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Although the algebraic closure Qp is an infinite-degree extension of Qp, each finite subset

{α1, . . . , αm} of Qp lies in a finite extension of Qp, since the field Qp(α1, . . . , αm) is a finite

extension of Qp. It follows that every individual matrix in GLn(Qp) lies in GLn(F ) for
some finite extension F/Qp: choose F to be the field generated over Qp by all the entries of
the matrix. The theorem we will discuss here is an analogue of this property for a compact
group of matrices.

Theorem 1. For each compact subgroup K of GLn(Qp), there is a finite extension F/Qp

such that K ⊂ GLn(F ).

Proof. Our argument is due to W. Sinnott. Let G = GLn(Qp) and Zp be the integers of

Qp. For r ≥ 1, set

Gr = In + prMn(Zp).

This is an open subgroup of G and

G ⊃ G1 ⊃ G2 ⊃ G3 ⊃ · · · ,

with Gr lying in an arbitrarily small neighborhood of In as r → ∞. The elements of Gr

have matrix entries p-adically termwise close to the entries of the n×n identity matrix. For
each σ ∈ Gal(Qp/Qp) we have σ(Gi) = Gi. For g and g′ in G, the condition g ≡ g′ mod Gr

means g ∈ g′Gr = g′(In + prMn(Zp)), so in a multiplicative sense the matrix entries of g
and g′ are p-adically close.

Since Gr is open in G, the intersection

Kr = K ∩Gr

is an open subgroup of K and

K ⊃ K1 ⊃ K2 ⊃ K3 ⊃ · · · ,

with Kr lying in an arbitrarily small neighborhood of the identity matrix as r → ∞. An
open subgroup of a compact group is closed and has finite index, so Kr is compact and
[K : Kr] is finite. If some Kr is contained in GLn(F ) for some finite extension F of Qp,
then K itself lies in GLn(F ′) where F ′ is the field generated over F by the matrix entries
from the finitely many (say, left) coset representatives for K/Kr in K. The entries of a
matrix in K are all algebraic over Qp, so F ′ is a finite extension field of F . This means
[F ′ : Qp] is finite and K ⊂ GLn(F ′), so we’d be done.

Assume, to the contrary, that for each finite extension F/Qp, no Kr is contained in

GLn(F ). Since there are only a finite number of extensions of Qp inside Qp with degree
below a given bound, for each d ≥ 1 the composite of all finite extensions of Qp with degree
< d is a finite extension of Qp. Therefore our assumption implies that

(1) every Kr contains a matrix with an entry of arbitrarily large degree over Qp.
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We will recursively find positive integers d1 < d2 < · · · and matrices gi ∈ Kdi for each
i ≥ 1 such that

(a) some entry in gi has degree at least i over Qp,

(b) for all σ ∈ Gal(Qp/Qp), if σ(gi) 6= gi then σ(gi) 6≡ gi mod Gdi+1
, i.e., σ(gi) 6∈

giGdi+1
.

Before we construct the integers di and matrices gi, note that for each g ∈ GLn(Qp) the

set of all possible σ(g) as σ runs over Gal(Qp/Qp) is finite since each entry of g has only
finitely many Qp-conjugates.

Choose d1 ≥ 1 and g1 ∈ Kd1 arbitrarily. Condition a is obvious for i = 1. Since g1
has only finitely many conjugates σ(g1), where σ ∈ Gal(Qp/Qp), for sufficiently large r the
open set g1Gr doesn’t contain a matrix of the form σ(g1) other than those that equal g1.
Let d2 be such an r with d2 > d1. That makes condition b true for i = 1. Next, suppose
g1, . . . , gj and d1, . . . , dj+1 have been chosen to satisfy conditions a and b for i = 1, . . . , j.
By (1), Kdj+1

contains a matrix gj+1 with an entry having degree at least j + 1 over Qp.

Since gj+1 has only finitely many conjugates by Gal(Qp/Qp) we can choose dj+2 > dj+1 to
satisfy condition b for i = j + 1 in the same way we chose d2 after choosing d1 and g1.

We want to work with the infinite product h := g1g2 · · · . To check it converges and to
approximate it using partial products, we switch our focus to the subgroups Gdi , which
shrink to the identity in a controlled way through the powers of p defining them. Since
gi ∈ Gdi ⊂ K, di → ∞, and K is closed in G, the product h := g1g2 · · · converges in K.

We are going to look at automorphisms σ ∈ Gal(Qp/Qp) that fix h. For every such σ,

σ(g1)σ(g2) · · · = g1g2 · · · .

Suppose σ(gi) 6= gi for some i. Let ` be the least such integer (it depends on σ). Then
σ(gi) = gi for all i < `, which means

σ(g`)σ(g`+1) · · · = g`g`+1 · · · .

For all i > `, gi ∈ Gdi ⊂ Gd`+1
and σ(gi) ∈ σ(Gdi) = Gdi ⊂ Gd`+1

, so σ(g`) ≡ g` mod Gd`+1
.

Then condition b implies σ(g`) = g`, which is a contradiction. Therefore σ(gi) = gi for
all i. In other words, the subgroup of Gal(Qp/Qp) fixing h fixes every entry of every gi,
and condition a implies the subgroup fixing h has a fixed field that is an infinite extension
of Qp. However, all the entries of h lie in a finite extension of Qp, so the subgroup of

Gal(Qp/Qp) fixing h has a fixed field that is a finite extension of Qp. We have reached a
contradiction. �

Remark 2. Replacing Qp by its completion Cp, it is false that a general compact subgroup
of GLn(Cp) is in GLn(F ) for some finite extension F/Qp. For example, inside GL1(Cp) =

C×p we can pick x 6∈ Qp where |x− 1|p < 1 and take K = xZp .

The proof of Theorem 1 is similar in spirit to one of the proofs [1, pp. 182–183], [2,
p. 71] that Qp is not complete: consider an infinite series

∑
i≥0 cip

i where the ci’s are in

Qp, |ci|p = 1, and [Qp(ci) : Qp] → ∞. By a suitable choice of ci’s, if that infinite series

converges in Qp then a contradiction can be reached by comparing the series with a p-adic
expansion of the limit. Turning things around, we can use the ideas in the proof of Theorem
1 to prove something about compact subgroups of the additive group Qp.

Corollary 3. Every compact subgroup of Qp is inside a finite extension of Qp.
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Proof. Repeat the proof of Theorem 1 for additive groups, e.g., when K is a compact
subgroup of Qp the intersections Kr = K ∩ prZp are compact subgroups of Qp with finite
index in K and it suffices to show some Kr is in a finite extension of Qp. Or, more quickly,

we can embed Qp as a subgroup of GL2(Qp) by a 7→ ( 1 a
0 1 ), which lets us think of a compact

subgroup of Qp as a compact subgroup of GL2(Qp). Then we can appeal to Theorem 1
when n = 2. �
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