L-FUNCTIONS FOR GAUSS AND JACOBI SUMS

KEITH CONRAD

1. INTRODUCTION

For a multiplicative character $\chi \colon \mathbf{F}_q^{\times} \to \mathbf{C}^{\times}$ and additive character $\psi \colon \mathbf{F}_q \to \mathbf{C}^{\times}$ on a finite field \mathbf{F}_q of order q, their *Gauss sum* is

$$G(\chi,\psi) = \sum_{c \in \mathbf{F}_q} \chi(c) \psi(c),$$

where we extend χ to 0 by $\chi(0) = 0$. Here are two fundamental properties of Gauss sums.

- (1) For nontrivial χ and ψ , $|G(\chi, \psi)| = \sqrt{q}$. (This is not true if one of the characters is trivial: if χ is trivial and ψ is not then $G(\chi, \psi) = -1$, if ψ is trivial and χ is not then $G(\chi, \psi) = 0$, and if χ and ψ are both trivial then $G(\chi, \psi) = q 1$.)
- (2) (Hasse–Davenport) For $n \geq 1$ let $\chi_n = \chi \circ N_{\mathbf{F}_{q^n}/\mathbf{F}_q}$ and $\psi_n = \psi \circ \operatorname{Tr}_{\mathbf{F}_{q^n}/\mathbf{F}_q}$ be the liftings of χ and ψ to multiplicative and additive characters on \mathbf{F}_{q^n} . Then $-G(\chi_n, \psi_n) = (-G(\chi, \psi))^n$. (This suggests $-G(\chi, \psi)$ is more fundamental.)

We will show how both properties of Gauss sums can be interpreted as properties of L-functions on $\mathbf{F}_q[T]$: the first property says a certain L-function satisfies the Riemann hypothesis and the second property follows from comparing the additive (Dirichlet series) and multiplicative (Euler product) representations of an L-function. Analogous results for Jacobi sums, based on the same ideas, are sketched at the end.

2. Gauss sums and the Riemann Hypothesis

Dirichlet characters are group homomorphisms $(\mathbf{Z}/m)^{\times} \to \mathbf{C}^{\times}$ and have *L*-functions. For nonconstant *M* in $\mathbf{F}_q[T]$, the finite group $(\mathbf{F}_q[T]/M)^{\times}$ is analogous to $(\mathbf{Z}/m)^{\times}$ and we call any homomorphism $\eta : (\mathbf{F}_q[T]/M)^{\times} \to \mathbf{C}^{\times}$ a character mod *M*. Extend η to $\overline{0}$ by $\eta(\overline{0}) = 0$ and lift η to $\mathbf{F}_q[T]$ by declaring $\eta(A) = \eta(A \mod M)$. This function η on $\mathbf{F}_q[T]$ is totally multiplicative, and by analogy to the definition of the *L*-function of a Dirichlet character we define the *L*-function of η to be

$$L(s,\eta) := \sum_{\text{monic } A} \frac{\eta(A)}{\mathcal{N}(A)^s} = \sum_{n \ge 0} \left(\sum_{\deg A = n} \eta(A) \right) \frac{1}{q^{ns}}$$

for $\operatorname{Re}(s) > 1$, where the inner sum runs over monic A of degree n and $\operatorname{N}(A) = |\mathbf{F}_q[T]/A| = q^{\deg A}$. Note the constant term of $L(s, \eta)$ is 1 (occurring for A = 1).

By the change of variables $u = 1/q^s$ we can view $L(s, \eta)$ as a formal power series in u:

$$\widetilde{L}(u,\eta) := \sum_{\text{monic } A} \eta(A) u^{\deg A} = \sum_{n \ge 0} \left(\sum_{\deg A = n} \eta(A) \right) u^n,$$

so $L(s,\eta) = \widetilde{L}(1/q^s,\eta).$

Theorem 2.1. If η is nontrivial then for $n \ge \deg M$ the coefficient of u^n vanishes.

KEITH CONRAD

Proof. (This proof is taken from [2, p. 36].) For each monic A of degree n, write A = MQ + R for $Q, R \in \mathbf{F}_q[T]$ with R = 0 or deg $R < \deg M$. Since A is monic of degree n, Q is monic of degree $n - \deg M$. By uniqueness of the quotient and remainder for each A, as A runs over all monics of degree n the pair (Q, R) runs over all pairs of a monic Q of degree $n - \deg M$ and a polynomial R of degree less than deg M (including R = 0). Therefore

$$\sum_{\deg A=n} \eta(A) = \sum_{Q,R} \eta(MQ+R) = \sum_{Q,R} \eta(R) = q^{n-\deg M} \sum_R \eta(R)$$

since there are $q^{n-\deg M}$ choices of Q. Since R is running over the polynomials of degree less than M along with 0, which represents all of $\mathbf{F}_q[T]/M$, and η vanishes on polynomials having a factor in common with M, we have

$$\sum_R \eta(R) = \sum_{R \in (\mathbf{F}_q[T]/M)^{\times}} \eta(R) = 0$$

because the sum of a nontrivial character over a finite abelian group is 0.

Now focus on the case deg M = 2. For nontrivial η the coefficient of u^n is 0 if $n \ge 2$, so

(2.1)
$$\widetilde{L}(u,\eta) = 1 + \left(\sum_{c \in \mathbf{F}_q} \eta(T+c)\right) u.$$

We will see that when $M = T^2$, the coefficient of u here is essentially a Gauss sum.

Theorem 2.2. The characters of $(\mathbf{F}_q[T]/T^2)^{\times}$ are pairs of a multiplicative and additive character on \mathbf{F}_q .

Proof. We unwind what the elements of $(\mathbf{F}_q[T]/T^2)^{\times}$ look like. To say $a + bT \mod T^2$ is invertible means $a \neq 0$. By rewriting b as ab we can write the invertible elements as $a(1+bT) \mod T^2$ for $a \in \mathbf{F}_q^{\times}$ and $b \in \mathbf{F}_q$. Since

$$a(1+bT)a'(1+b'T) \equiv aa'(1+(b+b')T) \mod T^2$$
,

we have an isomorphism

$$(\mathbf{F}_q[T]/T^2)^{\times} \cong \mathbf{F}_q^{\times} \times \mathbf{F}_q$$

by $a(1+bT) \mod T^2 \mapsto (a,b)$. Therefore the character group of $(\mathbf{F}_q[T]/T^2)^{\times}$ is the pairs (χ,ψ) for a multiplicative character $\chi: \mathbf{F}_q^{\times} \to \mathbf{C}^{\times}$ and an additive character $\psi: \mathbf{F}_q \to \mathbf{C}^{\times}$:

(2.2)
$$a(1+bT) \mod T^2 \mapsto \chi(a)\psi(b).$$

(Saying ψ is trivial is the same as saying this character mod T^2 can be defined modulo T, and thus is not "primitive" mod T^2 .)

Returning to (2.1), the linear polynomials T + c relatively prime to T^2 are those with $c \neq 0$, in which case T + c = c(1 + (1/c)T), so if the character η on $(\mathbf{F}_q[T]/T^2)^{\times}$ is realized by (2.2) with χ or ψ nontrivial, so η is nontrivial, then the *L*-function of η is

$$1 + \left(\sum_{c \in \mathbf{F}_q^{\times}} \chi(c)\psi(1/c)\right) u = 1 + \left(\sum_{c \in \mathbf{F}_q^{\times}} \chi(1/c)\psi(c)\right) u$$
$$= 1 + \left(\sum_{c \in \mathbf{F}_q^{\times}} \overline{\chi}(c)\psi(c)\right) u$$
$$= 1 + G(\overline{\chi}, \psi)u.$$

Replacing χ with $\overline{\chi}$ and u with $1/q^s$, the *L*-function of the character $a(1+bT) \mod T^2 \mapsto \overline{\chi}(a)\psi(b)$ on $(\mathbf{F}_q[T]/T^2)^{\times}$ for nontrivial χ or ψ is

$$1 + \frac{G(\chi, \psi)}{q^s}.$$

For the complex zeros s of this L-function we have $|q^s| = |G(\chi, \psi)|$. Since $|q^s| = q^{\text{Re}(s)}$, saying the zeros of this L-function satisfy the Riemann hypothesis – that is, the zeros have Re(s) = 1/2 – is equivalent to saying $|G(\chi, \psi)| = \sqrt{q}$.

3. Euler products and the Hasse-Davenport relation

So far we have used only the additive representation of an *L*-function, as a Dirichlet series. Using the multiplicative representation, as an Euler product, we will relate the Gauss sum of characters χ and ψ on \mathbf{F}_q with the Gauss sum of lifted characters on \mathbf{F}_{q^n} .

Theorem 3.1 (Hasse–Davenport). For $n \ge 1$ let $\chi_n = \chi \circ N_{\mathbf{F}_{q^n}/\mathbf{F}_q}$ and $\psi_n = \psi \circ \operatorname{Tr}_{\mathbf{F}_{q^n}/\mathbf{F}_q}$ be liftings of χ and ψ to characters on \mathbf{F}_{q^n} . If χ or ψ is nontrivial then $-G(\chi_n, \psi_n) = (-G(\chi, \psi))^n$.

Proof. For any character $\eta: (\mathbf{F}_q[T]/M)^{\times} \to \mathbf{C}^{\times}$, its L-function has an Euler product:

$$\widetilde{L}(u,\eta) = \sum_{\text{monic } A} \eta(A) u^{\deg A} = \prod_{\text{monic } \pi} \frac{1}{1 - \eta(\pi) u^{\deg \pi}}$$

where π runs over monic irreducibles (with $\eta(\pi) = 0$ if $\pi \mid M$). Using the power series identity $1/(1 - au) = \exp(\sum_{k>1} (au)^k/k)$, we can write $\tilde{L}(u, \eta)$ as an exponential:

$$\widetilde{L}(u,\eta) = \prod_{\text{monic }\pi} \exp\left(\sum_{k\geq 1} \frac{\eta(\pi)^k}{k} u^{k \deg \pi}\right)$$
$$= \exp\left(\sum_{\text{monic }\pi} \sum_{k\geq 1} (\deg \pi) \eta(\pi)^k \frac{u^k \deg \pi}{k \deg \pi}\right)$$
$$= \exp\left(\sum_{n\geq 1} \left(\sum_{d\mid n \ \deg \pi = d} d\eta(\pi)^{n/d}\right) \frac{u^n}{n}\right).$$

We will write the two innermost sums as a single sum over the elements of \mathbf{F}_{q^n} . Each monic irreducible π in $\mathbf{F}_q[T]$ of degree d has d distinct roots, and the roots lie in \mathbf{F}_{q^n} when $d \mid n$. The term $d\eta(\pi)^{n/d}$ can be regarded as a contribution of $\eta(\pi)^{n/d}$ from each of the d roots of π . For $\alpha \in \mathbf{F}_{q^n}$, let π_{α} be its minimal polynomial over \mathbf{F}_q and $d_{\alpha} = \deg \pi_{\alpha}$. Then

(3.1)
$$\sum_{d|n} \sum_{\deg \pi = d} d\eta(\pi)^{n/d} = \sum_{\alpha \in \mathbf{F}_{q^n}} \eta(\pi_\alpha)^{n/d_\alpha}$$

Now set $M = T^2$ and $\eta(a(1+bT) \mod T^2) = \overline{\chi}(a)\psi(b)$. This is nontrivial since χ or ψ is. For f(T) relatively prime to T^2 , set $f(T) \equiv a(1+bT) \mod T^2$. Then $a = f(0) \neq 0$ and ab = f'(0), so b = f'(0)/f(0). Thus $\eta(f(T) \mod T^2) = \overline{\chi}(f(0))\psi(f'(0)/f(0))$. If $f(T) = \pi(T)$ is monic irreducible and $\pi(0) \neq 0$ (that is, $\pi(T) \neq T$), then we can write $\overline{\chi}(\pi(0))\psi(\pi'(0)/\pi(0))$ in terms of a norm and trace of a root of π : letting $d = \deg \pi$ and $\alpha_1, \ldots, \alpha_d$ be the roots of π in \mathbf{F}_{q^n} , for any root α of π we have $\pi(0) = (-1)^d(\alpha_1 \ldots \alpha_d) = \mathbf{N}_{\mathbf{F}_q(\alpha)/\mathbf{F}_q}(-\alpha)$ and

$$\frac{\pi'(T)}{\pi(T)} = \sum_{i=1}^d \frac{1}{T - \alpha_i} \Longrightarrow \frac{\pi'(0)}{\pi(0)} = \sum_{i=1}^d -\frac{1}{\alpha_i} = \operatorname{Tr}_{\mathbf{F}_q(\alpha)/\mathbf{F}_q}(-1/\alpha).$$

Therefore

$$\sum_{\alpha \in \mathbf{F}_{q^n}^{\times}} \eta(\pi_{\alpha})^{n/d_{\alpha}} = \sum_{\alpha \in \mathbf{F}_{q^n}^{\times}} \overline{\chi}(\mathrm{N}_{\mathbf{F}_q(\alpha)/\mathbf{F}_q}(-\alpha))^{n/d_{\alpha}} \psi(\mathrm{Tr}_{\mathbf{F}_q(\alpha)/\mathbf{F}_q}(-1/\alpha))^{n/d_{\alpha}}.$$

Replacing α with $-1/\alpha$,

$$\sum_{\alpha \in \mathbf{F}_{q^n}^{\times}} \eta(\pi_{\alpha})^{n/d_{\alpha}} = \sum_{\alpha \in \mathbf{F}_{q^n}^{\times}} \overline{\chi}(N_{\mathbf{F}_q(\alpha)/\mathbf{F}_q}(\alpha))^{-n/d_{\alpha}} \psi(\operatorname{Tr}_{\mathbf{F}_q(\alpha)/\mathbf{F}_q}(\alpha))^{n/d_{\alpha}}$$
$$= \sum_{\alpha \in \mathbf{F}_{q^n}^{\times}} \chi(N_{\mathbf{F}_q(\alpha)/\mathbf{F}_q}(\alpha))^{n/d_{\alpha}} \psi(\operatorname{Tr}_{\mathbf{F}_q(\alpha)/\mathbf{F}_q}(\alpha))^{n/d_{\alpha}}$$
$$= \sum_{\alpha \in \mathbf{F}_{q^n}^{\times}} \chi\left(N_{\mathbf{F}_q(\alpha)/\mathbf{F}_q}(\alpha)^{n/d_{\alpha}}\right) \psi\left(\frac{n}{d_{\alpha}} \operatorname{Tr}_{\mathbf{F}_q(\alpha)/\mathbf{F}_q}(\alpha)\right)$$
$$= \sum_{\alpha \in \mathbf{F}_{q^n}^{\times}} \chi(N_{\mathbf{F}_{q^n}/\mathbf{F}_q}(\alpha)) \psi(\operatorname{Tr}_{\mathbf{F}_{q^n}/\mathbf{F}_q}(\alpha)),$$

where the last step uses the transitivity of the norm and trace mappings. This sum over $\mathbf{F}_{q^n}^{\times}$ is the Gauss sum of the characters $\chi_n := \chi \circ N_{\mathbf{F}_{q^n}/\mathbf{F}_q}$ and $\psi_n := \psi \circ \operatorname{Tr}_{\mathbf{F}_{q^n}/\mathbf{F}_q}$ on \mathbf{F}_{q^n} , so the right side of (3.1) for our character $\eta \mod T^2$ is $G(\chi_n, \psi_n)$. Therefore

$$\widetilde{L}(u,\eta) = \exp\left(\sum_{n\geq 1} G(\chi_n,\psi_n) \frac{u^n}{n}\right)$$

At the same time, from Section 2

$$\widetilde{L}(u,\eta) = 1 + G(\chi,\psi)u = \exp\left(\sum_{n\geq 1} (-1)^{n-1} G(\chi,\psi)^n \frac{u^n}{n}\right).$$

Comparing coefficients of like powers of u in these two exponential formulas for $\widetilde{L}(u,\eta)$ we get $G(\chi_n,\psi_n) = (-1)^{n-1}G(\chi,\psi)^n$, or equivalently $-G(\chi_n,\psi_n) = (-G(\chi,\psi))^n$.

This proof of the Hasse–Davenport relation is similar to the proof in [1, Chap. 11, Sec. 4], but that proof uses a multiplicative function λ on monic polynomials that isn't a character on any $(\mathbf{F}_q[T]/M)^{\times}$.

4. Jacobi sums

For two multiplicative characters χ_1 and χ_2 on \mathbf{F}_q^{\times} , their Jacobi sum is

$$J(\chi_1, \chi_2) = \sum_{c \in \mathbf{F}_{q^n}} \chi_1(c) \chi_2(1-c).$$

We will realize a Jacobi sum as the linear coefficient of an L-function for a character with modulus T(T-1) rather than T^2 .

Since $(\mathbf{F}_q[T]/T(T-1))^{\times} \cong \mathbf{F}_q^{\times} \times \mathbf{F}_q^{\times}$ by $f(T) \mod T(T-1) \mapsto (f(0), f(1))$, a character $\eta \mod T(T-1)$ is a pair of multiplicative characters (χ_1, χ_2) on $\mathbf{F}_q^{\times} : \eta(f(T) \mod T(T-1)) = \chi_1(f(0))\chi_2(f(1))$. Assume χ_1 or χ_2 is nontrivial, so η is nontrivial. By the reasoning as in Section 2, since T(T-1) has degree 2 the *L*-function of η as a series in u is

$$1 + \left(\sum_{c \neq 0, -1} \eta(T + c)\right) u = 1 + \left(\sum_{c \neq 0, -1} \chi_1(c)\chi_2(1 + c)\right) u$$

4

and the coefficient of u here is

$$\sum_{c \neq 0, -1} \chi_1(c)\chi_2(1+c) = \sum_{c \neq 0, 1} \chi_1(-c)\chi_2(1-c) = \chi_1(-1)J(\chi_1, \chi_2),$$

which up to the sign $\chi_1(-1) = \pm 1$ is a Jacobi sum. Making the change of variables $u = 1/q^s$ we can say

(4.1)
$$\sum_{\text{monic }A} \frac{\eta(A)}{\mathcal{N}(A)^s} = 1 + \frac{\chi_1(-1)J(\chi_1,\chi_2)}{q^s}.$$

It's a classical theorem that $|J(\chi_1, \chi_2)| = \sqrt{q}$ if χ_1 and χ_2 are both nontrivial, and we can interpret this as saying the zeros of (4.1) satisfy the Riemann hypothesis when χ_1 and χ_2 are nontrivial.

To get a Hasse–Davenport relation, write the L-function of η as an exponential in u:

$$1 + \chi_1(-1)J(\chi_1, \chi_2)u = \exp\left(\sum_{n \ge 1} (-1)^{n-1} \chi_1(-1)^n J(\chi_1, \chi_2)^n \frac{u^n}{n}\right).$$

By reasoning as in Section 3, if we set $\chi_{1,n} = \chi_1 \circ N_{\mathbf{F}_q n/\mathbf{F}_q}$ and $\chi_{2,n} = \chi_2 \circ N_{\mathbf{F}_q n/\mathbf{F}_q}$ then the reader can check that writing the *L*-function of η as an Euler product leads to

$$\prod_{\text{monic }\pi} \frac{1}{1 - \eta(\pi) u^{\deg \pi}} = \exp\left(\sum_{n \ge 1} \sum_{\alpha \in \mathbf{F}_{q^n}} \chi_{1,n}(-\alpha) \chi_{2,n}(1 - \alpha) \frac{u^n}{n}\right)$$
$$= \exp\left(\sum_{n \ge 1} \chi_{1,n}(-1) \sum_{\alpha \in \mathbf{F}_{q^n}} \chi_{1,n}(\alpha) \chi_{2,n}(1 - \alpha) \frac{u^n}{n}\right)$$
$$= \exp\left(\sum_{n \ge 1} \chi_{1,n}(-1) J(\chi_{1,n}, \chi_{2,n}) \frac{u^n}{n}\right),$$

so a comparison of coefficients in the two exponential formulas for the L-function of η implies

$$\chi_{1,n}(-1)J(\chi_{1,n},\chi_{2,n}) = (-1)^{n-1}\chi_1(-1)^n J(\chi_1,\chi_2)^n$$

Since $\chi_{1,n}(-1) = \chi_1(N_{\mathbf{F}_{q^n}/\mathbf{F}_q}(-1)) = \chi_1((-1)^n) = \chi_1(-1)^n$, we can cancel the common $\chi_1(-1)^n$ on both sides and get

$$-J(\chi_{1,n},\chi_{2,n}) = (-J(\chi_1,\chi_2))^n$$

for all $n \ge 1$. This is a Hasse–Davenport relation for Jacobi sums.

References

- K. Ireland and M. Rosen, "A Classical Introduction to Modern Number Theory," 2nd ed., Springer-Verlag, New York, 1990.
- [2] M. Rosen, "Number Theory in Function Fields," Springer-Verlag, New York, 2002.