L-FUNCTIONS FOR GAUSS AND JACOBI SUMS

KEITH CONRAD

1. INTRODUCTION

For a multiplicative character x: F; — C* and additive character ¢: F; — C* on a
finite field F, of order ¢, their Gauss sum is

G v) = > x(e)y(o),

ceFy

where we extend y to 0 by x(0) = 0. Here are two fundamental properties of Gauss sums.

(1) For nontrivial x and 1, |G(x,%)| = y/q. (This is not true if one of the characters
is trivial: if x is trivial and v is not then G(x,v) = —1, if ¢ is trivial and x is not
then G(x, 1) = 0, and if x and ¢ are both trivial then G(x, %) =q — 1.)

(2) (Hasse-Davenport) For n > 1 let x,, = x o Np,./r, and ¢, = ¢ o Trg , /p, be
the liftings of x and v to multiplicative and additive characters on Fgn. Then
—G(Xn, ¥Yn) = (—G(x,%))". (This suggests —G(x, ) is more fundamental.)

We will show how both properties of Gauss sums can be interpreted as properties of
L-functions on F,[T]: the first property says a certain L-function satisfies the Riemann
hypothesis and the second property follows from comparing the additive (Dirichlet series)
and multiplicative (Euler product) representations of an L-function. Analogous results for
Jacobi sums, based on the same ideas, are sketched at the end.

2. GAUSS SUMS AND THE RIEMANN HYPOTHESIS

Dirichlet characters are group homomorphisms (Z/m)* — C* and have L-functions. For
nonconstant M in F [T, the finite group (F,[T]/M)* is analogous to (Z/m)* and we call
any homomorphism 7: (Fy[T]/M)* — C* a character mod M. Extend 1 to 0 by n(0) =0
and lift n to F4[T] by declaring n(A) = n(A mod M). This function n on F4[T] is totally
multiplicative, and by analogy to the definition of the L-function of a Dirichlet character
we define the L-function of 7 to be

L(s,n) := 1117((?))3 = Z Z n(A) qis

monic A n>0 \deg A=n

for Re(s) > 1, where the inner sum runs over monic A of degree n and N(A) = |F,[T]/A| =
q1°84. Note the constant term of L(s,7) is 1 (occurring for A = 1).
By the change of variables u = 1/¢® we can view L(s,n) as a formal power series in u:

L(un):= Y nplAusst=>"| > p4) ] u",

monic A n>0 \deg A=n

so L(s,n) = L(1/¢% ).

Theorem 2.1. If n is nontrivial then for n > deg M the coefficient of u™ vanishes.
1
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Proof. (This proof is taken from [2, p. 36].) For each monic A of degree n, write A = MQ+R
for @, R € F,[T] with R = 0 or deg R < deg M. Since A is monic of degree n, @) is monic of
degree n — deg M. By uniqueness of the quotient and remainder for each A, as A runs over
all monics of degree n the pair (@, R) runs over all pairs of a monic @ of degree n — deg M
and a polynomial R of degree less than deg M (including R = 0). Therefore

> onA) =) n(MQ+R) =) n(R)=q"""M> "n(R)

deg A=n Q.R Q.R R

since there are ¢"~9°8M choices of (). Since R is running over the polynomials of degree
less than M along with 0, which represents all of Fy[T]/M, and 1 vanishes on polynomials
having a factor in common with M, we have

donr)y= > nR)=0
R Re(F,[T]/M)x

because the sum of a nontrivial character over a finite abelian group is 0. ]

Now focus on the case deg M = 2. For nontrivial n the coefficient of u™ is 0 if n > 2, so

(2.1) L(u,n) =1+ Z n(T+c) | u.
ceFy

We will see that when M = T2, the coefficient of u here is essentially a Gauss sum.

Theorem 2.2. The characters of (F,[T]/T?)* are pairs of a multiplicative and additive
character on F.

Proof. We unwind what the elements of (Fy[T]/T?)* look like. To say a + bT mod T
is invertible means a # 0. By rewriting b as ab we can write the invertible elements as
a(1 4 bT) mod T? for a € F)* and b € Fy. Since
a(l1+b1)d' (1 +6'T) = ad’ (14 (b +b)T) mod T2,
we have an isomorphism
(Fg[T)/T*)* 2 Fy x Fq

by a(l + bT) mod T? +— (a,b). Therefore the character group of (F,[T]/7?)* is the pairs
(X, %) for a multiplicative character x: F — C* and an additive character ¢: F, — C*:

(2.2) a(1 4 bT) mod T2 — x(a)i(b).
(Saying 1 is trivial is the same as saying this character mod 72 can be defined modulo T,
and thus is not “primitive” mod 72.) O

Returning to (2.1), the linear polynomials 7" + ¢ relatively prime to 72 are those with
¢ # 0, in which case T + ¢ = ¢(1+ (1/¢)T), so if the character n on (F,[T]/T?)* is realized
by (2.2) with x or v nontrivial, so 7 is nontrivial, then the L-function of 7 is

L+ | D x(@et/e) Ju = 1+ | > x(1/e)g(e) | u

CEF&< cEF;<
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Replacing x with ¥ and u with 1/¢*, the L-function of the character a(1 + bT') mod T?
X(a)y(b) on (F,[T]/T?)* for nontrivial x or v is

1+G(X,w)'

qS

For the complex zeros s of this L-function we have |¢°| = |G(x,)|. Since |¢°| = ¢R(),
saying the zeros of this L-function satisfy the Riemann hypothesis — that is, the zeros have
Re(s) = 1/2 — is equivalent to saying |G(x,¥)| = /4.

3. EULER PRODUCTS AND THE HASSE-DAVENPORT RELATION

So far we have used only the additive representation of an L-function, as a Dirichlet series.
Using the multiplicative representation, as an Euler product, we will relate the Gauss sum
of characters x and ¢ on F; with the Gauss sum of lifted characters on F .

Theorem 3.1 (Hasse-Davenport). Forn > 1 let x, = x o Ng,./p, and Yn =Y o Trg_, /7,
be liftings of x and 1 to characters on Fgn. If x or 1 is nontrivial then —G(xn,¥n) =

Proof. For any character n: (Fy[T]/M)* — C*, its L-function has an Euler product:
~ 1
L — A deg A _
)= 3 maptst= ] —

degm’
™)Uu
monic A monic 7 ?7( )

where 7 runs over monic irreducibles (with n(r) = 0 if 7 | M). Using the power series
identity 1/(1 — au) = exp(ZkZl(au)k/k), we can write L(u,n) as an exponential:

L(U,T}) = H exp Zn(kj)ukdegﬂ-

monic k>1

uk degm

= exp Z Z(degﬂ)n(ﬂ)kkdegﬂ

monicm k>1

- e [ N[E X mm ]

n>1 \ dln degm=d

We will write the two innermost sums as a single sum over the elements of F». Each monic
irreducible 7 in Fy[T] of degree d has d distinct roots, and the roots lie in Fy» when d | n.
The term dn(m)™% can be regarded as a contribution of n(7)™¢ from each of the d roots of
m. For o € Fyn, let m, be its minimal polynomial over F,; and d, = degm,. Then

(3.1) YD dn(mMi=Y " nlma)
dln degm=d a€F n
Now set M = T? and n(a(1+bT) mod T?) = X(a)t(b). This is nontrivial since y or 1 is.
For f(T) relatively prime to T2, set f(T) = a(1+bT) mod T2. Then a = £(0) # 0 and ab =
£(0), s0 b= f'(0)/£(0). Thus n(f(T) mod T?) = X(£(0))y(f'(0)/f(0)). If f(T) = =(T) is
monic irreducible and 7(0) # 0 (that is, 7(T") # T), then we can write x(7(0))y(7'(0)/m(0))
in terms of a norm and trace of a root of m: letting d = degm and «q, ... a4 be the roots of
7 in Fyn, for any root a of m we have m(0) = (=1)%(a; ... aq) = Ng,(a)/F,(—a) and
d d
7' (T) 1 7' (0) 1
m(T) ; T — «; - 7(0) ZZ; Q; 'Ry (o)/F, (—1/€)
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Therefore
> (7)™ % = > X (N, (a)/7, (—0))™ 1 (Trp, (o), (—1/ )" %
a€cF, a€Fy,

Replacing a with —1/«,
> n(ma)" e = > X(Np, (a7, (@) /4 (Trp, (), ()" %

acF), a€F i,

= Y x(Nr, ), (@) (Trp, (o)F, (@)%

ozGF:n

= Z X (NFq(a)/Fq (a)"/da> 0 (ch Trg, (a)/F, (a)>

aEF:n
= 2: X(Np,./r, (@)Y (Trp . /F, (@),
aGF:n
where the last step uses the transitivity of the norm and trace mappings. This sum over
F;n is the Gauss sum of the characters x, := x o Nr_ ./F, and ¢, ;=1 o Trp . /7, o0 Fn,
so the right side of (3.1) for our character  mod T2 is G(xn,%n). Therefore

n

E(Uﬂ?) = eXp Z G(qu/}n)%

n>1
At the same time, from Section 2
u'I’L

L(u,n) =1+G(x.u=exp [ Y (1" 'G(x.¥)"—

n
n>1

Comparing coefficients of like powers of u in these two exponential formulas for E(u, )
we get G(xn, ¥n) = (—1)" G (x, ¥)", or equivalently —G(xn, ¥n) = (=G(x, ¥))"™ 0

This proof of the Hasse—Davenport relation is similar to the proof in [1, Chap. 11, Sec. 4],
but that proof uses a multiplicative function A on monic polynomials that isn’t a character
on any (F,[T]/M)*.

4. JACOBI SUMS

For two multiplicative characters x1 and x2 on F, their Jacobi sum is

J(x1,Xx2) = Z x1(e)x2(1 —c).
ceFn
We will realize a Jacobi sum as the linear coefficient of an L-function for a character with
modulus 7(T — 1) rather than T2.

Since (Fo[T]/T(T —1))* = Fy xFy by f(T') mod T(T' —1) = (f(0), f(1)), a character 7
mod T'(T'—1) is a pair of multiplicative characters (x1, x2) on F;: n(f(T) mod T(T'—1)) =
X1(f(0))x2(f(1)). Assume x; or x2 is nontrivial, so 7 is nontrivial. By the reasoning as in
Section 2, since T'(T" — 1) has degree 2 the L-function of 7 as a series in w is

e[ S arou=1+ | X a0 +a |
c#£0,—1 c#0,—1
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and the coefficient of u here is
> xi@xal+e) =D xa(—e)x2(1 = ¢) = x1(=1)J (x1, x2);
c#0,—1 c#0,1
which up to the sign x1(—1) = £1 is a Jacobi sum. Making the change of variables u = 1/¢*

we can say

(4.1) S j))s 14 Xl(_l);l(Xl,Xﬁ.

monch
It’s a classical theorem that |J(x1,x2)| = /¢ if x1 and X2 are both nontrivial, and we can
interpret this as saying the zeros of (4.1) satisfy the Riemann hypothesis when x; and x»
are nontrivial.
To get a Hasse-Davenport relation, write the L-function of 1 as an exponential in wu:
1 u"
L+ xa(=1)J (x1, x2)u = exp | Y _(=1)"" xa(=1)"J(x1,x2)"
n>1
By reasoning as in Section 3, if we set x1, = X1 © NFqn/Fq and x2, = X2 © NFqn/Fq then
the reader can check that writing the L-function of 1 as an Euler product leads to

n

H 1_77(;)udeg7r = exp Z Z X1n(— X2n(1_a)1;

monic 7 n>l a€F g n

n

u
= exp (Y xia(-1) Y xin(e Mxen(l—a)——

n>1 a€F n
uTL
= ©Xp ZXl,n(_l)J(Xl,mXZ,n); )
n>1

so a comparison of coefficients in the two exponential formulas for the L-function of n implies

Xt (=1 (X105 X2.0) = (1) Txa(=1)" I (x1, x2)™
Since x1,n(—1) = x1(Ng./r,(—1)) = x1((=1)") = x1(=1)", we can cancel the common
Xx1(—1)" on both sides and get
—J(X1,n5 X2,n) = (=J (X1, x2))"
for all n > 1. This is a Hasse-Davenport relation for Jacobi sums.
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