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1. Introduction

We continue the study of the trace and norm of a finite extension of fields L/K. The
topics we address are the following:

• for α ∈ L and g(X) ∈ K[X]. expressing TrL/K(g(α)) and NL/K(g(α)) in terms of
the roots of χα,L/K(X),
• the trace and norm as polynomial functions in terms of a basis of L/K,
• transitivity of the trace and norm (more subtle for the norm than the trace),
• the trace and norm when L/K is a Galois extension.

2. The Trace and Norm of Polynomial Values

If α ∈ L has minimal polynomial of degree d over K and that polynomial splits over a
large enough field extension of K as (X−α1) · · · (X−αd), then we saw in the first handout
on traces and norms that TrL/K(α) and NL/K(α) can be written in terms of the αi’s:

TrL/K(α) =
n

d
(α1 + · · ·+ αd), NL/K(α) = (α1 · · ·αd)n/d,

where n = [L : K] and d = [K(α) : K].
Every number in K(α) is g(α) for some g(X) ∈ K[X]. What is its trace and norm in the

extension L/K? For instance, what is TrL/K(α3) or NL/K(α2 + 5α− 1)?

Theorem 2.1. Suppose in a large enough field extension the characteristic polynomial of
α for the extension L/K splits completely as

χα,L/K(X) = (X − r1) · · · (X − rn).

Then for g(X) ∈ K[X], the characteristic polynomial of g(α) for L/K is

χg(α),L/K(X) = (X − g(r1)) · · · (X − g(rn)),

so

TrL/K(g(α)) =

n∑
i=1

g(ri), NL/K(g(α)) =

n∏
i=1

g(ri).

In particular, χαm,L/K(X) = (X − rm1 ) · · · (X − rmn ), so TrL/K(αm) =
∑n

i=1 r
m
i .

Proof. The characteristic polynomial χα,L/K(X) is a power of the minimal polynomial of α
in K[X], so every ri has the same minimal polynomial over K as α.

Set f(X) = (X − g(r1)) · · · (X − g(rn)). We want to show this is the characteristic
polynomial of g(α). The coefficients of f(X) are symmetric polynomials in r1, . . . , rn with
coefficients in K, so by the symmetric function theorem f(X) ∈ K[X]. Let M(X) be the
minimal polynomial of g(α) over K, so M(X) is irreducible in K[X]. Since α and each
ri have the same minimal polynomial over K, the fields K(α) and K(ri) are isomorphic
over K by sending α to ri and fixing the elements of K. Applying such an isomorphism
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to the equation M(g(α)) = 0 turns it into M(g(ri)) = 0 (because M(X) and g(X) have
coefficients in K), so M(X) is the minimal polynomial for g(ri) over K since M(X) is monic
irreducible in K[X].

We have shown all roots of f(X) have minimal polynomial M(X) in K[X], and f(X)
is monic, so f(X) is a power of M(X). Since χg(α),L/K(X) is a power of M(X) with
degree [L : K] = n = deg f , we have χg(α),L/K(X) = f(X). The formulas for TrL/K(g(α))
and NL/K(g(α)) are obtained by looking at the coefficients in the characteristic polynomial
where the trace and norm appear (up to a sign factor). �

Example 2.2. Let γ be a root of X3−X−1. The general trace TrQ(γ)/Q(a+ bγ+ cγ2) for
a, b, c ∈ Q can be computed to be 3a+ 2c by finding the 3× 3 matrix for multiplication by
a+ bγ+ cγ2 in the basis {1, γ, γ2}. We will now compute this trace without using matrices!

By linearity of the trace,

Tr(a+ bγ + cγ2) = aTr(1) + bTr(γ) + cTr(γ2),

where Tr = TrQ(γ)/Q. The trace of 1 is [Q(γ) : Q] = 3. Since γ generates Q(γ)/Q,

χγ,Q(γ)/Q(X) = X3 −X − 1, and its X2-coefficient is 0, so Tr(γ) = 0. What is Tr(γ2)?

Let the roots of X3−X−1 be r, s, and t. Theorem 2.1 tells us that Tr(γ2) = r2+s2+ t2,
which can be expressed in terms of the coefficients of X3 −X − 1:

r2 + s2 + t2 = (r + s+ t)2 − 2(rs+ rt+ st).

From the relations between roots and coefficients of a (monic) polynomial, r + s + t = 0
and rs+ rt+ st = −1. Thus r2 + s2 + t2 = 02 − 2(−1) = 2, so γ2 has trace 2.

Since Tr(1) = 3, Tr(γ) = 0, and Tr(γ2) = 2, we get Tr(a+ bγ + cγ2) = 3a+ 2c.

In comparison with the trace, where we can take advantage of linearity, there is no way to
compute the norm of a general element without essentially computing a determinant with
variable entries. General norm formulas are often quite unwieldy when [L : K] > 2.

An important application of the trace and norm formulas in Theorem 2.1 is a derivation
of the following formulas for the discriminant of a power basis.

Theorem 2.3. Let n = [K(α) : K] and f(X) be the minimal polynomial of α over K. If
f(X) = (X − α1) · · · (X − αn) over a splitting field, then

discK(α)/K(1, α, . . . , αn−1) =
∏
i<j

(αj − αi)2 = (−1)n(n−1)/2NK(α)/K(f ′(α)).

Proof. If n = 1 all the expressions equal 1 (an empty product is understood to be 1), so we
can take n ≥ 2.

By definition, for each basis {e1, . . . , en} of a finite extension L/K, discL/K(e1, . . . , en) =

det(TrL/K(eiej)). Using the basis {1, α, . . . , αn−1} of K(α)/K, so ei = αi−1,

discK(α)/K(1, α, . . . , αn−1) = det(TrK(α)/K(αi−1αj−1)).

By Theorem 2.1, TrK(α)/K(αm) =
∑n

k=1 α
m
k , so

TrK(α)/K(αi−1αj−1) =
n∑
k=1

αi−1k αj−1k = (αi−11 , . . . , αi−1n ) · (αj−11 , . . . , αj−1n ),

where the row vectors on the right are being combined as a dot product. Let vi =
(αi−11 , . . . , αi−1n ), so

discK(α)/K(1, α, . . . , αn−1) = det(vi · vj).
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The matrix (vi · vj) can be written as the product A>A, where

A =

 | |
v1 · · · vn
| |

 .

Therefore

det(vi · vj) = det(A>A) = det(A>) det(A) = det(A) det(A) = det

 | |
v1 · · · vn
| |

2

,

so

discK(α)/K(1, α, . . . , αn−1) = det

 | | |
1 αi · · · αn−1i
| | |

2

= det(αj−1i )2.

The matrix (αi−1j ) is called a Vandermonde matrix, and its determinant can be computed
by Vandermonde’s formula:

det


1 α1 · · · αn−11

1 α2 · · · αn−12
...

...
. . .

...
1 αn · · · αn−1n

 =
∏
i<j

(αj − αi).

Square this and we have the first formula for the discriminant.
To show ∏

i<j

(αj − αi)2 = (−1)n(n−1)/2NK(α)/K(f ′(α))

we will rearrange the terms on the left. From the product rule for derivatives,

f(X) = (X − α1) · · · (X − αn) =⇒ f ′(αi) =
∏
j 6=i

(αj − αi).

Multiplying these over all i,

n∏
i=1

∏
j 6=i

(αj − αi) =

n∏
i=1

f ′(αi).

The product of αj − αi runs over sets of distinct indices i and j. To rewrite this product
over index pairs where i < j, collect αj − αi and αi − αj together as −(αj − αi)2. There

are
(
n
2

)
= n(n−1)

2 such pairs, so∏
i<j

(αj − αi)2 = (−1)n(n−1)/2
n∏
i=1

f ′(αi).

The product of derivatives is NK(α)/K(f ′(α)) by Theorem 2.1. �

Example 2.4. To compute the discriminant of the basis {1, 3
√

2, 3
√

4} for Q( 3
√

2)/Q, we use
the norm formula with the derivative of f(X) = X3 − 2: writing N for NQ( 3√2)/Q,

(−1)3(3−1)/2N
(

3
3
√

2
2
)

= −N(3)(N(
3
√

2))2 = −27 · 4 = −108.
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3. The Trace and Norm as Multivariable Polynomial Values

In calculations of the trace and norm, their formulas are polynomials in the coefficients
of the basis that is used. For instance, TrC/R(a + bi) = 2a and NC/R(a + bi) = a2 + b2,
which are polynomials in the coefficients a and b. Quite generally, a polynomial function on
a finite extension L/K is a function f : L → K such that for some K-basis {e1, . . . , en} of
L and some polynomial P (x1, . . . , xn) ∈ K[x1, . . . , xn], f(

∑n
i=1 ciei) = P (c1, . . . , cn) for all

ci ∈ K. When this holds for one K-basis of L it holds for every K-basis of L, with P usually
changing when the basis changes, so the concept of a polynomial function is independent
of the choice of basis.

Theorem 3.1. The trace and norm of α are both polynomial functions in coordinates of α:
if we pick a K-basis e1, . . . , en of L then there are polynomials P and Q in K[x1, . . . , xn]
such that

TrL/K(c1e1 + · · ·+ cnen) = P (c1, . . . , cn), NL/K(c1e1 + · · ·+ cnen) = Q(c1, . . . , cn)

for all ci ∈ K. More specifically, P is a homogeneous polynomial of degree 1 or is identically
0 and Q is a homogeneous polynomial of degree n.

Proof. Since the trace is K-linear,

TrL/K(c1e1 + · · ·+ cnen) = c1TrL/K(e1) + · · ·+ cnTrL/K(en) = P (c1, . . . , cn),

where P (x1, . . . , xn) =
∑n

i=1 TrL/K(ei)xi. This either has degree 1 or (if each TrL/K(ei) is
0) is identically zero.

For the norm,

NL/K(c1e1 + · · ·+ cnen) = det(mc1e1+···+cnen) = det(c1me1 + · · ·+ cnmen).

For indeterminates x1, . . . , xn, the determinant

Q(x1, . . . , xn) := det(x1[me1 ] + · · ·+ xn[men ])

is a homogeneous polynomial in K[x1, . . . , xn] of degree n from the expansion formula for
determinants as a sum of products, since each entry of the matrix x1[me1 ] + · · ·+ xn[men ]
is a K-linear combination of x1, . . . , xn, hence is a homogeneous polynomial of degree 1. A
product of n homogeneous polynomials of degree 1 is a homogeneous polynomial of degree n
and a sum of homogeneous polynomials of degree n is a homogeneous polynomial of degree
n or is 0. The polynomial Q(x1, . . . , xn) is not 0 since Q(a1, . . . , an) = 1 where

∑n
i=1 aiei =

1, so Q is homogeneous of degree n. Substituting ci for xi shows NL/K(
∑n

i=1 ciei) =
Q(c1, . . . , cn) for all ci ∈ K. �

Example 3.2. For the extension Q(γ)/Q where γ3 − γ − 1 = 0, using basis {1, γ, γ2},

x1[m1] + x2[mγ ] + x3[mγ2 ] =

x1 x3 x2
x2 x1 + x3 x2 + x3
x3 x2 x1 + x3

 .

Each entry of this matrix is a homogeneous polynomial of degree 1 in the xi’s. The trace
is the sum of the terms along the main diagonal, and is homogeneous of degree 1 in the
xi’s: it is 3x1 + 2x3. The determinant is, up to signs, a sum of products of one term from
each row and column, such as x1(x1 + x3)

2 using the main diagonal, and these terms are
all homogeneous of degree 3. In full the norm is

x31 + x32 + x33 + 2x21x3 + x1x
2
3 − x1x22 − x2x23 − 3x1x2x3.
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4. Transitivity of the Trace and Norm

If L/F/K is a tower of finite extensions then a basis for L/K can be computed using
bases for L/F and F/K: if {ei} is a basis of L/F and {fj} is a basis of F/K, then {eifj}
is a basis of L/K. In a similar spirit, traces and norms can be calculated for L/K as a
composition of traces and norms, respectively, for L/F and F/K.

Theorem 4.1. Let L/F/K be finite extensions. For α ∈ L, TrL/K(α) = TrF/K(TrL/F (α)).

Remark 4.2. Don’t write the right side as TrL/F (TrF/K(α)), which makes no sense: the
first map applied to α should go from L down to F and the second map should go from F
down to K, not the other way around.

Proof. Let m = [L : F ] and d = [F : K], as in the field diagram below.

L

m

F

d

K

To prove transitivity of the trace, let {e1, . . . , em} be an F -basis of L and {f1, . . . , fd} be
a K-basis of F . Then a K-basis of L is

{e1f1, . . . , e1fd, . . . , emf1, . . . , emfd}.
For α ∈ L, let

αej =

m∑
i=1

cijei, cijfs =

d∑
r=1

bijrsfr,

for cij ∈ F and bijrs ∈ K. Thus α(ejfs) =
∑

i

∑
r bijrseifr. Using the above bases for L/F ,

F/K, and L/K, we have

[mα]L/F = (cij), [mcij ]F/K = (bijrs), [mα]L/K = ([mcij ]F/K),

where the field extension in the subscript indicates what extension is being used for that
matrix. The last matrix is a block matrix. Using these matrices,

TrF/K(TrL/F (α)) = TrF/K

(∑
i

cii

)
=
∑
i

TrF/K(cii)

=
∑
i

∑
r

biirr

= TrL/K(α). �

Theorem 4.3. Let L/F/K be finite extensions. For α ∈ L, NL/K(α) = NF/K(NL/F (α)).

Proof. The proof of transitivity of the trace was essentially a straightforward calculation.
By comparison, the proof of transitivity of the norm is more delicate.1

1When L/K is Galois, we’ll see another proof of Theorem 4.3 in Section 5.
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The argument we will give is due to Scholl [7].
Case 1: α ∈ F .
If the transitivity formula NL/K(α) = NF/K(NL/F (α)) were already known, then when

α ∈ F the right side is NF/K(α[L:F ]) = NF/K(α)[L:F ], so our goal is to prove NL/K(α) =

NF/K(α)[L:F ] when α ∈ F .

We will first show that χα,L/K(X) = χα,F/K(X)[L:F ] when α ∈ F . Both χα,L/K(X) and
χα,F/K(X) are powers of πα,K(X), where the first has degree [L : K] and the second has

degree [F : K]. Since χα,F/K(X)[L:F ] is the power of πα,K(X) with degree [L : F ][F : K] =
[L : K], this power must be χα,L/K(X). Looking at the constant terms on both sides of

χα,L/K(X) = χα,F/K(X)[L:F ], we have

(−1)[L:K]NL/K(α) = ((−1)[F :K]NF/K(α))[L:F ].

The power of −1 on the right is (−1)[L:F ][F :K] = (−1)[L:K], and canceling this common
power on both sides settles Case 1.

Case 2: L = F (α).
Let m = [F (α) : F ] and d = [F : K]. The field diagram is as follows.

F (α)

m

F

d

K

Let h(X) be the minimal polynomial of α over F , so h(X) is monic of degree m, say
h(X) = Xm + cm−1X

m−1 + · · ·+ c1X + c0. Then

(4.1) NF/K(NF (α)/F (α)) = NF/K((−1)mc0) = (−1)dmNF/K(c0).

We will now compute NF (α)/K(α) and arrive at the same value as in (4.1). Let {f1, . . . , fd}
be a K-basis of F , so a K-basis of F (α) is

{f1, . . . , fd, αf1, . . . , αfd, . . . , αm−1f1, . . . , αm−1fd}.
The number NF (α)/K(α) is the determinant of a matrix for multiplication by α on F (α) as
a K-linear map. Using the above basis, the matrix is

(4.2)


O O · · · O −C0

Id O · · · O −C1

O Id · · · O −C2
...

...
. . .

...
...

O O · · · Id −Cm−1

 ,

where Ci is the d×d matrix for multiplication by ci on F relative to the K-basis {f1, . . . , fd}.
This is because

α · αifj = αi+1fj for 0 ≤ i < m− 1,

α · αm−1fj = αmfj = −αm−1(cm−1fj)− · · · − α(c1fj)− c0fj ,
and expressing cifj as a K-linear combination of f1, . . . , fd involves the matrix Ci.
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In condensed form, the square block matrix (4.2) is

(4.3)

(
O −C0

I(m−1)d B

)
,

where O is d × (m − 1)d and B is (m − 1)d × d. It is left as an exercise to prove that a
square block matrix of the form (

O A
IN B

)
,

where O is an M × N zero matrix, A is M × M and B is N × M , has determinant
(−1)MN detA. (Use induction on N and compute the determinant by expansion along the
first column.) Therefore the determinant of (4.2), by viewing it as (4.3), equals

(−1)(m−1)d
2

det(−C0) = (−1)(m−1)d(−1)d det(C0) = (−1)dm det(C0).

Since C0 is a matrix for multiplication by c0 on F as a K-vector space, its determinant is
NF/K(c0), so (4.3) has determinant (−1)dmNF/K(c0). Thus NF (α)/K(α) = (−1)dmNF/K(c0).

We previously found that NF/K(NF (α)/F (α)) also equals (−1)dmNF/K(c0), so NF (α)/K(α) =
NF/K(NF (α)/F (α)).

Case 3: General situation.
When α is an element of L, insert F (α) into the tower of field extensions as in the

following diagram.

L

F (α)

F

K

Then

NL/K(α) = NF (α)/K(α)[L:F (α)] by Case 1 for L/F (α)/K

= (NF/K(NF (α)/F (α)))[L:F (α)] by Case 2 for F (α)/F/K

= NF/K(NF (α)/F (α)[L:F (α)]) by multiplicativity of the norm

= NF/K(NL/F (α)) by Case 1 for L/F (α)/F.

This completes the proof that the norm map is transitive. �

Here are references to some other proofs of the transitivity of the norm.

• Bourbaki [1, p. 548] and Jacobson [5, Sect. 7.4] prove it as a special case of a
transitivity formula for determinants of block matrices with commuting blocks.
• Lang [6, Chap. VI, Sect. 5] proves it using field embeddings and inseparable degrees.

See B. Conrad’s handout [2] for a similar argument with more details included.
• Flanders [3, Theorem 3, Theorem 5], [4, Theorem 3] proves transitivity of the norm

by a characterization of the norm: for finite extensions L/K with degree n, the
norm map NL/K is the unique function f : L→ K such that (i) f(αβ) = f(α)f(β)
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for all α and β in L, (ii) f(c) = cn for all c ∈ K and (iii) f is a polynomial function
over K of degree at most n. (We saw the norm is such a polynomial function in
Theorem 3.1.) The transitivity of the norm is an immediate consequence of these
properties: for K ⊂ F ⊂ L, the composite map NF/K ◦ NL/F satisfies the three
conditions that characterize NL/K as a map from L to K.

5. The Trace and Norm for a Galois extension

Let L/K be a finite Galois extension, with Galois group G = Gal(L/K). We can express
characteristic polynomials, traces, and norms for the extension L/K in terms of G.

Theorem 5.1. When L/K is a finite Galois extension with Galois group G and α ∈ L,

χα,L/K(X) =
∏
σ∈G

(X − σ(α)).

In particular,

TrL/K(α) =
∑
σ∈G

σ(α), NL/K(α) =
∏
σ∈G

σ(α).

Proof. Let πα,K(X) be the minimal polynomial of α over K, so χα,L/K(X) = πα,K(X)n/d,
where n = [L : K] and d = [K(α) : K] = deg πα,K . From Galois theory,

πα,K(X) =

d∏
i=1

(X − σi(α)),

where σ1(α), . . . , σd(α) are all the distinct values of σ(α) as σ runs over the Galois group.
For each σ ∈ G, σ(α) = σi(α) for a unique i from 1 to d. Moreover, σ(α) = σi(α) if and
only if σ ∈ σiH, where H = {τ ∈ G : τ(α) = α} = Gal(L/K(α)). Therefore as σ runs over
G, the number σi(α) appears as σ(α) whenever σ is in the left coset σiH, so σi(α) occurs
|H| times, and |H| = [L : K(α)] = [L : K]/[K(α) : K] = n/d. Therefore

∏
σ∈G

(X − σ(α)) =
d∏
i=1

(X − σi(α))n/d =

(
d∏
i=1

(X − σi(α))

)n/d
= πα,K(X)n/d,

and that power of the minimal polynomial is the characteristic polynomial. �

Example 5.2. In Q(
√
d)/Q, where d is a nonsquare rational number, the two elements of

the Galois group are σ(a+ b
√
d) = a+ b

√
d and σ(a+ b

√
d) = a− b

√
d. Then

TrQ(
√
d)/Q(a+ b

√
d) = (a+ b

√
d) + (a− b

√
d) = 2a,

NQ(
√
d)/Q(a+ b

√
d) = (a+ b

√
d)(a− b

√
d) = a2 − db2,

χa+b
√
d,Q(

√
d)/Q(X) = (X − (a+ b

√
d))(X − (a− b

√
d)) = X2 − 2aX + (a2 − db2).

Example 5.3. For α ∈ Fpn ,

TrFpn/Fp
(α) = α+ αp + · · ·+ αp

n−1
and NFpn/Fp

(α) = ααp · · ·αpn−1
= α(pn−1)/(p−1).

Corollary 5.4. Let L/F/K be finite extensions where L/K is Galois. For all α ∈ L,
TrL/K(α) = TrF/K(TrL/F (α)) and NL/K(α) = NF/K(TrL/F (α)).
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Corollary was proved already in Theorems 4.1 and 4.3 without using a Galois hypothesis.
We give a second proof in this special case to give another application of Theorem 5.1. The
proof of transitivity for the trace and norm this time will be by the same method, so you
could say Corollary 5.4 makes transitivity of the trace look just as hard as transitivity of
the norm when it really is easier.

Proof. Let G = Gal(L/K) and H = Gal(L/F ).

L {1}

F

d

H

d

K G

Since L/F is Galois with Galois group H, the formulas for TrL/F (α) and NL/F (α) from
Theorem 5.1 imply

(5.1) TrF/K(TrL/F (α)) = TrF/K

(∑
τ∈H

τ(α)

)
and NF/K(NL/F (α)) = NF/K

(∏
τ∈H

τ(α)

)
.

(Be careful: the trace and norm on the right sides are not a sum of all TrF/K(τ(α)) or a
product of all NF/K(τ(α)) when α 6∈ F , since τ(α) 6∈ F for τ ∈ H.)

Let d = [F : K] = [G : H] and σ1, . . . , σd be left coset representatives for H in G, so each
element of G is σiτ for a unique coset representative σi and τ ∈ H. By Theorem 5.1 and
the left H-coset decomposition of G,

(5.2) TrL/K(α) =
∑
σ∈G

σ(α) =
∑

1≤i≤d
τ∈H

σi(τ(α)) =
d∑
i=1

∑
τ∈H

σi(τ(α)) =
d∑
i=1

σi

(∑
τ∈H

τ(α)

)

and

(5.3) NL/K(α) =
∏
σ∈G

σ(α) =
∏

1≤i≤d
τ∈H

σi(τ(α)) =
d∏
i=1

∏
τ∈G

σi(τ(α)) =
d∏
i=1

σi

(∏
τ∈H

τ(α)

)
.

Comparing (5.1) with the trace and norm formulas in (5.2) and (5.3), which are expressed
in terms of

∑
τ∈H τ(α) and

∏
τ∈H τ(α), the transitivity formulas for TrL/K(α) and NL/K(α)

will be established by showing for all β ∈ F that

(5.4) TrF/K(β) =

d∑
i=1

σi(β) and NF/K(β) =

d∏
i=1

σi(β)

and then using β =
∑

τ∈H τ(α) to make (5.2) and (5.3) agree with the trace and norm
formulas in (5.1). To prove the formulas in (5.4) for all β ∈ F we’ll show

(5.5) χβ,F/K(X) =
d∏
i=1

(X − σi(β))

for all β ∈ F . Then comparing second-leading coefficients and constant terms on both sides
produces (5.4).



10 KEITH CONRAD

To prove (5.5), let’s recall what it means to say σ1, . . . , σd are left coset representatives of
H in G. By Galois theory, each left H-coset σH for σ ∈ G consists of the elements of G that
restrict in the same way to F (the fixed field of H). Therefore σ1(β), . . . , σd(β) on the right
side of (5.5) are all the possible values where β can be sent by G (allow some repetitions if
[F (β) : F ] < d), and those values are precisely the K-conjugates of β by Galois theory. At
the same time, χβ,F/K(X) on the left side of (5.5) is a power of the minimal polynomial of
β over K, so its roots are also the K-conjugates of β. Therefore the roots of both sides of
(5.5) are the same, so we need to show the multiplicities of each root on both sides match
to get equality. To take care of that, we’ll focus on a special case first.

While F/K may not be Galois, it is separable, so F = K(γ) for some γ by the primitive
element theorem. Consider (5.5) when β = γ. On the left side, χγ,F/K(X) is in K[X] with
degree d = [F : K] = [K(γ) : K] and root γ, so it is the minimal polynomial of γ over K.
Since it has the root γ in the Galois extension L/K, it splits completely over L, say

χγ,F/K(X) =

d∏
i=1

(X − γi)

with γ = γ1. The numbers γ1, . . . , γd are all different (χγ,F/K(X) is separable) and each is
a K-conjugate of γ, so these are σ1(γ), . . . , σd(γ). Therefore (5.5) is true when β = γ, as
the roots on both sides are the same numbers and they all have multiplicity 1.

For general β in F , we can write β = g(γ) for some g(X) ∈ K[X]. Now use Theorem 2.1
to describe χβ,F/K(X) = χg(γ),F/K(X) in terms of g(X) evaluated at roots of χγ,F/K(X):

χβ,F/K(X) = χg(γ),F/K(X) =

d∏
i=1

(X − g(γi)) =

d∏
i=1

(X − g(σi(γ))).

Since g(σi(γ)) = σi(g(γ)) = σi(β), χβ,F/K(X) =
∏d
i=1(X − σi(β)), which proves (5.5). �
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