L-FUNCTIONS FOR GAUSS AND JACOBI SUMS

KEITH CONRAD

1. Introduction

For a multiplicative character $\chi: \mathbf{F}_{q}^{\times} \rightarrow \mathbf{C}^{\times}$and additive character $\psi: \mathbf{F}_{q} \rightarrow \mathbf{C}^{\times}$on a finite field \mathbf{F}_{q} of order q, their Gauss sum is

$$
G(\chi, \psi)=\sum_{c \in \mathbf{F}_{q}} \chi(c) \psi(c),
$$

where we extend χ to 0 by $\chi(0)=0$. Here are two fundamental properties of Gauss sums.
(1) For nontrivial χ and $\psi,|G(\chi, \psi)|=\sqrt{q}$. (This is not true if one of the characters is trivial: if χ is trivial and ψ is not then $G(\chi, \psi)=-1$, if ψ is trivial and χ is not then $G(\chi, \psi)=0$, and if χ and ψ are both trivial then $G(\chi, \psi)=q-1$.)
(2) (Hasse-Davenport) For $n \geq 1$ let $\chi_{n}=\chi \circ \mathrm{N}_{\mathbf{F}_{q^{n}} / \mathbf{F}_{q}}$ and $\psi_{n}=\psi \circ \operatorname{Tr}_{\mathbf{F}_{q^{n}} / \mathbf{F}_{q}}$ be the liftings of χ and ψ to multiplicative and additive characters on $\mathbf{F}_{q^{n}}$. Then $-G\left(\chi_{n}, \psi_{n}\right)=(-G(\chi, \psi))^{n}$. (This suggests $-G(\chi, \psi)$ is more fundamental.)
We will show how both properties of Gauss sums can be interpreted as properties of L-functions on $\mathbf{F}_{q}[T]$: the first property says a certain L-function satisfies the Riemann hypothesis and the second property follows from comparing the additive (Dirichlet series) and multiplicative (Euler product) representations of an L-function. Analogous results for Jacobi sums, based on the same ideas, are sketched at the end.

2. Gauss sums and the Riemann Hypothesis

Dirichlet characters are group homomorphisms $(\mathbf{Z} / m)^{\times} \rightarrow \mathbf{C}^{\times}$and have L-functions. For nonconstant M in $\mathbf{F}_{q}[T]$, the finite group $\left(\mathbf{F}_{q}[T] / M\right)^{\times}$is analogous to $(\mathbf{Z} / m)^{\times}$and we call any homomorphism $\eta:\left(\mathbf{F}_{q}[T] / M\right)^{\times} \rightarrow \mathbf{C}^{\times}$a character $\bmod M$. Extend η to $\overline{0}$ by $\eta(\overline{0})=0$ and lift η to $\mathbf{F}_{q}[T]$ by declaring $\eta(A)=\eta(A \bmod M)$. This function η on $\mathbf{F}_{q}[T]$ is totally multiplicative, and by analogy to the definition of the L-function of a Dirichlet character we define the L-function of η to be

$$
L(s, \eta):=\sum_{\operatorname{monic} A} \frac{\eta(A)}{\mathrm{N}(A)^{s}}=\sum_{n \geq 0}\left(\sum_{\operatorname{deg} A=n} \eta(A)\right) \frac{1}{q^{n s}}
$$

for $\operatorname{Re}(s)>1$, where the inner sum runs over monic A of degree n and $\mathrm{N}(A)=\left|\mathbf{F}_{q}[T] / A\right|=$ $q^{\operatorname{deg} A}$. Note the constant term of $L(s, \eta)$ is 1 (occurring for $A=1$).

By the change of variables $u=1 / q^{s}$ we can view $L(s, \eta)$ as a formal power series in u :

$$
\widetilde{L}(u, \eta):=\sum_{\text {monic } A} \eta(A) u^{\operatorname{deg} A}=\sum_{n \geq 0}\left(\sum_{\operatorname{deg} A=n} \eta(A)\right) u^{n}
$$

so $L(s, \eta)=\widetilde{L}\left(1 / q^{s}, \eta\right)$.
Theorem 2.1. If η is nontrivial then for $n \geq \operatorname{deg} M$ the coefficient of u^{n} vanishes.

Proof. (This proof is taken from [2, p. 36].) For each monic A of degree n, write $A=M Q+R$ for $Q, R \in \mathbf{F}_{q}[T]$ with $R=0$ or $\operatorname{deg} R<\operatorname{deg} M$. Since A is monic of degree n, Q is monic of degree $n-\operatorname{deg} M$. By uniqueness of the quotient and remainder for each A, as A runs over all monics of degree n the pair (Q, R) runs over all pairs of a monic Q of degree $n-\operatorname{deg} M$ and a polynomial R of degree less than $\operatorname{deg} M$ (including $R=0$). Therefore

$$
\sum_{\operatorname{deg} A=n} \eta(A)=\sum_{Q, R} \eta(M Q+R)=\sum_{Q, R} \eta(R)=q^{n-\operatorname{deg} M} \sum_{R} \eta(R)
$$

since there are $q^{n-\operatorname{deg} M}$ choices of Q. Since R is running over the polynomials of degree less than M along with 0 , which represents all of $\mathbf{F}_{q}[T] / M$, and η vanishes on polynomials having a factor in common with M, we have

$$
\sum_{R} \eta(R)=\sum_{R \in\left(\mathbf{F}_{q}[T] / M\right)^{\times}} \eta(R)=0
$$

because the sum of a nontrivial character over a finite abelian group is 0 .
Now focus on the case $\operatorname{deg} M=2$. For nontrivial η the coefficient of u^{n} is 0 if $n \geq 2$, so

$$
\begin{equation*}
\widetilde{L}(u, \eta)=1+\left(\sum_{c \in \mathbf{F}_{q}} \eta(T+c)\right) u . \tag{2.1}
\end{equation*}
$$

We will see that when $M=T^{2}$, the coefficient of u here is essentially a Gauss sum.
Theorem 2.2. The characters of $\left(\mathbf{F}_{q}[T] / T^{2}\right)^{\times}$are pairs of a multiplicative and additive character on \mathbf{F}_{q}.
Proof. We unwind what the elements of $\left(\mathbf{F}_{q}[T] / T^{2}\right)^{\times}$look like. To say $a+b T \bmod T^{2}$ is invertible means $a \neq 0$. By rewriting b as $a b$ we can write the invertible elements as $a(1+b T) \bmod T^{2}$ for $a \in \mathbf{F}_{q}^{\times}$and $b \in \mathbf{F}_{q}$. Since

$$
a(1+b T) a^{\prime}\left(1+b^{\prime} T\right) \equiv a a^{\prime}\left(1+\left(b+b^{\prime}\right) T\right) \bmod T^{2},
$$

we have an isomorphism

$$
\left(\mathbf{F}_{q}[T] / T^{2}\right)^{\times} \cong \mathbf{F}_{q}^{\times} \times \mathbf{F}_{q}
$$

by $a(1+b T) \bmod T^{2} \mapsto(a, b)$. Therefore the character group of $\left(\mathbf{F}_{q}[T] / T^{2}\right)^{\times}$is the pairs (χ, ψ) for a multiplicative character $\chi: \mathbf{F}_{q}^{\times} \rightarrow \mathbf{C}^{\times}$and an additive character $\psi: \mathbf{F}_{q} \rightarrow \mathbf{C}^{\times}$:

$$
\begin{equation*}
a(1+b T) \bmod T^{2} \mapsto \chi(a) \psi(b) \tag{2.2}
\end{equation*}
$$

(Saying ψ is trivial is the same as saying this character $\bmod T^{2}$ can be defined modulo T, and thus is not "primitive" $\bmod T^{2}$.)

Returning to (2.1), the linear polynomials $T+c$ relatively prime to T^{2} are those with $c \neq 0$, in which case $T+c=c(1+(1 / c) T)$, so if the character η on $\left(\mathbf{F}_{q}[T] / T^{2}\right)^{\times}$is realized by (2.2) with χ or ψ nontrivial, so η is nontrivial, then the L-function of η is

$$
\begin{aligned}
1+\left(\sum_{c \in \mathbf{F}_{q}^{\times}} \chi(c) \psi(1 / c)\right) u & =1+\left(\sum_{c \in \mathbf{F}_{q}^{\times}} \chi(1 / c) \psi(c)\right) u \\
& =1+\left(\sum_{c \in \mathbf{F}_{q}^{\times}} \bar{\chi}(c) \psi(c)\right) u \\
& =1+G(\bar{\chi}, \psi) u .
\end{aligned}
$$

Replacing χ with $\bar{\chi}$ and u with $1 / q^{s}$, the L-function of the character $a(1+b T) \bmod T^{2} \mapsto$ $\bar{\chi}(a) \psi(b)$ on $\left(\mathbf{F}_{q}[T] / T^{2}\right)^{\times}$for nontrivial χ or ψ is

$$
1+\frac{G(\chi, \psi)}{q^{s}}
$$

For the complex zeros s of this L-function we have $\left|q^{s}\right|=|G(\chi, \psi)|$. Since $\left|q^{s}\right|=q^{\operatorname{Re}(s)}$, saying the zeros of this L-function satisfy the Riemann hypothesis - that is, the zeros have $\operatorname{Re}(s)=1 / 2-$ is equivalent to saying $|G(\chi, \psi)|=\sqrt{q}$.

3. Euler products and the Hasse-Davenport relation

So far we have used only the additive representation of an L-function, as a Dirichlet series. Using the multiplicative representation, as an Euler product, we will relate the Gauss sum of characters χ and ψ on \mathbf{F}_{q} with the Gauss sum of lifted characters on $\mathbf{F}_{q^{n}}$.
Theorem 3.1 (Hasse-Davenport). For $n \geq 1$ let $\chi_{n}=\chi \circ \mathrm{N}_{\mathbf{F}_{q^{n}} / \mathbf{F}_{q}}$ and $\psi_{n}=\psi \circ \operatorname{Tr}_{\mathbf{F}_{q^{n}} / \mathbf{F}_{q}}$ be liftings of χ and ψ to characters on $\mathbf{F}_{q^{n}}$. If χ or ψ is nontrivial then $-G\left(\chi_{n}, \psi_{n}\right)=$ $(-G(\chi, \psi))^{n}$.
Proof. For any character $\eta:\left(\mathbf{F}_{q}[T] / M\right)^{\times} \rightarrow \mathbf{C}^{\times}$, its L-function has an Euler product:

$$
\widetilde{L}(u, \eta)=\sum_{\text {monic } A} \eta(A) u^{\operatorname{deg} A}=\prod_{\text {monic } \pi} \frac{1}{1-\eta(\pi) u^{\operatorname{deg} \pi}}
$$

where π runs over monic irreducibles (with $\eta(\pi)=0$ if $\pi \mid M)$. Using the power series identity $1 /(1-a u)=\exp \left(\sum_{k \geq 1}(a u)^{k} / k\right)$, we can write $\widetilde{L}(u, \eta)$ as an exponential:

$$
\begin{aligned}
\widetilde{L}(u, \eta) & =\prod_{\text {monic } \pi} \exp \left(\sum_{k \geq 1} \frac{\eta(\pi)^{k}}{k} u^{k \operatorname{deg} \pi}\right) \\
& =\exp \left(\sum_{\operatorname{monic} \pi} \sum_{k \geq 1}(\operatorname{deg} \pi) \eta(\pi)^{k} \frac{u^{k \operatorname{deg} \pi}}{k \operatorname{deg} \pi}\right) \\
& =\exp \left(\sum_{n \geq 1}\left(\sum_{d \mid n} \sum_{\operatorname{deg} \pi=d} d \eta(\pi)^{n / d}\right) \frac{u^{n}}{n}\right)
\end{aligned}
$$

We will write the two innermost sums as a single sum over the elements of $\mathbf{F}_{q^{n}}$. Each monic irreducible π in $\mathbf{F}_{q}[T]$ of degree d has d distinct roots, and the roots lie in $\mathbf{F}_{q^{n}}$ when $d \mid n$. The term $d \eta(\pi)^{n / d}$ can be regarded as a contribution of $\eta(\pi)^{n / d}$ from each of the d roots of π. For $\alpha \in \mathbf{F}_{q^{n}}$, let π_{α} be its minimal polynomial over \mathbf{F}_{q} and $d_{\alpha}=\operatorname{deg} \pi_{\alpha}$. Then

$$
\begin{equation*}
\sum_{d \mid n} \sum_{\operatorname{deg} \pi=d} d \eta(\pi)^{n / d}=\sum_{\alpha \in \mathbf{F}_{q^{n}}} \eta\left(\pi_{\alpha}\right)^{n / d_{\alpha}} \tag{3.1}
\end{equation*}
$$

Now set $M=T^{2}$ and $\eta\left(a(1+b T) \bmod T^{2}\right)=\bar{\chi}(a) \psi(b)$. This is nontrivial since χ or ψ is. For $f(T)$ relatively prime to T^{2}, set $f(T) \equiv a(1+b T) \bmod T^{2}$. Then $a=f(0) \neq 0$ and $a b=$ $f^{\prime}(0)$, so $b=f^{\prime}(0) / f(0)$. Thus $\eta\left(f(T) \bmod T^{2}\right)=\bar{\chi}(f(0)) \psi\left(f^{\prime}(0) / f(0)\right)$. If $f(T)=\pi(T)$ is monic irreducible and $\pi(0) \neq 0$ (that is, $\pi(T) \neq T)$, then we can write $\bar{\chi}(\pi(0)) \psi\left(\pi^{\prime}(0) / \pi(0)\right)$ in terms of a norm and trace of a root of π : letting $d=\operatorname{deg} \pi$ and $\alpha_{1}, \ldots \alpha_{d}$ be the roots of π in $\mathbf{F}_{q^{n}}$, for any root α of π we have $\pi(0)=(-1)^{d}\left(\alpha_{1} \ldots \alpha_{d}\right)=\mathrm{N}_{\mathbf{F}_{q}(\alpha) / \mathbf{F}_{q}}(-\alpha)$ and

$$
\frac{\pi^{\prime}(T)}{\pi(T)}=\sum_{i=1}^{d} \frac{1}{T-\alpha_{i}} \Longrightarrow \frac{\pi^{\prime}(0)}{\pi(0)}=\sum_{i=1}^{d}-\frac{1}{\alpha_{i}}=\operatorname{Tr}_{\mathbf{F}_{q}(\alpha) / \mathbf{F}_{q}}(-1 / \alpha)
$$

Therefore

$$
\sum_{\alpha \in \mathbf{F}_{q^{n}}^{\times}} \eta\left(\pi_{\alpha}\right)^{n / d_{\alpha}}=\sum_{\alpha \in \mathbf{F}_{q^{n}}^{\times}} \bar{\chi}\left(\mathrm{N}_{\mathbf{F}_{q}(\alpha) / \mathbf{F}_{q}}(-\alpha)\right)^{n / d_{\alpha}} \psi\left(\operatorname{Tr}_{\mathbf{F}_{q}(\alpha) / \mathbf{F}_{q}}(-1 / \alpha)\right)^{n / d_{\alpha}} .
$$

Replacing α with $-1 / \alpha$,

$$
\begin{aligned}
\sum_{\alpha \in \mathbf{F}_{q^{n}}^{\times}} \eta\left(\pi_{\alpha}\right)^{n / d_{\alpha}} & =\sum_{\alpha \in \mathbf{F}_{q^{n}}^{\times}} \bar{\chi}\left(\mathrm{N}_{\mathbf{F}_{q}(\alpha) / \mathbf{F}_{q}}(\alpha)\right)^{-n / d_{\alpha}} \psi\left(\operatorname{Tr}_{\mathbf{F}_{q}(\alpha) / \mathbf{F}_{q}}(\alpha)\right)^{n / d_{\alpha}} \\
& =\sum_{\alpha \in \mathbf{F}_{q^{n}}^{\times}} \chi\left(\mathrm{N}_{\mathbf{F}_{q}(\alpha) / \mathbf{F}_{q}}(\alpha)\right)^{n / d_{\alpha}} \psi\left(\operatorname{Tr}_{\mathbf{F}_{q}(\alpha) / \mathbf{F}_{q}}(\alpha)\right)^{n / d_{\alpha}} \\
& =\sum_{\alpha \in \mathbf{F}_{q^{n}}^{\times}} \chi\left(\mathrm{N}_{\mathbf{F}_{q}(\alpha) / \mathbf{F}_{q}}(\alpha)^{n / d_{\alpha}}\right) \psi\left(\frac{n}{d_{\alpha}} \operatorname{Tr}_{\mathbf{F}_{q}(\alpha) / \mathbf{F}_{q}}(\alpha)\right) \\
& =\sum_{\alpha \in \mathbf{F}_{q^{n}}^{\times}} \chi\left(\mathrm{N}_{\mathbf{F}_{q^{n}} / \mathbf{F}_{q}}(\alpha)\right) \psi\left(\operatorname{Tr}_{\mathbf{F}_{q^{n}} / \mathbf{F}_{q}}(\alpha)\right),
\end{aligned}
$$

where the last step uses the transitivity of the norm and trace mappings. This sum over $\mathbf{F}_{q^{n}}^{\times}$is the Gauss sum of the characters $\chi_{n}:=\chi \circ \mathrm{N}_{\mathbf{F}_{q^{n}} / \mathbf{F}_{q}}$ and $\psi_{n}:=\psi \circ \operatorname{Tr}_{\mathbf{F}_{q^{n}} / \mathbf{F}_{q}}$ on $\mathbf{F}_{q^{n}}$, so the right side of (3.1) for our character $\eta \bmod T^{2}$ is $G\left(\chi_{n}, \psi_{n}\right)$. Therefore

$$
\widetilde{L}(u, \eta)=\exp \left(\sum_{n \geq 1} G\left(\chi_{n}, \psi_{n}\right) \frac{u^{n}}{n}\right) .
$$

At the same time, from Section 2

$$
\widetilde{L}(u, \eta)=1+G(\chi, \psi) u=\exp \left(\sum_{n \geq 1}(-1)^{n-1} G(\chi, \psi)^{n} \frac{u^{n}}{n}\right) .
$$

Comparing coefficients of like powers of u in these two exponential formulas for $\widetilde{L}(u, \eta)$ we get $G\left(\chi_{n}, \psi_{n}\right)=(-1)^{n-1} G(\chi, \psi)^{n}$, or equivalently $-G\left(\chi_{n}, \psi_{n}\right)=(-G(\chi, \psi))^{n}$.

This proof of the Hasse-Davenport relation is similar to the proof in [1, Chap. 11, Sec. 4], but that proof uses a multiplicative function λ on monic polynomials that isn't a character on any $\left(\mathbf{F}_{q}[T] / M\right)^{\times}$.

4. Jacobi sums

For two multiplicative characters χ_{1} and χ_{2} on \mathbf{F}_{q}^{\times}, their Jacobi sum is

$$
J\left(\chi_{1}, \chi_{2}\right)=\sum_{c \in \mathbf{F}_{q^{n}}} \chi_{1}(c) \chi_{2}(1-c) .
$$

We will realize a Jacobi sum as the linear coefficient of an L-function for a character with modulus $T(T-1)$ rather than T^{2}.

Since $\left(\mathbf{F}_{q}[T] / T(T-1)\right)^{\times} \cong \mathbf{F}_{q}^{\times} \times \mathbf{F}_{q}^{\times}$by $f(T) \bmod T(T-1) \mapsto(f(0), f(1))$, a character η $\bmod T(T-1)$ is a pair of multiplicative characters $\left(\chi_{1}, \chi_{2}\right)$ on $\mathbf{F}_{q}^{\times}: \eta(f(T) \bmod T(T-1))=$ $\chi_{1}(f(0)) \chi_{2}(f(1))$. Assume χ_{1} or χ_{2} is nontrivial, so η is nontrivial. By the reasoning as in Section 2, since $T(T-1)$ has degree 2 the L-function of η as a series in u is

$$
1+\left(\sum_{c \neq 0,-1} \eta(T+c)\right) u=1+\left(\sum_{c \neq 0,-1} \chi_{1}(c) \chi_{2}(1+c)\right) u
$$

and the coefficient of u here is

$$
\sum_{c \neq 0,-1} \chi_{1}(c) \chi_{2}(1+c)=\sum_{c \neq 0,1} \chi_{1}(-c) \chi_{2}(1-c)=\chi_{1}(-1) J\left(\chi_{1}, \chi_{2}\right)
$$

which up to the sign $\chi_{1}(-1)= \pm 1$ is a Jacobi sum. Making the change of variables $u=1 / q^{s}$ we can say

$$
\begin{equation*}
\sum_{\text {monic } A} \frac{\eta(A)}{\mathrm{N}(A)^{s}}=1+\frac{\chi_{1}(-1) J\left(\chi_{1}, \chi_{2}\right)}{q^{s}} \tag{4.1}
\end{equation*}
$$

It's a classical theorem that $\left|J\left(\chi_{1}, \chi_{2}\right)\right|=\sqrt{q}$ if χ_{1} and χ_{2} are both nontrivial, and we can interpret this as saying the zeros of (4.1) satisfy the Riemann hypothesis when χ_{1} and χ_{2} are nontrivial.

To get a Hasse-Davenport relation, write the L-function of η as an exponential in u :

$$
1+\chi_{1}(-1) J\left(\chi_{1}, \chi_{2}\right) u=\exp \left(\sum_{n \geq 1}(-1)^{n-1} \chi_{1}(-1)^{n} J\left(\chi_{1}, \chi_{2}\right)^{n} \frac{u^{n}}{n}\right) .
$$

By reasoning as in Section 3, if we set $\chi_{1, n}=\chi_{1} \circ \mathrm{~N}_{\mathbf{F}_{q^{n}} / \mathbf{F}_{q}}$ and $\chi_{2, n}=\chi_{2} \circ \mathrm{~N}_{\mathbf{F}_{q^{n}} / \mathbf{F}_{q}}$ then the reader can check that writing the L-function of η as an Euler product leads to

$$
\begin{aligned}
\prod_{\text {monic } \pi} \frac{1}{1-\eta(\pi) u^{\operatorname{deg} \pi}} & =\exp \left(\sum_{n \geq 1} \sum_{\alpha \in \mathbf{F}_{q^{n}}} \chi_{1, n}(-\alpha) \chi_{2, n}(1-\alpha) \frac{u^{n}}{n}\right) \\
& =\exp \left(\sum_{n \geq 1} \chi_{1, n}(-1) \sum_{\alpha \in \mathbf{F}_{q^{n}}} \chi_{1, n}(\alpha) \chi_{2, n}(1-\alpha) \frac{u^{n}}{n}\right) \\
& =\exp \left(\sum_{n \geq 1} \chi_{1, n}(-1) J\left(\chi_{1, n}, \chi_{2, n}\right) \frac{u^{n}}{n}\right)
\end{aligned}
$$

so a comparison of coefficients in the two exponential formulas for the L-function of η implies

$$
\chi_{1, n}(-1) J\left(\chi_{1, n}, \chi_{2, n}\right)=(-1)^{n-1} \chi_{1}(-1)^{n} J\left(\chi_{1}, \chi_{2}\right)^{n}
$$

Since $\chi_{1, n}(-1)=\chi_{1}\left(\mathrm{~N}_{\mathbf{F}_{q^{n}} / \mathbf{F}_{q}}(-1)\right)=\chi_{1}\left((-1)^{n}\right)=\chi_{1}(-1)^{n}$, we can cancel the common $\chi_{1}(-1)^{n}$ on both sides and get

$$
-J\left(\chi_{1, n}, \chi_{2, n}\right)=\left(-J\left(\chi_{1}, \chi_{2}\right)\right)^{n}
$$

for all $n \geq 1$. This is a Hasse-Davenport relation for Jacobi sums.

References

[1] K. Ireland and M. Rosen, "A Classical Introduction to Modern Number Theory," 2nd ed., SpringerVerlag, New York, 1990.
[2] M. Rosen, "Number Theory in Function Fields," Springer-Verlag, New York, 2002.

