COMPACT SUBGROUPS OF GLn(Qp)

KEITH CONRAD

Although the algebraic closure Qp is an infinite-degree extension of Q,, each finite subset
{ag,...,ap} of Qp lies in a finite extension of Q,, since the field Qp (a1, . .., o) is a finite

extension of Q,. It follows that every individual matrix in GL,(Q,,) lies in GL,(F) for
some finite extension F'//Q,: choose F' to be the field generated over Q,, by all the entries of
the matrix. The theorem we will discuss here is an analogue of this property for a compact

group of matrices.

Theorem 1. For each compact subgroup K of GLn(Qp), there is a finite extension F/Q,
such that K C GLy(F).

Proof. Our argument is due to W. Sinnott. Let G = GLn(Qp) and Z, be the integers of
Qp. For r > 1, set
Gr=1, +pTMn(zp)'
This is an open subgroup of G and
GDG1DGQDG3D---,

with G, lying in an arbitrarily small neighborhood of I,, as » — oo. The elements of G,
have matrix entries p-adically termwise close to the entries of the n x n identity matrix. For
each 0 € Gal(Q,/Qp) we have 0(G;) = G;. For g and ¢’ in G, the condition g = ¢’ mod G,
means g € ¢'G, = ¢'(I, + pP"My(Z,)), so in a multiplicative sense the matrix entries of g
and ¢’ are p-adically close.

Since G, is open in G, the intersection
K.=KnG,
is an open subgroup of K and
KOKiDKyDK3z3D---,

with K. lying in an arbitrarily small neighborhood of the identity matrix as r — co. An
open subgroup of a compact group is closed and has finite index, so K, is compact and
[K : K,] is finite. If some K, is contained in GL,(F") for some finite extension F of Q,,
then K itself lies in GL,(F") where F’ is the field generated over F' by the matrix entries
from the finitely many (say, left) coset representatives for K/K, in K. The entries of a
matrix in K are all algebraic over Q,, so F’ is a finite extension field of F. This means
[F' : Qp) is finite and K C GL,(F"), so we'd be done.

Assume, to the contrary, that for each finite extension F/Q,, no K, is contained in
GL,,(F). Since there are only a finite number of extensions of Q,, inside Qp with degree
below a given bound, for each d > 1 the composite of all finite extensions of Q,, with degree
< d is a finite extension of Q. Therefore our assumption implies that

(1) every K, contains a matrix with an entry of arbitrarily large degree over Q.
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We will recursively find positive integers di < d2 < --- and matrices g; € Ky, for each
3 > 1 such that

(a) some entry in g; has degree at least i over Q,,
(b) for all o € Gal(Q,/Qp), if o(g;) # gi then o(g;) # gi mod Gq,,,, i.e., o(g;) &
9:Ga,, -

Before we construct the integers d; and matrices g;, note that for each g € GL, (Qp) the
set of all possible o(g) as o runs over Gal(Q,/Q,) is finite since each entry of g has only
finitely many Q,-conjugates.

Choose d; > 1 and g1 € Ky, arbitrarily. Condition a is obvious for 7 = 1. Since g1
has only finitely many conjugates o(g1), where o € Gal(ﬁp /Qp), for sufficiently large r the
open set g1G, doesn’t contain a matrix of the form o(g;) other than those that equal g;.
Let dy be such an r with dy > dy. That makes condition b true for ¢ = 1. Next, suppose
g1,...,95 and dy,...,dj;1 have been chosen to satisfy conditions a and b for i = 1,...,j.
By (1), Kg;,, contains a matrix g;1 with an entry having degree at least j + 1 over Q.
Since g;+1 has only finitely many conjugates by Gal(Qp/Qp) we can choose dj1o > djq1 to
satisfy condition b for ¢ = j + 1 in the same way we chose dy after choosing d; and g;.

We want to work with the infinite product h := g1g2---. To check it converges and to
approximate it using partial products, we switch our focus to the subgroups Gy;, which
shrink to the identity in a controlled way through the powers of p defining them. Since
gi € Gg, C K, di = 00, and K is closed in G, the product h := g1g2--- converges in K.

We are going to look at automorphisms o € Gal(Q,,/Q,) that fix h. For every such o,

o(g1)o(g2) - =192+ -

Suppose o(g;) # g; for some i. Let ¢ be the least such integer (it depends on o). Then
0(g;) = g; for all i < ¢, which means

U(Q@)U(geﬂ) o =gege+1 -

Foralli >/, g; € Gg, C Gg,,, and 0(g;) € 0(Gq;) = Gy, C Gq,,,, 50 0(g¢) = g¢ mod Gy, .
Then condition b implies o(g¢) = g, which is a contradiction. Therefore o(g;) = g; for
all 4. In other words, the subgroup of Gal(ap/ Q,) fixing h fixes every entry of every g;,
and condition a implies the subgroup fixing h has a fixed field that is an infinite extension
of Q,. However, all the entries of h lie in a finite extension of Q,, so the subgroup of
Gal(Q,/Qp) fixing h has a fixed field that is a finite extension of Q,. We have reached a

contradiction. OJ

Remark 2. Replacing Qp by its completion C,, it is false that a general compact subgroup
of GL,(C,) is in GL,(F') for some finite extension F/Q,. For example, inside GL;(C,) =
C) we can pick z ¢ Q,, where |z — 1], <1 and take K = xZr,

The proof of Theorem 1 is similar in spirit to one of the proofs [1, pp. 182-183], [2,
p. 71] that Qp is not complete: consider an infinite series Y, c;p’ where the ¢;’s are in
Qp, lcilp = 1, and [Qp(c;) : Qp] — o0. By a suitable choice of ¢;’s, if that infinite series
converges in Qp then a contradiction can be reached by comparing the series with a p-adic
expansion of the limit. Turning things around, we can use the ideas in the proof of Theorem
1 to prove something about compact subgroups of the additive group Qp.

Corollary 3. FEvery compact subgroup of Qp is inside a finite extension of Q.
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Proof. Repeat the proof of Theorem 1 for additive groups, e.g., when K is a compact
subgroup of Qp the intersections K, = K Np"Z, are compact subgroups of Qp with finite
index in K and it suffices to show some K, is in a finite extension of Q. Or, more quickly,
we can embed Qp as a subgroup of GLg (Qp) by a — (}¢), which lets us think of a compact
subgroup of Qp as a compact subgroup of GLQ(QP). Then we can appeal to Theorem 1
when n = 2. ]
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