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1. Introduction

Let L/K be a finite extension of fields, with n = [L : K]. We will associate to this
extension two important functions L→ K, called the trace and the norm. They are related
to the trace and determinant of matrices and have many applications in the study of fields
(and rings). Among elementary applications, the trace can be used to show some number
is not in a field and the norm can be used to show some number in L is not a perfect power
in L (see Section 4). The math behind the definitions of the trace and norm also leads to
a systematic way of finding the minimal polynomial over K of each element of L.

2. Basic Definitions

Our starting point is the process by which a linear transformation ϕ : V → V from an
n-dimensional K-vector space V to itself turns into a matrix: for a basis {e1, . . . , en} of
V , write ϕ(ej) =

∑n
i=1 aijei, with aij ∈ K.1 The matrix of ϕ with respect to that basis,

also called the matrix representation of ϕ, is [ϕ] := (aij). This definition is motivated by
the way entries of a square matrix A = (aij) can be recovered from the effect of A on the
standard basis e1, . . . , en of Kn: Aej =

∑n
i=1 aijei (the jth column of A).

Example 2.1. Let ϕ : C → C be complex conjugation: ϕ(z) = z. This is R-linear:
z + z′ = z + z′ and cz = cz for c ∈ R. Using the basis {1, i}, we compute the complex
conjugate of each number in the basis and write the answer in terms of the basis:

ϕ(1) = 1 = 1 · 1 + 0 · i,
ϕ(i) = −i = 0 · 1 + (−1) · i.

From the coefficients in the first equation, the first column of [ϕ] is
(
1
0

)
, and from the

coefficients in the second equation, the second column is
(

0
−1
)
, so [ϕ] is(

1 0
0 −1

)
.

If instead we use the basis {1 + i, 1 + 2i}, then

ϕ(1 + i) = 1− i = 3 · (1 + i)− 2 · (1 + 2i),

ϕ(1 + 2i) = 1− 2i = 4 · (1 + i) + (−3) · (1 + 2i).

Now the first column of [ϕ] is
(

3
−2
)

and the second column is
(

4
−3
)
, so [ϕ] is(

3 4
−2 −3

)
.

1Watch the indices! It is not ϕ(ei) =
∑n
j=1 aijej . The point is that aij appears in the formula for ϕ(ej),

not ϕ(ei).

1
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If the basis of V changes, or even the order of the terms in the basis changes, then the
matrix usually changes, but it will be a conjugate of the first matrix. (Two squares matrices
M and N are called conjugate if N = UMU−1 for an invertible matrix U .) Conjugate
matrices have the same trace (trace = sum of main diagonal entries) and determinant, so
we declare Tr(ϕ) = Tr([ϕ]) and det(ϕ) = det([ϕ]), using an arbitrary matrix representation
of ϕ. For instance, both matrix representations we computed for complex conjugation on
C, treated as an R-linear map, have trace 0 and determinant −1.

We turn now to field extensions. For a finite extension of fields L/K, we associate to
each element α of L the K-linear transformation mα : L → L, where mα is multiplication
by α: mα(x) = αx for x ∈ L. Each mα is a K-linear function from L to L:

mα(x+ y) = α(x+ y) = αx+ αy = mα(x) +mα(y), mα(cx) = α(cx) = c(αx) = cmα(x)

for x and y in L and c ∈ K. By choosing aK-basis of L we can create a matrix representation
for mα, which is denoted [mα]. (We need to put an ordering on the basis to get a matrix,
but we will often just refer to picking a basis and listing it in a definite way instead of saying
“pick an ordered basis”.)

Example 2.2. Let K = R, L = C, and use basis {1, i}. For α = a+ bi with real a and b,
when we multiply the basis 1 and i by α and write the answer in terms of the basis we have

α · 1 = a · 1 + bi,

α · i = −b · 1 + ai.

Therefore the first column of [mα] is
(
a
b

)
and the second column is

(−b
a

)
: [mα] equals(

a −b
b a

)
Using the basis {i, 1}, which is the same basis listed in the opposite order, we compute

α · i = ai+ (−b) · 1,
α · 1 = bi+ a · 1

and [mα] changes to (
a b
−b a

)
,

which serves as a reminder that [mα] depends on the ordering of the K-basis of L.

Example 2.3. Let K = Q and L = Q(
√

2). Use the basis {1,
√

2}. For α = a+ b
√

2 with
rational a and b, we multiply it by 1 and

√
2:

α · 1 = a · 1 + b
√

2,

α ·
√

2 = 2b · 1 + a
√

2.

Therefore [mα] equals (
a 2b
b a

)
Example 2.4. Let K = Q and L = Q( 3

√
2). Using the basis {1, 3

√
2, 3
√

4}, the matrix
representation for multiplication by α = a+b 3

√
2+c 3

√
4 on L, where a, b, and c are rational,
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is obtained by multiplying α by 1, 3
√

2, and 3
√

4:

α · 1 = a+ b
3
√

2 + c
3
√

4,

α · 3
√

2 = 2c+ a
3
√

2 + b
3
√

4,

α · 3
√

4 = 2b+ 2c
3
√

2 + a
3
√

4.

From these calculations, [mα] is a 2c 2b
b a 2c
c b a

 .

Example 2.5. Let K = Q and L = Q(γ) for γ a root of X3 − X − 1. (It is irreducible
over Q since it’s irreducible mod 2.) Then γ3 = 1 + γ. Use the basis {1, γ, γ2}. For
α = a+ bγ + cγ2 with rational a, b, and c, multiply α by 1, γ, and γ2:

α · 1 = a+ bγ + cγ2,

α · γ = aγ + bγ2 + cγ3 = c+ (a+ c)γ + bγ2,

α · γ2 = cγ + (a+ c)γ2 + bγ3 = b+ (b+ c)γ + (a+ c)γ2.

Therefore [mα] equals a c b
b a+ c b+ c
c b a+ c

 .

Example 2.6. Let K = Q and L = Q(γ) for γ a root of X4 − X − 1. (It is irreducible
over Q since it’s irreducible mod 2.) Use the basis {1, γ, γ2, γ3}. For α = a+ bγ+ cγ2 +dγ3

with rational a, b, c, and d, verify that [mα] equals
a d c b
b a+ d c+ d b+ c
c b a+ d c+ d
d c b a+ d

 .

Example 2.7. If c ∈ K, then with respect to every K-basis of L, [mc] is the scalar
diagonal matrix cIn, where n is the dimension of L over K: if {e1, . . . , en} is a K-basis then
mc(ej) = cej , so [mc] has jth column with a c in the jth row and 0 elsewhere.

Here, finally, are the trace and norm mappings that we want to study.

Definition 2.8. The trace and norm of α from L to K are the trace and determinant of a
matrix representation for mα as a K-linear map:

TrL/K(α) = Tr([mα]) ∈ K, NL/K(α) = det([mα]) ∈ K.

Let’s use matrices in our previous examples to calculate some trace and norm formulas.
By Example 2.2,

TrC/R(a+ bi) = 2a, NC/R(a+ bi) = a2 + b2.

By Example 2.3,

TrQ(
√
2)/Q(a+ b

√
2) = 2a, NQ(

√
2)/Q(a+ b

√
2) = a2 − 2b2.

By Example 2.4,

TrQ( 3√2)/Q(a+ b
3
√

2 + c
3
√

4) = 3a, NQ( 3√2)/Q(a+ b
3
√

2 + c
3
√

4) = a3 + 2b3 + 4c3 − 6abc.
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By Example 2.5, where γ3 − γ − 1 = 0, TrQ(γ)/Q(a+ bγ + cγ2) = 3a+ 2c and

NQ(γ)/Q(a+ bγ + cγ2) = a3 + b3 + c3 − ab2 + ac2 − bc2 + 2a2c− 3abc.

By Example 2.6, where γ4 − γ − 1 = 0, TrQ(γ)/Q(a+ bγ + cγ2 + dγ3) = 4a+ 3d and

NQ(γ)/Q(a+ bγ + cγ2 + dγ3) = a4 − b4 + c4 − d4 + 3a3d− 2a2c2 + 3a2d2 + ab3 + ac3

+ ad3 + 2b2d2 − bc3 − bd3 + cd3 − 3a2bc+ 4ab2c− 4a2bd

− 5abd2 + ac2d+ 4acd2 + 3b2cd− 4bc2d− 3abcd.

By Example 2.7, for each c ∈ K the matrix [mc] is cIn, where n = [L : K], so

TrL/K(c) = nc, NL/K(c) = cn.

In particular, TrL/K(1) = [L : K] and NL/K(1) = 1.

Remark 2.9. In the literature you might see S or Sp used in place of Tr since Spur is the
German word for trace (not because S is the first letter in the word “sum”).

Remark 2.10. The word “norm” has another meaning in algebra besides the one above:
a method of measuring the size of elements in a vector space is called a norm. For instance,
when v = (a1, . . . , an) is in Rn, its length ||v|| =

√
v · v =

√
a21 + · · ·+ a2n is called the

norm of v. This concept, suitably axiomatized, leads to normed vector spaces, which occur
throughout analysis, but vector space norms have essentially nothing to do with the field
norm we are using.

Remark 2.11. There is an alternate definition of TrL/K(α) and NL/K(α) in terms of a
sum and product running over the field embeddings of L into an algebraic closure of K.
See, for instance, [1, Chap. VI, Sec. 5]. That alternate definition is a bit clunky to work
with when the field extension L/K is not separable.

3. Initial Properties of the Trace and Norm

The most basic properties of the trace and norm follow from the way mα depends on α.

Lemma 3.1. Let α and β belong to L.

1) If α 6= β then mα 6= mβ,
2) As functions L→ L,

mα+β = mα +mβ and mαβ = mα ◦mβ,

and m1 is the identity map L→ L.

Concretely, this says the matrices in the previous examples are embeddings of L into the
n × n matrices over K, where n = [L : K]. For instance, from Example 2.2 the 2 × 2 real
matrices of the special form ( a −b

b a
) add and multiply in the same way as complex numbers

add and multiply. Compare multiplication:

(a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i,

(
a −b
b a

)(
c −d
d c

)
=

(
ac− bd −(ad+ bc)
ad+ bc ac− bd

)
.

Proof. Since mα(1) = α, we can recover the number α from the mapping mα, so α 7→ mα

is injective.
For α, β, and x in L,

mα+β(x) = (α+ β)(x) = αx+ βx = mα(x) +mβ(x) = (mα +mβ)(x)
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and
(mα ◦mβ)(x) = mα(βx) = α(βx) = (αβ)x = mαβ(x),

so mα+β = mα + mβ and mαβ = mα ◦mβ. Easily m1 is the identity map on L: m1(x) =
1 · x = x for all x ∈ L. �

Theorem 3.2. The trace TrL/K : L → K is K-linear and the norm NL/K : L → K is

multiplicative. Moreover, NL/K(L×) ⊂ K×.

Proof. We have equations mα+β = mα +mβ and mαβ = mα ◦mβ. Picking a basis of L/K
and passing to matrix representations in these equations, [mα+β] = [mα+mβ] = [mα]+[mβ]
and [mαβ] = [mα ◦mβ] = [mα][mβ]. Therefore

TrL/K(α+β) = Tr([mα+β]) = Tr([mα]+[mβ]) = Tr([mα])+Tr([mβ]) = TrL/K(α)+TrL/K(β)

and

NL/K(αβ) = det([mαβ]) = det([mα][mβ]) = det([mα]) det([mβ]) = NL/K(α)NL/K(β).

So TrL/K : L→ K is additive and NL/K : L→ K is multiplicative.
To show TrL/K is K-linear, not just additive, for c ∈ K and α ∈ L we have mcα = cmα

as mappings L → L (check that), so [mcα] = [cmα] = c[mα]. Therefore TrL/K(cα) =
TrL/K(c[mα]) = cTrL/K(α).

Since NL/K(1) = det([m1]) = 1, for nonzero α in L taking norms of both sides of α ·
(1/α) = 1 implies NL/K(α)NL/K(1/α) = 1, so NL/K(α) 6= 0. �

The linearity of TrL/K means calculating it on all elements is reduced to finding its values
on a basis.

Example 3.3. Consider the extension Q(γ)/Q where γ3 − γ − 1 = 0. For a, b, c ∈ Q, we
saw before that TrQ(γ)/Q(a+ bγ + cγ2) = 3a+ 2c by using the matrix for multiplication by

a + bγ + cγ2 from Example 2.5. Because the trace is Q-linear, we can calculate this trace
in another way:

Tr(a+ bγ + cγ2) = aTr(1) + bTr(γ) + cTr(γ2),

where Tr = TrQ(γ)/Q. Therefore finding the trace down to Q of a general element of Q(γ)

is reduced to finding the traces of just three numbers: 1, γ, and γ2.

• Tr(1) = [Q(γ) : Q] = 3.
• To compute Tr(γ) we will compute [mγ ] using the basis {1, γ, γ2}: γ·1 = γ, γ·γ = γ2,

and γ · γ2 = γ3 = 1 + γ, so

[mγ ] =

0 0 1
1 0 1
0 1 0

 .

Therefore Tr(γ) = 0.
• To compute Tr(γ2) we want to find the matrix [mγ2 ], which can be found either

directly by multiplying γ2 on the basis {1, γ, γ2} or by squaring the matrix [mγ ]
just above, since [mγ2 ] = [mγmγ ] = [mγ ]2. Either way,

(3.1) [mγ2 ] =

0 1 0
0 1 1
1 0 1

 ,

so Tr(γ2) = 2.
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Therefore Tr(a + bγ + cγ2) = aTr(1) + bTr(γ) + cTr(γ2) = 3a + 2c, which agrees with our
calculation of this trace earlier.

4. Applications of the Trace and Norm

Here are two negative results about Q( 3
√

2) that will be settled with the trace and norm.
Task 1: Show 1 + 5 3

√
2− 3
√

4 is not a perfect square in Q( 3
√

2).
Task 2: Show 3

√
3 6∈ Q( 3

√
2).

Solution to Task 1. Argue by contradiction. Assume 1 + 5 3
√

2 − 3
√

4 = α2 for some α
in K = Q( 3

√
2). An awful way to get a contradiction is to write α = a + b 3

√
2 + c 3

√
4 for

unknown a, b, c ∈ Q and square that expression to get

1 + 5
3
√

2− 3
√

4 = (a+ b
3
√

2 + c
3
√

4)2

= (a2 + 4bc) + (2ab+ 2c2)
3
√

2 + (2ac+ b2)
3
√

4

and then set the coefficients on the right to be 1, 5, and −1. This is a system of 3 quadratic
equations in a, b, and c, and we want to show it has no rational solution. What a mess!

Instead, take the norm down to Q on both sides of 1 + 5 3
√

2− 3
√

4 = α2 to get

NK/Q(1 + 5
3
√

2− 3
√

4) = (NK/Q(α))2

in Q. To compute the norm on the left side, use the basis {1, 3
√

2, 3
√

4} for K/Q: the matrix
for multiplication by 1 + 5 3

√
2− 3
√

4 with respect to that basis is 1 −2 10
5 1 −2
−1 5 1

 ,

whose determinant is 277, so NK/Q(1 + 5 3
√

2 − 3
√

4) = 277. Thus 277 = (NK/Q(α))2 in Q,
but this is impossible because 277 is prime and thus 277 is not a rational square (its square
root in R is irrational). That completes Task 1.

While we can prove a number in a field is not a square (or other power) in that field by
showing its norm down to a subfield that we understand better is not a square (or other
power) in the subfield, if the norm turns out to be a square in the subfield that does not
mean the original number is a square in the larger field. For example, NK/Q(1− 3

√
2+5 3
√

4) =

529 = 232 but 1− 3
√

2 + 5 3
√

4 is not a square in Q( 3
√

2).2

Solution to Task 2. Argue by contradiction. Assume 3
√

3 ∈ Q( 3
√

2), so

(4.1)
3
√

3 = a+ b
3
√

2 + c
3
√

4

for some rational a, b, and c. To show this is impossible, an awful approach is to cube both
sides to get

3 = (a+ b
3
√

2 + c
3
√

4)3

= (a3 + 2b3 + 4c3 + 12abc) + (3a2b+ 6ac2 + 6b2c)
3
√

2 + (3a2c+ 3ab2 + 6bc2)
3
√

4

2If 1− 3
√
2 + 5 3

√
4 is a square in Q( 3

√
2) then it can be shown that it must be a square in Z[ 3

√
2]. In that

ring, p = (3, 3
√
2− 1) is a prime ideal with index 3, and in Z[ 3

√
2]/p ∼= F3, 1− 3

√
2 + 5 3

√
2 ≡ 5 mod p and 5 is

not a square in F3. Therefore 1− 3
√
2 + 5 3

√
4 is not a square in Z[ 3

√
2].
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and then set the coefficients on the right side to be 3, 0, and 0. This is a system of 3 cubic
equations in a, b, and c, and we want to show it has no rational solution. This looks even
more daunting than the system of quadratic equations in the awful approach to Task 1.

A better approach is to tackle the problem “linearly” using traces. From the assumption
that 3

√
3 is contained in Q( 3

√
2) we have

Q(
3
√

2) = Q(
3
√

3)

since both fields have degree 3 over Q and one is (by hypothesis) contained in the other.
Call this common cubic field K. The two primitive elements 3

√
2 and 3

√
3 for K/Q suggest

different bases over Q: {1, 3
√

2, 3
√

4} and {1, 3
√

3, 3
√

9}. Using the first basis, the matrix for
multiplication by 3

√
2 is 0 0 2

1 0 0
0 1 0

 ,

so TrK/Q( 3
√

2) = 0. In a similar way we get TrK/Q( 3
√

3) = 0 using the second basis. The

matrix for multiplication by 3
√

4 with respect to the basis {1, 3
√

2, 3
√

4} is0 2 0
0 0 2
1 0 0


so TrK/Q( 3

√
4) = 0. Applying TrK/Q to both sides of (4.1) and using Q-linearity,

0 = aTrK/Q(1) + bTrK/Q(
3
√

2) + cTrK/Q(
3
√

4) = 3a,

so a = 0. Now multiply both sides of (4.1) by 3
√

2:

(4.2)
3
√

6 = a
3
√

2 + b
3
√

4 + 2c = 2c+ b
3
√

4.

The number 3
√

6 has degree 3 over Q, so it has to be a primitive element of K, and using
the basis {1, 3

√
6, 3
√

36} for K/Q gives us TrK/Q( 3
√

6) = 0. Therefore if we apply TrK/Q to
(4.2) and use Q-linearity, we get 0 = 6c, so c = 0.

Returning to (4.1), it now reads 3
√

3 = b 3
√

2, so 3/2 = b3, which clearly has no rational
solution. We have a contradiction, so 3

√
3 6∈ Q( 3

√
2).

Another application of the trace and norm is the following algebraic analogue of volume
for a basis of a field extension.

In Rn, if v1, . . . ,vn is a basis then the parallelepiped spanned by the vi’s is the set
{
∑n

i=1 civi : 0 ≤ ci ≤ 1} and its volume in Rn is
√
|det(vi · vj)|, so its squared volume

is |det(vi · vj)|. The trace product TrL/K(αβ) for α and β in L is the right analogue of
the dot product v · w for v and w in Rn, so if we drop the absolute value (which makes
no sense in general fields) and replace the dot product with the trace product, then we are
led to consider the determinant det(TrL/K(eiej)) ∈ K for a basis e1, . . . , en of L/K to be
something like a “squared volume”.

Definition 4.1. For a finite extension of fields L/K and a K-basis e1, . . . , en of L, the
discriminant of the basis is defined to be

discL/K(e1, . . . , en) = det(TrL/K(eiej)) ∈ K.

The next example explains the name “discriminant”.
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Example 4.2. Let [L : K] = 2 and pick α ∈ L − K, so L = K(α). Let the minimal
polynomial of α over K be X2 + bX + c. Then TrL/K(1) = 2, TrL/K(α) = −b, and

TrL/K(α2) = TrL/K(−bα− c) = b2 − 2c. Therefore

discL/K(1, α) = det

(
TrL/K(1 · 1) TrL/K(1 · α)
TrL/K(α · 1) TrL/K(α · α)

)
= det

(
2 −b
−b b2 − 2c

)
= 2b2 − 4c− b2

= b2 − 4c,

which is the familiar discriminant of X2 + bX + c.

In the special cases that L = K(α), there are two formulas for the discriminant of the
power basis {1, α, . . . , αn−1} of K(α)/K in terms of the minimal polynomial f(X) for α
over K, which we state here without proof:3

• If f(X) = (X − α1) · · · (X − αn) over a splitting field, then

discK(α)/K(1, α, . . . , αn−1) =
∏
i<j

(αj − αi)2.

• The discriminant is the norm of a derivative, up to a sign:

discK(α)/K(1, α, . . . , αn−1) = (−1)n(n−1)/2NK(α)/K(f ′(α)).

Example 4.3. In the notation of Example 4.2, f(X) = X2 + bX + c. Factoring f(X) over
a splitting field as (X − α1)(X − α2), we have α1 + α2 = −b and α1α2 = c by equating
coefficients, so (α2 − α1)

2 = (α1 + α2)
2 − 4α1α2 = b2 − 4c.

Alternatively, (−1)n(n−1)/2NK(α)/K(f ′(α)) = −NK(α)/K(2α + b). The matrix for mul-

tiplication by 2α + b in the basis {1, α} is ( b −2c2 −b ), whose determinant is −b2 + 4c, so

−NK(α)/K(2α+ b) = b2 − 4c.

5. The Trace and Norm in terms of Roots

The numbers TrL/K(α) and NL/K(α) can be expressed in terms of the coefficients or the
roots of the minimal polynomial of α over K. To explain this we need another polynomial in
K[X] related to α besides its minimal polynomial over K, inspired by more linear algebra.

Definition 5.1. For α ∈ L, its characteristic polynomial relative to the extension L/K is
the characteristic polynomial of a matrix representation [mα]:

χα,L/K(X) = det(X · In − [mα]) ∈ K[X],

where n = [L : K].

Note that we are defining the characteristic polynomial of a matrix A to be det(XIn−A),
not det(A−XIn). This is because we like our polynomials to be monic; if we used the second
way then the leading coefficient would be (−1)n.

Example 5.2. For the extension C/R, the characteristic polynomial of the matrix in
Example 2.2 is χa+bi,C/R(X) = X2 − 2aX + a2 + b2.

3Proofs are given in the second handout on trace and norm.



TRACE AND NORM 9

Example 5.3. For the extension Q(
√

2)/Q, the characteristic polynomial of the matrix in
Example 2.3 is χa+b

√
2,Q(

√
2)/Q(X) = X2 − 2aX + a2 − 2b2.

Example 5.4. For the extension Q( 3
√

2)/Q, from Example 2.4 χa+b 3√2+c 3√4,Q( 3√2)/Q(X) =

X3 − 3aX2 + (3a2 − 6bc)X − (a3 + 2b3 + 4c3 − 6abc).

Example 5.5. For c ∈ K, mc : L → L has matrix representation cIn, so χc,L/K(X) =

det(XIn − cIn) = (X − c)n = Xn − ncXn−1 + · · ·+ (−1)ncn.

For each n×n square matrix A, its trace and determinant appear up to sign as coefficients
in its characteristic polynomial:

det(XIn −A) = Xn − Tr(A)Xn−1 + · · ·+ (−1)n detA,

so

(5.1) χα,L/K(X) = Xn − TrL/K(α)Xn−1 + · · ·+ (−1)nNL/K(α).

This tells us the trace and norm of α are, up to sign, coefficients of the characteristic
polynomial of α, which can be seen in the above examples. Unlike the minimal polynomial
of α over K, whose degree [K(α) : K] varies with K, the degree of χα,L/K(X) is always n,
which is independent of the choice of α in L.

Theorem 5.6. Every α in L is a root of its characteristic polynomial χα,L/K(X).

Proof. This will be a consequence of the Cayley-Hamilton theorem in linear algebra, which
says every linear operator on a finite-dimensional vector space is killed by its characteristic
polynomial: if a square matrix A has characteristic polynomial χ(X) = det(XIn − A) ∈
K[X], then χ(A) = O.

For a polynomial f(X) = Xn + cn−1X
n−1 + · · ·+ c1X + c0 in K[X],

f([mα]) = [mα]n + cn−1[mα]n−1 + · · ·+ c1[mα] + c0In

= [mαn ] + cn−1[mαn−1 ] + · · ·+ c1[mα] + c0[m1] since [mx][my] = [mxy]

= [mαn ] + [mcn−1αn−1 ] + · · ·+ [mc1α] + [mc0 ] since c[mx] = [mcx]

= [mαn +mcn−1αn−1 + · · ·+mc1α +mc0 ] since [mx] + [my] = [mx +my]

= [mαn+cn−1αn−1+···+c1α+c0 ] since mx +my = mx+y

= [mf(α)].

In words, the value f(X) at a matrix for multiplication by α on L is a matrix for multiplica-
tion by f(α) on L. Taking for f(X) the polynomial χα,L/K(X), we have χα,L/K([mα]) = O
by Cayley–Hamilton, so [mχα,L/K(α)] = O. The only β in L such that [mβ] = O is 0, so

χα,L/K(α) = 0. �

Example 5.7. The complex number a+bi is a root of χa+bi,C/R(X) = X2−2aX+a2 +b2,
which can be seen by direct substitution of a+ bi into this polynomial.

Example 5.8. Let γ3 − γ − 1 = 0 over Q. Since [Q(γ) : Q] = 3 and γ2 is irrational
(otherwise γ can’t have degree 3 over Q), Q(γ2) = Q(γ), so γ2 has a minimal polynomial
of degree 3 over Q. What is that minimal polynomial? A tedious way to find it is to solve

(γ2)3 + a(γ2)2 + bγ2 + c = 0

for unknown rational coefficients a, b, c by expressing γ6 and γ4 as Q-linear combinations
of 1, γ, γ2 to get a system of 3 linear equations in the three unknowns a, b, c, and solve for
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a, b, c. Ugh. A more direct method is to calculate the characteristic polynomial of [mγ2 ] in

(3.1), which is X3 − 2X2 + X − 1 (check!). This has γ2 as a root by Theorem 5.6 and it
has the right degree, so X3 − 2X2 + X − 1 is the minimal polynomial of γ2 over Q. Isn’t
that nice?

If L = K(α), then χα,L/K(X) is the minimal polynomial of α over K since this polynomial
is monic in K[X], has α as a root, and its degree is [L : K] = [K(α) : K]. If α doesn’t
generate L over K then χα,L/K(X) is not the minimal polynomial of α in K[X] since the
degree of χα,L/K(X) is n = [L : K], which is too big. However, the characteristic polynomial
tells us the minimal polynomial in principle, since it is a power of the minimal polynomial.

Theorem 5.9. For α ∈ L, let πα,K(X) be the minimal polynomial of α in K[X]. If

L = K(α) then χα,L/K(α) = πα,K(X). More generally, χα,L/K(X) = πα,K(X)n/d where
d = deg πα,K(X) = [K(α) : K].

In words, χα,L/K(X) is the power of the minimal polynomial of α over K that has degree
n. For example, if c ∈ K its minimal polynomial in K[X] is X − c while its characteristic
polynomial for L/K is (X − c)n.

Proof. A K-basis of K(α) is {1, α, . . . , αd−1}. Let m = [L : K(α)] and β1, . . . , βm be a
K(α)-basis of L. Then a K-basis of L is

{β1, αβ1, . . . , αd−1β1, . . . , βm, αβm, . . . , αd−1βm}.

Let α ·αj =
∑d−1

i=0 cijα
i for 0 ≤ j ≤ d−1, where cij ∈ K. The matrix for multiplication by α

on K(α) with respect to {1, α, . . . , αd−1} is (cij), so χα,K(α)/K(X) = det(X ·Id−(cij)). This
polynomial has α as a root by Theorem 5.6 (using K(α) in place of L) and it has degree d.
Therefore det(X · Id − (cij)) = πα,K(X) because πα,K(X) is the only monic polynomial in
K[X] of degree d = [K(α) : K] with α as a root.

Since α · αjβk =
∑d−1

i=0 cijα
iβk, with respect to the above K-basis of L the matrix for

mα is a block diagonal matrix with m repeated d× d diagonal blocks (cij), so χα,L/K(X) =

det(X · Id − (cij))
m = πα,K(X)m = πα,K(X)n/d.

If L = K(α) then n/d = 1, so the characteristic and minimal polynomials of α coincide.
�

Corollary 5.10. Let the minimal polynomial for α over K be Xd+cd−1X
d−1+· · ·+c1X+c0.

Then
TrK(α)/K(α) = −cd−1, NK(α)/K(α) = (−1)dc0,

and more generally

TrL/K(α) = −n
d
cd−1, NL/K(α) = (−1)nc

n/d
0 .

Proof. We will prove the general formula at the end. The special case L = K(α) then arises
from setting n = d.

Write πα,K(X) for the minimal polynomial of α over K. By Theorem 5.9,

χα,L/K(X) = πα,K(X)n/d

= (Xd + cd−1X
d−1 + · · ·+ c1X + c0)

n/d

= Xn +
n

d
cd−1X

n−1 + · · ·+ c
n/d
0 .

From this formula and (5.1), TrL/K(α) = −n
d cd−1 and NL/K(α) = (−1)nc

n/d
0 . �
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Example 5.11. If γ is a root of X3 −X − 1, then

TrQ(γ)/Q(γ) = 0, NQ(γ)/Q(γ) = 1.

Example 5.12. If γ is a root of X4 −X − 1, then

TrQ(γ)/Q(γ) = 0, NQ(γ)/Q(γ) = −1.

Example 5.13. If γ is a root of X5 + 6X4 +X3 + 5 (which is irreducible over Q, since it’s
irreducible mod 2), then

TrQ(γ)/Q(γ) = −6, NQ(γ)/Q(γ) = −5.

In the notation of Corollary 5.10, n/d equals [L : K(α)], so we can rewrite the formu-
las for TrL/K(α) and NL/K(α) at the end of Corollary 5.10 in terms of TrK(α)/K(α) and
NK(α)/K(α), as follows:

(5.2) TrL/K(α) = [L : K(α)]TrK(α)/K(α), NL/K(α) = NK(α)/K(α)[L:K(α)].

Example 5.14. If γ is a root of X3 +X2 + 7X + 2, which is irreducible over Q, then

TrQ(γ)/Q(γ) = −1, NQ(γ)/Q(γ) = −2.

If L is an extension of Q containing γ such that [L : Q] = 12, then we make a field diagram

L

4

Q(γ)

3

Q

and see that
TrL/Q(γ) = 4(−1) = −4, NL/Q(γ) = (−2)4 = 16.

Corollary 5.15. Let the minimal polynomial for α over K split completely over a large
enough field extension of K as (X − α1) · · · (X − αd) Then

TrK(α)/K(α) = α1 + · · ·+ αd, NK(α)/K(α) = α1 · · ·αd,
and more generally

TrL/K(α) =
n

d
(α1 + · · ·+ αd), NL/K(α) = (α1 · · ·αd)n/d,

where [L : K] = n and d = [K(α) : K].

Proof. The factorization of the minimal polynomial Xd + cd−1X
d−1 + · · · + c1X + c0 into

linear factors implies cd−1 = −
∑d

i=1 αi and c0 = (−1)d
∏d
i=1 αi. Substituting these into the

formulas from Corollary 5.10 expresses the trace and norm of α in terms of the roots of the
minimal polynomial. �

The roots α1, . . . , αd of the minimal polynomial of α over K do not have to be in L for
the trace and norm formulas in Corollary 5.15 to work: those formulas use numbers that
may be outside of L. When L 6= K(α), the formulas say that the αi’s have to be repeated
n/d times in the sum and product, which makes a total of n terms in the sum and product.
This is already evident in the special case of elements in K: for c ∈ K, TrL/K(c) = nc and
NL/K(c) = cn.
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Example 5.16. If c ∈ K then χα+c,L/K(X) = χα,L/K(X − c) from the definition of the
characteristic polynomial. Since NL/K(α) = (−1)nχα,L/K(0), replacing α with α + c tells
us that NL/K(α+ c) = (−1)nχα,L/K(−c). If we use −c in place of c, then

NL/K(α− c) = (−1)nχα,L/K(c).

For instance, in Q( 3
√

2)/Q the number 3
√

2 has characteristic polynomial X3 − 2, so the
characteristic polynomial of c+ 3

√
2 for Q( 3

√
2)/Q, where c ∈ Q, is (X − c)3 − 2. Thus

NQ( 3√2)/Q(c+
3
√

2) = −((−c)3 − 2) = c3 + 2.

The norm is not c3 − 2. And this is only for c ∈ Q. To find NQ( 3√2)/Q(1 + 3
√

4 + 3
√

2) you

can’t use the above formula with c = 1 + 3
√

4: the number wouldn’t even be rational.

6. Transitivity of the trace and norm

The trace and norm maps on a field extension satisfy the following important property
for towers of fields that is called transitivity.

Theorem 6.1. Let L/F/K be finite extensions. For all α ∈ L, TrL/K(α) = TrF/K(TrL/F (α))
and NL/K(α) = NF/K(NL/F (α)).

We are not going to prove these formulas here4, but let’s illustrate them in an example.

Example 6.2. Let L = Q(γ), where α is a root of x4− 5x2 + 5. This contains F = Q(γ2),
where γ2 is a root of x2 − 5x+ 5.

Q(γ)

2

Q(γ2)

2

Q

The extension L/F has basis {1, γ}, the extension F/Q has basis {1, γ2}, and the extension
L/Q has basis {1, γ, γ2, γ3}. With respect to these bases we’ll compute TrL/Q(α) and

TrF/Q(TrL/F (α)) where α = 3− γ2 + 2γ3 . We will regularly use the algebraic relation

γ4 = 5γ2 − 5.

Calculation of TrL/Q(α) and NL/Q(α). Using the Q-basis {1, γ, γ2, γ3} of L,

α = 3− γ2 + 2γ3,

αγ = 3γ − γ3 + 2γ4 = 3γ − γ3 + 2(5γ2 − 5) = −10 + 3γ + 10γ2 − γ3,
αγ2 = −10γ + 3γ2 + 10γ3 − γ4 = −10γ + 3γ2 + 10γ3 − (5γ2 − 5) = 5− 10γ − 2γ2 + 10γ3,

αγ3 = 5γ − 10γ2 − 2γ3 + 10γ4 = 5γ − 10γ2 − 2γ3 + 10(5γ2 − 5) = −50 + 5γ + 40γ2 − 2γ3.

4See https://kconrad.math.uconn.edu/blurbs/galoistheory/tracenorm2.pdf for proofs.

https://kconrad.math.uconn.edu/blurbs/galoistheory/tracenorm2.pdf
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Therefore with respect to the Q-basis {1, γ, γ2, γ3} of L,

[mα] =


3 −10 5 −50
0 3 −10 5
−1 10 −2 40

2 −1 10 −2

 ,

so TrL/Q(α) = Tr([mα]) = 2 and NL/Q(α) = det([mα]) = 1501.

Calculation of TrF/Q(TrL/F (α)). Using the Q(γ2)-basis {1, γ} of L,

α = 3− γ2 + 2γ3 = (3− γ2) + (2γ2)γ

αγ = 3γ − γ3 + 2γ4 = 3γ − γ3 + 2(5γ2 − 5) = (−10 + 10γ2) + (3− γ2)γ,
so

(6.1) [mα] =

(
3− γ2 −10 + 10γ2

2γ2 3− γ2
)
,

and therefore TrL/F (α) = 6− 2γ2.

Using the Q-basis {1, γ2} of F ,

6− 2γ2 = 6 + (−2)γ2

(6− 2γ2)γ2 = 6γ2 − 2γ4 = 6γ2 − 2(5γ2 − 5) = 10− 4γ2,

so

[m6−2γ2 ] =

(
6 10
−2 −4

)
.

Thus TrF/Q(TrL/F (α)) = TrF/Q(6− 2γ2) = 6− 4 = 2 = TrL/Q(α).

Calculation of NF/Q(NL/F (α)). Using the Q(γ2)-basis {1, γ} of L, we found [mα] in

(6.1), from which NL/F (α) = det([mα]) = (3− γ2)2 − (−10 + 10γ2)(2γ2) = 104− 81γ2.

Using the Q-basis {1, γ2} of F , the reader should check

[m104−81γ2 ] =

(
104 405
−81 −301

)
,

so NF/Q(NL/F (α)) = NF/Q(104− 81γ2) = 104(−301)− 405(−81) = 1501 = NL/Q(α).
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