = 3, gp = 2 and (α), (α) stay prime in K, so p
factors principally in K.

Happily, for all primes p ≤ 17 that are 1 mod 3, 2 mod p is not a cube. Thus all primes
≤ 17 factor principally in K and h(K) = 1.

Though we didn’t need to factor any rational primes ≥ 5 explicitly to determine h(K),
it may be of interest to see some examples. Here is a list of explicit factorizations in K for
p ≤ 17. They were all found by hand, without using the computer. The trickiest one is
factoring 11, which arose from solving the norm form equation Nk/Q(a+b 3

√
2+c 3
√

4) = 11 by
making guesses, using (4). All factorizations below are numerical, rather than into ideals.

2 = (
3
√

2)3,

3 = −η6u2,

5 = (1 +
3
√

4)(1 +
3
√

4ω)(1 +
3
√

4ω2),

7 = (2 +
√
−3)(2−

√
−3)

11 = (3 + 2
3
√

2 +
3
√

4)(3 + 2
3
√

2ω +
3
√

4ω2)(3 + 2
3
√

2ω2 +
3
√

4ω),

13 = (4 + ω)(4 + ω2)

17 = (1 + 2
3
√

2)(1 + 2
3
√

2ω)(1 + 2
3
√

2ω2).

Now we turn to a calculation of the discriminant of K. The only prime factors are 2 and
3. Let’s compute each contribution locally. There is only one prime above 2 and 3 in k and
K, so denote the completion at such a prime as Kp and kp for p = 2, 3.

Using ∼ to denote equality up to multiplication by a unit in the integer ring of the local
field,

disc(K2/Q2) = NK2/k2(disc(K2/k2)) disc(k2/Q2)
2

∼ disc(k2/Q2)
2 since K2/k2 is unramified

∼ Nk2/Q2
(3(

3
√

2)2)2

∼ (Nk2/Q2
(

3
√

2))4

= 24.
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The integers of Q3(
3
√

2, ω) are Z3[η], so by (6)

disc(K3/Q3) ∼ NK3/Q3
(6η5 − 12η3 + 6η)

= 66 NK3/Q3
(η) NK3/Q3

(η4 − 2η2 + 1)

∼ 36 · 3 · 1
∼ 37.

Thus disc(K) = (−1)r22437 = −14992. For instance, since disc(Z[η]) = −21437, OK 6=
Z[η]. (Rather than compute the entire discriminant of Z[η], we can note that the 3-adic
computation applies globally also, and the 26 term that arises is too large a power of 2.)
Also, the true Minkowski bound for K is

n!

nn

(
4

π

)r2√
| disc(K)| = 320

√
3

3π3
≈ 5.96,

so we only need to check how 2, 3, and 5 factor to get h(K) = 1, not all primes up to 17.
Now we calculate a Z-basis for the ring of integers of K. Since we already know the

discriminant, a putative basis can be checked by verifying it has the right discriminant.
This is how the candidate power basis {1, η, . . . , η5} was ruled out.

It turns out there is a power basis for OK , but rather than pull it out of nowhere, we
first approach the problem similarly to the computation of the ring of integers in quadratic
fields, viewing K = k(ω) as a quadratic extension of the real subfield k.

Let x = a + bω ∈ OK , where a, b ∈ k. As with quadratic extensions of Q, we get
information about a and b by taking traces. Since TrK/k(x) = 2a − b ∈ Z[ 3

√
2] and

TrK/k(xω) = −a− b ∈ Z[ 3
√

2], we see

3a, 3b ∈ Z[
3
√

2].

Since

x ∈ OK ⇐⇒ TrK/k(x),NK/k(x) ∈ Z[
3
√

2]

⇐⇒ 2a− b, a2 − ab+ b2 ∈ Z[
3
√

2]

and 2a− b = 3a− (a+ b), a2 − ab+ b2 = (a+ b)2 − 3ab, we see

x ∈ OK ⇐⇒ 3a, a+ b, 3ab ∈ Z[
3
√

2].

Let a = r/3, b = s/3. Then x ∈ OK precisely when r, s ∈ Z[ 3
√

2] and r + s ≡ 0, rs ≡ 0 in
Z[ 3
√

2]/3, which is the same as r + s ≡ 0, s2 ≡ 0 mod 3.
In Z[ 3

√
2],

3 | s2 ⇐⇒ π3 | s2 ⇐⇒ π2 | s,

so r = −s+ 3α, s = π2β. Thus the algebraic integers of K are numbers of the form

−π2β + 3α

3
+
π2β

3
ω = α+ π2β

ω − 1

3

= α+ βu
ω − 1

π
.

In particular this implies θ
def
=(ω − 1)/π is an algebraic integer, and

(7) OK = Z[
3
√

2]⊕ Z[
3
√

2]θ = Z⊕ Z
3
√

2⊕ Z
3
√

4⊕ Zθ ⊕ Z
3
√

2θ ⊕ Z
3
√

4θ.
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Here is a more explicit formula for θ:

θ =
(ω − 1)π2v

3

=
(ω − 1)(1− 3

√
2 + 3
√

4)

3

= −1− 3
√

2 + 3
√

4

3
+

1− 3
√

2 + 3
√

4

3
ω.

This looks similar to η, and in fact ωθ = −η.
We didn’t actually use the fact that Z[ 3

√
2] is a PID in the construction of the Z-basis

for OK , only that the lone (totally ramified) prime ideal factor of (3) is principal.
To find the minimal polynomial for θ over Q, note by (1) that 1/π is a root of 3T 3−3T 2+

3T − 1, so of T 3 − T 2 + T − 1/3. Replacing T by T/(ω − 1) and clearing the denominators
shows θ is a root of

g(T ) = T 3 − (ω − 1)T 2 + (ω − 1)2T − (ω − 1)3

3
= T 3 + (1− ω)T 2 − 3ωT −

√
−3.

Therefore θ is a root of

g(T )g(T ) = T 6 + 3T 5 + 6T 4 + 9T 3 + 12T 2 + 9T + 3.

Computing the determinant of a transition matrix from the known Z-basis in (7) to the
powers of θ shows [OK : Z[θ]] = 5, so OK 6= Z[θ]. Alternatively, the discriminant of the
minimal polynomial for θ can be calculated by PARI to be −243752 6= disc(OK). In Z/5Z,
gg has a double root, 3.

As a further check on the calculation of the Z-basis, let’s calculate both sides of

|disc(K)| = |Nk/Q(disc(K/k))| disc(k)2.

We already checked the left hand side is 2437. Since disc(k)2 = (2233)2, we need to check
|Nk/Q(disc(K/k))| = 3, which is the same as (disc(K/k)) = (π). Well, OK = Ok[θ], so

disc(K/k) =

∣∣∣∣ TrK/k(1) TrK/k(θ)
TrK/k(θ) TrK/k(θ2)

∣∣∣∣ =

∣∣∣∣ 2 −π2v
−π2v πv

∣∣∣∣ = 2πv − π4v2 = −πv,

so everything checks out (and this gives an alternate calculation of disc(K)).
We now turn to computing the unit group of OK . The only roots of unity in K are

{±1,±ω,±ω2}, since any root of unity other than ±1 generates an even degree abelian
extension of Q, and the only such subfield of K is F = Q(ω), so F contains all the roots of
unity of K. The rank of the unit group is 2, and we will find a basis.

Where to begin? We have one obvious unit, namely u = 1 + 3
√

2 + 3
√

4. We can take a

Q-conjugate, say u′
def
= 1 + 3

√
2ω+ 3

√
4ω2, and hope that u and u′ may be a basis. This turns

out not to be the case, but let’s see how much can be said.
As a set of 3 complex embeddings of K to use in the log map of O×K , we use Gal(K/F ) =

{1, σ2, σ3 = σ22}, where

σ2(
3
√

2) = 3
√

2ω, σ2(ω) = ω,

σ3(
3
√

2) = 3
√

2ω2, σ3(ω) = ω.

Note
u′ = σ2(u) = 1− 3

√
4 + (

3
√

2− 3
√

4)ω = −πv − 3
√

2vω

and
σ2(u

′) = σ3(u) = 1− 3
√

2 + (
3
√

4− 3
√

2)ω = −v +
3
√

2vω.

The log map L : O×K → R3 has the effect

x 7→ (2 log |x|, 2 log |σ2x|, 2 log |σ3x|) = (2 log |x|)(1, 0,−1) + (2 log |σ2x|)(0, 1,−1).
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For all x in K, σ2(x) = σ3(x) and σ3(x) = σ2(x). Thus |σ3(u)| = |σ2(u)| since u is real,
so |σ2(u)| = 1/

√
u. In particular,

(8) uσ2(u)σ3(u) = u|σ2(u)|2 = 1.

(This is identical to a calculation in Lemma 3.)
The regulator of u and u′ is the absolute value of

(9)

∣∣∣∣ 2 log |u| 2 log |σ2(u)|
2 log |u′| 2 log |σ2(u′)|

∣∣∣∣ =

∣∣∣∣ 2 log u − log u
− log u − log u

∣∣∣∣ = −3(log u)2.

This is nonzero, so the index of L′
def
= ZL(u) + ZL(u′) in L(O×K) is finite. But what is this

index?
To compute it, we shall calculate the regulator of K. This will be done without knowing a

basis for the units, by using special values of zeta functions, inspired by Stark’s calculations
in Sections 3.2, 3.3, and 3.4 of his article in [3].

The zeta function of a number field vanishes at s = 0 to order equal to the rank of its
unit group, and its first nonzero Taylor coefficient is −hR/w. Using Artin L-functions we
will express the zeta function of K in terms of the zeta functions of k and F (and Q). All
these fields have class number 1 and we know the regulators of Q, F , and k. So we will
be able to compute the regulator of K. In fact, before a plan was developed for computing
a basis of the unit group, PARI was used to compute an approximate value of R(K) as
−6ζK(s)/s2 for s near 0, and it was noticed upon dividing 3(log u)2 (taken from (9)) by the
approximate regulator that the ratio was essentially 3, thus suggesting [L(O×K) : L′] = 3
and R(K) = (log u)2. To prove this, we use the following result.

Theorem 6. Let K/Q be any Galois extension with Galois group G ∼= S3. Let F be the
unique quadratic subfield, the fixed field of the unique subgroup N ∼= A3 of size 3. Let k be
the fixed field of any cyclic 2 subgroup H of G. Then

ζK(s) = ζF (s)

(
ζk(s)

ζ(s)

)2

.

K

2

3

{e}
2

3k

3

H

3F
2

N
2

Q G

Proof. First write the zeta-functions as Artin L-functions for representations of G:

ζK(s) = L(s, IndG
e (1e)),

ζk(s) = L(s, IndG
H(1H)),

ζF (s) = L(s, IndG
N (1N )).

On the right side of these formulas, we want to write the characters induced up to G
as linear combinations of irreducible characters of G. Since G ∼= S3, G has trivial and
nontrivial 1-dimensional characters χ1 and χ′1, and an irreducible 2-dimensional character
χ2. Here is a character table for G = {1, r, r2, s, rs, r2s}.
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Rep. 1 s r
Size 1 3 2
χ1 1 1 1
χ′1 1 −1 1
χ2 2 0 −1

For a subgroup M of G and an irreducible character χ of G, the multiplicity of χ in
IndG

M (1M ) is the inner product 〈IndG
M (1M )), χ〉G, which by Frobenius reciprocity is equal

to the inner product 〈1M ,ResM (χ)〉M = 1
|M |
∑

m∈M χ(m). Applying this with M = {e},
H, and N and letting χ equal each of the three irreducible characters of G, we obtain

IndG
e (1e) = χ1 + χ′1 + 2χ2,

IndG
H(1H) = χ1 + χ2,

IndG
N (1N ) = χ1 + χ′1,

so

ζK(s) = L(s, IndG
e (1e)) = L(s, χ1)L(s, χ′1)L(s, χ2)

2,

ζk(s) = L(s, IndG
H(1H)) = L(s, χ1)L(s, χ2),

ζF (s) = L(s, IndG
N (1N )) = L(s, χ1)L(s, χ′1).

Since L(s, χ1) = ζ(s),

ζK(s) = ζF (s)L(s, χ2)
2 = ζF (s)

(
ζk(s)

ζ(s)

)2

. �

Corollary 7. With the same hypotheses as in Theorem 6,

h(K)R(K) = h(F )R(F )(h(k)R(k))2, disc(K) = disc(F ) disc(k)2.

Proof. Equating the first nonvanishing Taylor coefficients on both sides of the equation in
Theorem 6 yields

−h(K)R(K)

w(K)
= −h(F )R(F )

w(F )

(
−h(k)R(k)/2

−1/2

)2

.

Since any nontrivial root of unity in K generates an even degree abelian extension of Q,
w(K) = w(F ). Thus we get the first desired equality. Now compute the residue at s = 1
of both sides in Theorem 6 to get the discriminant formula in absolute value (either take
cases depending on if F is real or imaginary, or equate orders of vanishing at s = −1 and
s = −2 to relate the number of real and complex embeddings for K, F , and k). The signs
of the discriminants match up, so we get the second equality. �

In particular, for K = Q( 3
√

2, ω), R(K) = R(Q( 3
√

2))2 = (log u)2 and disc(K) = −3 ·
(2233)2 = −2437, giving a third computation of the discriminant of K.

That u and u′ generate a subgroup of index 3 in O×K mod torsion has an analogue in each
S3 extension K of Q that is not a real field i.e., K is the splitting field of a cubic field over
Q with a negative discriminant. A fundamental unit v for the unique real cubic subfield
k of K, along with a Q-conjugate v′ has regulator 3(log v)2 = 3R(k)2. The calculation is
identical to that for the field Q( 3

√
2, ω). Since h(K)R(K) = h(F )(h(k)R(k))2 when F is

imaginary quadratic, the index in O×K /µK of the group generated by the fundamental unit
of k and a Q-conjugate equals

3R(k)2

R(K)
=

3h(K)

h(F )h(k)2
.
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The fraction on the right is in Z since the left side is R({v, v′})/R(K) = [O×K /µk : 〈v, v′〉].
Is integrality of 3h(K)/(h(F )h(k)2) clear from some other perspective?

The following result will allow us to refine {u, u′} to a basis of units for OQ( 3√2,ω).

Theorem 8. Let L′ ⊂ L ∼= Z2 be free rank 2 lattices with [L : L′] = p a prime. Write
L′ = Ze1 ⊕ Ze2. Then one of e1 or e2 is not in pL. Choosing e1 to not lie in pL, there
is an integer a, uniquely determined modulo pZ, such that e2 − ae1 ∈ pL. For any such a,
write e2 − ae1 = pw, w ∈ L. Then e1 and w is a basis of L, i.e.,

L = Ze1 ⊕ Zw.

Proof. Since [L′ : pL] = [L : pL]/[L : L′] = p, not both e1 and e2 can lie in pL, say e1 6∈ pL.
Then e1 6= 0 in L′/pL ∼= Z/pZ, so we can solve the equation ae1 ≡ e2 mod pL for some
a ∈ Z, uniquely determined mod p.

Let e2 − ae1 = pw. Then w is not a Z-linear combination of e1 and e2, so w 6∈ L′. Thus
L′ is a proper subgroup of Zw ⊕ Ze1. Since [L : L′] = p, we must have Zw ⊕ Ze1 = L. �

For the intended application, consider the case p = 3. If neither e1 nor e2 is in pL, then a
is prime to p = 3, so we may assume a = ±1. That is, either e2− e1 or e2 + e1 is in 3L (but
not both), and whichever one is will give rise to (thrice) a lattice element to pair together
with e1 to form a basis of L.

For K = Q( 3
√

2, ω), consider the lattice L = L(O×K) under the log map, with L′ =
ZL(u) + ZL(u′). Since [L : L′] = 3, at least one of L(u) and L(u′) is not in 3L. However,
since u and u′ are Galois-conjugate, if one of L(u), L(u′) is in 3L then so is the other. Thus
neither one is, in particular L(u) is not. So by Theorem 8 there must be a basis of O×K
containing u, the fundamental unit of Ok. More precisely, by the previous paragraph either
uu′ = ζε3 or u/u′ = ζε3, where ζ is a root of unity in K and ε ∈ O×K , and then u and ε
form a basis. Since ζ actually only matters modulo cubes, we may assume ζ ∈ {1, ω, ω2}.

The equation uu′ = uσ2(u) = ζε3 implies (by (8)) 1/σ3(u) = ζε3. But then taking Galois
conjugates implies u and σ2(u) are both cubes of units, up to multiplication by a root of
unity. Then both have log images in 3L, which is not the case. So we must have

u

u′
=

u

σ2(u)
= ζε3, ε ∈ O×K .

Reduce this equation in the residue field OK / 3
√

2 ∼= F4. Here u, σ2(u) ≡ 1, and (how
fortuitous!) ε3 ≡ 1 since F×4 has size 3. So ζ ≡ 1. Different cube roots of unity are distinct
in F4, so ζ = 1.

Therefore

(10) ε3 =
u

σ2(u)
= u2σ3(u) = u2(−v +

3
√

2vω) = −u+ (u+ 1)ω

for some unit ε. To find ε using (10) we must extract a cube root in the sixth degree field
K.

The ambiguity in the precise value of ε is not only up to multiplication by the cube
root of unity inherent in determining ε from ε3. The choice of looking at u/σ2(u) rather
than u/σ3(u) also introduces a measure of variability; both σ2 and σ3 are generators of
Gal(K/F ). Since u/σ2(u) and u/σ3(u) are complex conjugates, considering cube roots of
either shows there should be 6 possible values of ε satisfying an equation like (10), if we
allow either σ2 or σ3 to be used.

If by black magic we discovered a cube root ε of u/σ2(u) then we don’t need Theorem 8
to know u and ε are a basis, as that can be determined from (10) alone. Indeed, applying
complex conjugation to the first equation in (10) and multiplying the resulting equation by
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(10) yields u3 = (εε)3 by (8), so

(11) u = εε

(both are positive numbers) and 2 log |ε| = log u. Applying σ2 to (10) and then complex
conjugation to the result yields

σ2(ε)
3 =

σ2(u)

σ3(u)
, σ2(ε)

3 =
σ3(u)

σ2(u)
,

so |σ2(ε)| = 1, hence

log |σ2(ε)| = 0, 2 log |σ3(ε)| = −2 log |ε| − 2 log |σ2(ε)| = − log u.

So the regulator of u and ε is the absolute value of∣∣∣∣ 2 log u 2 log |σ2(u)|
2 log |ε| 2 log |σ2(ε)|

∣∣∣∣ =

∣∣∣∣ 2 log u − log u
log u 0

∣∣∣∣ = (log u)2 = R(K),

so u and ε form a basis.
Also, the regulator of ε and ε is the absolute value of∣∣∣∣ 2 log |ε| 2 log |σ2(ε)|

2 log |ε| 2 log |σ2(ε)|

∣∣∣∣ =

∣∣∣∣ log u 0
log u − log u

∣∣∣∣ = −(log u)2,

so ε and ε are a basis for the units. The general unit has the form ζεmεn, which along with
its complex conjugate forms a basis of the units only when (m,n) = (±1, 0) or (0,±1).

Okay, let’s get down to business and figure out what ε could be. We will determine the
polynomial for ε in the quadratic extension K/k, and then use the quadratic formula to
find the roots. We need to compute TrK/k(ε) = ε + ε and NK/k(ε) = εε. The latter was
already computed in (11), it is u. From (10) we have

TrK/k(ε3) = −2u− (u+ 1) = −1− 3u.

Since

TrK/k(ε3) = ε3 + ε3 = (ε+ ε)3 − 3εε(ε+ ε) = (TrK/k ε)
3 − 3uTrK/k(ε),

we see that TrK/k(ε) is a root (in k) of

(12) T 3 − 3uT + (1 + 3u).

Should we use the cubic formula to find TrK/k(ε)? No, we’ll use PARI. Having computed

approximate values for 3
√

2 and u along the way towards asking PARI for the decimal
approximations of the roots of this polynomial, it becomes apparent upon examining PARI’s
root calculation that two of the roots of (12) should be −u and 3

√
2. Then the third root

is u− 3
√

2 = 1 + 3
√

4. To prove these are the roots of T 3 − 3uT + (1 + 3u) without using a
computer, note by (5) that −u is a root of (12). It is easily verified by hand that 3

√
2 is a

root.
So TrK/k(ε) is −u, 3

√
2, or 1 + 3

√
4. That makes ε a root of one of the following three

polynomials:

(13) T 2 + uT + u, T 2 − 3
√

2T + u, T 2 − (1 +
3
√

4)T + u.

This gives 6 choices for the roots, all of which are different since these three monic poly-
nomials are all irreducible over k (they have negative discriminants). A previous remark
about ambiguities in specifying ε knowing only (10) more or less guarantees any of the
roots of these is an adequate choice for ε (up to using σ3 instead of σ2), before doing any
calculations.
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Let’s consider the first polynomial. For ε to be a root of it, the roots of this polynomial
must lie in K. Since the field generated over k by the roots of T 2 +uT +u is k(

√
u2 − 4u) =

k(
√

1− 3
√

4), while K = k(ω) = k(
√
−3), we must check if

1− 3
√

4

−3
=

3
√

4− 1

3
=

1

9

(
3

3
√

4− 3
)

is a square in k = Q( 3
√

2), which is the same as checking whether the algebraic integer
3 3
√

4− 3 is a square in Ok = Z[ 3
√

2]. Expanding the equation

(a+ b
3
√

2 + c
3
√

4)2 = 3
3
√

4− 3,

there is an easy solution by inspection: a = 1, b = −1, c = 1. So

1− 3
√

4 = −3

(
1− 3
√

2 + 3
√

4

3

)2

.

This can also be seen from (3). So a candidate for ε as a root of T 2 + uT + u is

−u+
√

1− 3
√

4

2
=

1

2

(
−u+

1− 3
√

2 + 3
√

4

3

√
−3

)
.

The other root of this polynomial is ε. Writing
√
−3 = 2ω + 1, we have

(14) ε
def
= −1 + 2 3

√
2 + 3
√

4

3
+

1− 3
√

2 + 3
√

4

3
ω = −π

2

3
+
π2v

3
ω =

−u+ ω

π
.

An explicit calculation shows the cube of this number is u/σ2(u), so we’ve found a choice
for ε. For the other root ε, ε3 = u/σ3(u).

The minimal polynomial of ε over Q is

(T 2 + uT + u)(T 2 + σ2(u)T + σ2(u))(T 2 + σ3(u)T + σ3(u)) = T 6 + 3T 5 − 5T 3 + 3T + 1.

What about the other roots of the three polynomials in (13)? The other root of T 2+uT+u
is ε. We expect the roots of the other two polynomials to be ε and ε multiplied by primitive
cube roots of unity. Indeed,

TrK/k(εω) =
3
√

2, TrK/k(εω2) = 1 +
3
√

4,

so the roots of T 2− 3
√

2T +u are εω and εω2 while the roots of T 2− (1 + 3
√

4)T +u are εω2

and εω.
Since θ and ε have the same ω coefficient, we compute θ − ε = 3

√
2, so by (7)

OK = Z[
3
√

2]⊕ Z[
3
√

2]ε = Z[u]⊕ Z[u]ε.

But even better, disc(Z[ε]) = −2437, the discriminant of OK . So we get a power basis:
OK = Z[ε]. The discriminant of Z[ε] was first computed using PARI, but by hand we
can calculate the transition matrix between the powers of ε and a known basis of OK . A
convenient basis is {1, u, u2, ε, uε, u2ε}, since ε2 = −uε− u:

1
ε
ε2

ε3

ε4

ε5

 =


1 0 0 0 0 0
0 0 0 1 0 0
0 −1 0 0 −1 0
0 0 1 0 −1 1
−1 −3 −2 −1 −3 −1

1 4 6 0 1 4




1
u
u2

ε
uε
u2ε

 .

The determinant of the matrix is −1.
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The Q-conjugates of ε are units, so let’s determine them explicitly in terms of the basis
{ε, ε}. Recall

2 log |ε| = log u, 2 log |σ2(ε)| = 0, 2 log |σ3(ε)| = − log u.

So

L(ε) = (log u)(1, 0,−1),

L(ε) = (log u)(1,−1, 0),

L(σ2(ε)) = (log u)(0,−1, 1)

= L(ε)− L(ε),

L(σ3(ε)) = (log u)(−1, 1, 0)

= −L(ε).

Thus σ2(ε) = ζε−1ε and σ3(ε) = ζε−1, where ζ denotes some root of unity (not necessarily
the same in both equations).

In OK / 3
√

2 ∼= F4, σ2 and σ3 both induce the identity map and, by (14), ε ≡ 1 + ω ≡ ω2,
ε ≡ ω. So the equation σ2(ε) = ζε−1ε reduces to

ω2 ≡ ζω2,

so ζ = ±1, i.e., σ2(ε) = ±ε−1ε = ±ε2/u. To determine which sign holds we take traces
down to Q:

TrK/Q(σ2(ε)) = TrK/Q(ε) = −3,

and

TrK/Q(ε2/u) = Trk/Q((1/u) TrK/k(ε2)).

Since

TrK/k(ε2) = ε2 + ε2 = (ε+ ε)2 − 2εε = u2 − 2u,

we have

TrK/Q(ε2/u) = Trk/Q(u− 2) = 3− 6 = −3.

So

σ2(ε) =
ε2

u
= ε−1ε.

Similarly, σ3(ε) = ε−1. Then

σ2(ε) = εε−1, σ3(ε) = ε−1.

Of course there is nothing canonical about complex conjugation as an element of Gal(K/Q).
Here is a faster method of discovering a unit to form a basis for O×K when paired up

with u. Since (3) = (η)6, the ideal (η) is fixed by G = Gal(K/Q). In particular, for any
g ∈ G we have g(η)/η ∈ O×K . Perhaps for suitable g this ratio will be a unit that along with
u gives us a basis! Since η = −η, we get the following table (where (·)∗ denotes complex
conjugation) that shows that we really only need to try g = σ2.

g 1 (·)∗ σ2 σ3 σ2 σ3
g(η)/η 1 −1 σ2(η)/η (σ2(η)/η)∗ −(σ2(η)/η)∗ −σ2(η)/η
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Let’s compute the image of σ2(η)/η under the log map. Since σ2(η)/η = π/σ2(π) =
(1 + 3

√
2)/(1 + 3

√
2ω), ∣∣∣∣σ2(η)

η

∣∣∣∣2 =
(1 + 3

√
2)2∣∣1 + 3

√
2ω
∣∣2

=
(1 + 3

√
2)2

1− 3
√

2 + 3
√

4

=
π2

π2v
= u

and ∣∣∣∣σ2(σ2(η)

η

)∣∣∣∣2 =

∣∣∣∣σ3(η)

σ2(η)

∣∣∣∣2
=

∣∣∣∣∣ 1 + 3
√

2ω

1 + 3
√

2ω2

∣∣∣∣∣
2

= 1.

So the regulator of u and σ2(η)/η is∣∣∣∣ 2 log u − log u
log u 0

∣∣∣∣ = (log u)2 = R(K).

So u and σ2(η)/η forms a basis for the units. In fact, we see that L(σ2(η)/η) = L(ε), so
σ2(η)/η = ζε for some root of unity ζ. By an explicit calculation,

σ2(η)

η
=

π

σ2(π)

=
πσ2(π)

σ2(π)σ2(π)

=
π(1 + 3

√
2ω2)

1− 3
√

2 + 3
√

4

=
π(1 + 3

√
2ω2)

π2v

=
π2(1 + 3

√
2ω2)

3

= −1

3
(1− 3

√
2 +

3
√

4)− 1

3
(2 +

3
√

2 + 2
3
√

4)ω,

we see that σ2(η)/η = εω. Therefore another basis for the units would be σ2(η)/η and its
complex conjugate, so using reciprocals we get

1 + 3
√

2ω

1 + 3
√

2
,

1 + 3
√

2ω2

1 + 3
√

2

is a basis for the units of OK . Unlike ε, δ
def
= σ2(η)/η does not provide a power basis, as its

minimal polynomial over Q is f(T ) = T 6 + 3T 4 + 4T 3 + 3T 2 + 1, so the discriminant of Z[δ]
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is

−NK/Q(f ′(δ)) = −NK/Q(6δ5 + 12δ3 + 12δ2 + 6δ)

= −66 NK/Q(δ4 + 2δ2 + 2δ + 1),

which is divisible by 26, which is too large a power of 2. (The complete value of the
discriminant is −21237.)

This trick with the ideal (η) depended quite strongly on choosing η as the generator of
interest. Let’s see how it could have turned out differently. Recall we formed η as the
quotient of generators for the prime ideal factors of 3 in F and k. The most general such
ratio would be

η̃ =
ζ
√
−3

πun
= ζηu−n = ζηε−nε−n,

so

σ2(η̃)

η̃
=
σ2(η)

η

σ2(ε)
−n

ε−n
σ2(ε)

−n

ε−n

= ωε · εn ε
n

εn
· εn(σ3(ε)

−n)

= ωε3n+1.

This forms a basis with u = εε precisely when n = 0, i.e., only for η̃ = ζη!
We conclude by summarizing our findings about K, with particular emphasis on ε.

Theorem 9. The field K = Q( 3
√

2, ω) has class number 1, discriminant −2437, and regu-
lator (log(1 + 3

√
2 + 3
√

4))2. The ramified primes 2 and 3 factor as

(2) = (
3
√

2)3, (3) = (η)6,

where η =
√
−3/(1 + 3

√
2).

The ring of integers of K is Z[ε], where

ε = −1 + 2 3
√

2 + 3
√

4

3
+

1− 3
√

2 + 3
√

4

3
ω =

ω − u
π

,

with π = 1 + 3
√

2, satisfies ε2 = −uε − u, where u = 1 + 3
√

2 + 3
√

4 is the fundamental unit
of Q( 3

√
2). The minimal polynomial of ε over Q is T 6 + 3T 5 − 5T 3 + 3T + 1.

The unit group of OK has six roots of unity, rank 2, and basis {ε, ε}.

For a description of all power bases of OK , see [1].
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