
SYMMETRIC POLYNOMIALS

KEITH CONRAD

1. Introduction

Let F be a field. A polynomial f(X1, . . . , Xn) ∈ F [X1, . . . , Xn] is called symmetric if it
is unchanged by all permutations of its variables:

f(X1, . . . , Xn) = f(Xσ(1), . . . , Xσ(n))

for every permutation σ of {1, . . . , n}.

Example 1.1. The sum X1 + · · ·+Xn and product X1 · · ·Xn are both symmetric, as are
the power sums Xr

1 + · · ·+Xr
n for all r ≥ 1.

Example 1.2. Let f(X1, X2, X3) = X5
1 + X2X3. This polynomial is unchanged if we

interchange X2 and X3, but if we interchange X1 and X3 then f becomes X5
3 + X2X1,

which is not f . This polynomial is only “partially symmetric.”

An important collection of symmetric polynomials occurs as the coefficients in the poly-
nomial

(1.1) (T −X1)(T −X2) · · · (T −Xn) = Tn − s1Tn−1 + s2T
n−2 − · · ·+ (−1)nsn.

Here s1 is the sum of the Xi’s, sn is their product, and more generally

sk =
∑

1≤i1<···<ik≤n
Xi1 · · ·Xik

is the sum of the products of the Xi’s taken k terms at a time. The polynomial sk is
symmetric in X1, . . . , Xn and is called the kth elementary symmetric polynomial – or kth
elementary symmetric function – in X1, . . . , Xn.

Example 1.3. Let α = 3+
√
5

2 and β = 3−
√
5

2 . Although α and β are not rational, their
elementary symmetric polynomials are: s1 = α+ β = 3 and s2 = αβ = 1.

Example 1.4. Let α, β, and γ be the three roots of T 3 − T − 1, so

T 3 − T − 1 = (T − α)(T − β)(T − γ).

Multiplying out the right side and equating coefficients on both sides, the elementary sym-
metric functions of α, β, and γ are s1 = α + β + γ = 0, s2 = αβ + αγ + βγ = −1, and
s3 = αβγ = 1.

Our goal is to prove the following theorem.

Theorem 1.5. The set of symmetric polynomials in F [X1, . . . , Xn] is F [s1, . . . , sn]. That
is, every symmetric polynomial in n variables is a polynomial in the elementary symmetric
functions of those n variables.
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Example 1.6. In two variables, the polynomial X3 + Y 3 is symmetric in X and Y . As a
polynomial in s1 = X + Y and s2 = XY ,

X3 + Y 3 = (X + Y )3 − 3XY (X + Y ) = s31 − 3s1s2.

There are several ways to prove Theorem 1.5. For example, it is proved in [5, Chap. IV,
Sect. 6] by a double induction on n and on the degree of the polynomial. The theorem
can also be proved using Galois theory, transcendental field extensions, and integral ring
extensions.1 The proof we will give, based on [2, Sect. 7.1], provides an explicit algorithm
that turns a symmetric polynomial in X1, . . . , Xn into a polynomial in s1, . . . , sn.

2. Lexicographic ordering on F [X1, . . . , Xn]

In F [X], many theorems are proved using induction on the degree of polynomials. The
degree is a nonnegative integer associated to each nonzero polynomial f(X): it is the largest
n ≥ 0 such that f(X) contains a monomial anX

n where an 6= 0 in F . The monomials
1, X,X2, X3, . . . (all with coefficient 1) are ordered by degree as 1 < X < X2 < . . ., and
deg(f) is the largest monomial appearing in f with a nonzero coefficient.

On F [X1, . . . , Xn] we will use a total ordering on the monomials Xi1
1 · · ·Xin

n and associate
to that ordering an analogue on F [X1, . . . , Xn] of the degree on F [X].

Definition 2.1. For i = (i1, . . . , in) and j = (j1, . . . , jn) in Nn, set i < j if, for the first
index r such that ir 6= jr, we have ir < jr. Write i ≤ j if i < j or i = j.

Example 2.2. In N4, (3, 0, 2, 4) < (5, 1, 1, 3) and (3, 0, 2, 4) < (3, 0, 3, 1).

Example 2.3. In Nn, 0 < i for all i 6= 0.

This way of ordering n-tuples in Nn is called the lexicographic (i.e., dictionary) ordering
since it resembles the way words are ordered in the dictionary alphabetically if we think of
one word as “less” than another if it comes earlier in the dictionary. The “greater” word
comes later. Alphabetical order first compares words by the first letter, if the first letters
are the same then the words are compared by the second letter, and so on. While words
in a dictionary have varying length, we are using lexicographic ordering only to compare
sequences in N with the same number of terms.

In Figure 1 some points in N2 are plotted. The lexicographic ordering compares points
by checking the x-coordinates and then the y-coordinates. For example, the points less than
(3, 2) are (3, 1), (3, 0), and each point (x, y) where x is 0, 1, or 2.

Theorem 2.4. Lexicographic ordering on Nn has the following properties.

(1) (Total ordering) For all i and j, exactly one of i = j or i < j or j < i holds.
(2) (Transitivity) If i < j and j < k then i < k. The same is true with ≤ in place of <.
(3) (Compatibility with addition) If i ≤ i′ and j ≤ j′ then i + j ≤ i′ + j′, and if either

inequality in the hypothesis is strict then the inequality in the conclusion is strict.

Proof. (1) If i 6= j, then there is an r where ir 6= jr in N. Let r be the least index where
this happens. If ir < jr then i < j, and if jr < ir then j < i.

(2) Let r be the least index where ir, jr, and kr are not all equal. We must have ir 6= jr or
jr 6= kr (if both were equalities then ir = jr = kr, which isn’t true). Since earlier coordinates

1Historically, Theorem 1.5 used to be part of the mathematical development leading to Galois theory,
which would make a proof of Theorem 1.5 by Galois theory circular, but Galois theory in its modern form
does not require Theorem 1.5.
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Figure 1. The point (3, 2) and smaller points in N2.

in i, j, and k are all equal, either ir < jr or jr < kr because i < j and j < k. Therefore
ir ≤ jr ≤ kr with at least one inequality being strict, so ir < kr and earlier coordinates in i
and k are equal. Thus i < k.

This result for ≤ is the same argument as with < except we have the extra cases where
i and j may coincide or j and k may coincide, which makes things easier.

(3) Rather than take cases based on where i and i′ may first differ or where j and j′ may
first differ, observe that i ≤ i′ ⇒ i + k ≤ i′ + k for all k: this is obvious when i = i′, and
when i < i′ the only way ir + kr differs from i′r + kr is if ir 6= i′r, and the first time this
happens we have ir < i′r, so ir + kr < i′r + kr.

Now we use that twice together with the transitivity in (2). If i ≤ i′ and j ≤ j′, then

i + j ≤ i′ + j = j + i′ ≤ j′ + i′ = i′ + j′ =⇒ i + j ≤ i′ + j′.

The case of < in place of ≤ is analogous. �

A polynomial f ∈ F [X1, . . . , Xd] is a sum of the form

f =
∑

i1,...,in≥0
ci1,...,inX

i1
1 · · ·X

in
n

where ci1,...,in ∈ F and only finitely many coefficients can be nonzero. Abbreviate this

sum to multi-index form as
∑

i ciX
i, where Xi := Xi1

1 · · ·Xin
n for i = (i1, . . . , in). Note

XiXj = Xi+j. (In the notation
∑

i, only finitely many terms are nonzero.) When f 6= 0,
lexicographic ordering lets us compare the different nonzero monomials appearing in f ,
which leads to the following concepts that generalize degree and leading terms on F [X].

Definition 2.5. Write f in F [X1, . . . , Xn] as
∑

i ciX
i. If f 6= 0, the multidegree of f is the

lexicographically largest index in Nn of a nonzero monomial in f :

mdeg f = max{i : ci 6= 0} ∈ Nn.

The multidegree of the zero polynomial is not defined. If f 6= 0 and mdeg f = d, we call
cdXd the leading term of f and cd the leading coefficient of f , written cd = lead f .



4 KEITH CONRAD

We can separate the leading term of a nonzero f of multidegree d from its other nonzero
terms to get

f = cdXd +
∑
i<d

ciX
i.

Because multidegrees are totally ordered, a nonzero polynomial in F [X1, . . . , Xn] has a
unique leading term and a unique leading coefficient in F .

Example 2.6. In Q[X1, X2], let f = 7X1X
5
2 + 3X8

2 + 9. Since max((1, 5), (0, 8), (0, 0)) =
(1, 5) in N2, mdeg(f) = (1, 5) and lead(7X1X

5
2 + 3X8

2 + 9) = 7.

Example 2.7. In F [X1, . . . , Xn], mdeg(X1) = (1, 0, . . . , 0) and mdeg(Xn) = (0, 0, . . . , 1).

Example 2.8. The polynomials with multidegree 0 are the nonzero constants.

Example 2.9. The multidegrees of the elementary symmetric polynomials are

mdeg(s1) = (1, 0, 0, . . . , 0),

mdeg(s2) = (1, 1, 0, . . . , 0),

...

mdeg(sn) = (1, 1, 1, . . . , 1).

For k = 1, . . . , n, the leading term of sk is X1 · · ·Xk, so the leading coefficient of sk is 1.

Our definition of multidegree is specific to calling X1 the “first” variable and Xn the
“last” variable. Despite its ad hoc nature (there is nothing intrinsic about making X1 the
“first” variable), the multidegree is useful since it permits us to prove theorems about all
multivariable polynomials by ordering them according to their multidegree.

The following theorem shows that a number of standard properties of the degree of
polynomials in one variable carry over to multidegrees of multivariable polynomials.

Theorem 2.10. For nonzero f and g in F [X1, . . . , Xn], mdeg(fg) = mdeg(f) + mdeg(g)
in Nn and lead(fg) = (lead f)(lead g).

For f and g in F [X1, . . . , Xn], mdeg(f + g) ≤ max(mdeg f,mdeg g) and if mdeg f <
mdeg g then mdeg(f + g) = mdeg g.

Proof. We will prove the first result and leave the second to the reader.
Let mdeg f = n and mdeg g = m, say f = cnXn +

∑
i<n ciX

i with cn 6= 0 and g =

c′mXb +
∑

j<m c′jX
j with c′m 6= 0. This amounts to pulling out the top multidegree terms

of f and g. Then fg has a nonzero term cnc
′
mXn+m and every other term has multidegree

n + j, m + i, or i + j where i < n and j < m. By Theorem 2.4, all these other multidegrees
are less than n + m, so mdeg(fg) = n + m = mdeg f + mdeg g and lead(fg) = cnc

′
m =

(lead f)(lead g). �

Example 2.11. If f and g in F [X1, . . . , Xn] are different polynomials with the same leading
term then let’s show mdeg(f − g) < mdeg f . Writing the common leading term as cnXn,

f = cnXn +
∑
i<n

aiX
i, g = cnXn +

∑
i<n

biX
i

where the sums over i < n have finitely many nonzero terms. Subtracting,

f − g =
∑
i<n

(ai − bi)Xi
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where the right side has finitely many nonzero terms. Each i on the right side is less than
n, so mdeg(f − g) < n.

In N with its usual ordering, there are only finitely many elements below a given element,
but this is not true in Nn for n ≥ 2 with lexicographic ordering: there can be infinitely
many n-tuples below an n-tuple. For instance, (0, b) < (1, 0) for all b ∈ N. In terms of
lexicographic ordering on monomials in F [X,Y ], where X > Y , this corresponds to saying

(2.1) 1 < Y < Y 2 < Y 3 < · · · < Y b < · · · < X.

However, if we have a lexicographically strictly decreasing sequence of monomials XiY j

that starts with X, the next term is a definite monomial Y j and below that there are only
finitely many possible monomials Y b (where b < j). This is an example of the following
important finiteness property of the lexicographic ordering on every Nn.

Theorem 2.12. When Nn has lexicographic ordering, each nonempty subset of Nn has a
least element. In particular, every strictly decreasing sequence d1 > d2 > d3 > · · · of Nn

using the lexicographic ordering has finitely many terms.

Note (2.1) is not an example of a strictly decreasing sequence since no specific monomial
is the next term less than X: when d1 = X, there is no d2 in (2.1).

Before proving the theorem, we consider another example in N2 (see Figure 1). Let’s see
why a lexicographically strictly decreasing sequence in N2 that starts at (3, 2) has finitely
many terms. If there is a smaller term in the sequence of the form (3, b), then b < 2 and
there are finitely many of those. After these possibilities are exhausted, if the sequence is
not finished then the next smaller term in the sequence is a point of the form (2, b), (1, b),
or (0, b). Whichever form it has, there can be only finitely many smaller points vertically
below it, and once those choices are exhausted in the sequence, the next smaller point (if
there is one) is a definite point on a vertical line further to the left. Proceeding in this way,
we obtain only finitely many terms in the sequence until the options are exhausted, So a
lexicographically strictly decreasing sequence in N2 that starts at (3, 2) has finitely many
terms even though there are infinitely many points in N2 that are less than (3, 2)!

Proof. First we will show each nonempty subset S of Nn has a lexicographically least
element. The first coordinates of elements in S are a nonempty subset of N and thus have
a least element `1. If n = 1 then `1 is the least element of S. For n ≥ 2, among the
elements of S with first coordinate `1, their second coordinates are a nonempty subset of
N and thus have a least element `2. If n = 2 then (`1, `2) is the least element of S. For
n ≥ 3, among the elements of S with first coordinate `1 and second coordinate `2, their
third coordinates are a nonempty subset of N and thus have a least element `3. Continue
this way up through the nth coordinate. The n-tuple (`1, `2, . . . , `n) in S is the least element
of S in the lexicographic ordering on Nn. It is left to the reader to rewrite this argument
as a proper proof by induction on n.

Next, to see that every lexicographically strictly decreasing sequence d1 > d2 > d3 > · · ·
in Nn is finite, assume such a sequence is infinite. Then this is a nonempty subset of
Nn without a lexicographically least element, which is impossible. So a lexicographically
strictly decreasing sequence in Nn has only finitely many terms. �

The least element in a nonempty subset of Nn is unique since lexicographic ordering on
Nn is a total ordering.
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3. Proof of Theorem 1.5

Here is a proof of Theorem 1.5 that uses lexicographic ordering on F [X1, . . . , Xn] and
Theorem 2.12 to show a recursive process must terminate in finitely many steps.

Proof. We want to show every symmetric polynomial in F [X1, . . . , Xn] is a polynomial in
F [s1, . . . , sn]. This is obvious for constant polynomials, which are 0 and polynomials of
multidegree (0, 0, . . . , 0).

Let f be a nonconstant symmetric polynomial in F [X1, . . . , Xn] with multidegree d =
(d1, . . . , dn). Pull out the leading term of f :

(3.1) f = cdXd +
∑
i<d

ciX
i = cdX

d1
1 · · ·X

dn
n +

∑
i<d

ciX
i,

where cd 6= 0. We will find a polynomial in s1, . . . , sn with the same leading term as f . Its
difference with f will be symmetric with smaller multidegree than d.

By Example 2.9 and Theorem 2.10, for nonnegative integers a1, . . . , an,

mdeg(sa11 s
a2
2 · · · s

an
n ) = a1 mdeg(s1) + a2 mdeg(s2) + · · ·+ an mdeg(sn)

= (a1 + a2 + · · ·+ an, a2 + · · ·+ an, . . . , an).

The ith coordinate here is ai + ai+1 + · · · + an. To make this equal d = (d1, . . . , dn), we
must set

(3.2) a1 = d1 − d2, a2 = d2 − d3, . . . , an−1 = dn−1 − dn, an = dn.

Does this make sense? That is, are d1 − d2, d2 − d3, . . . , dn−1 − dn, dn all nonnegative? If
not then we have a problem. We need to show the coordinates of d = mdeg(f) satisfy

(3.3) d1 ≥ d2 ≥ · · · ≥ dn ≥ 0.

Why does an n-tuple that is the multidegree of a symmetric polynomial satisfy (3.3)?
To appreciate this issue, consider f = X1X

5
2 + 3X2. The multidegree of f is (1, 5), so

the exponents don’t satisfy (3.3). This f is not symmetric, and that is the key point. If we
took f = X1X

5
2 + X5

1X2 then f is symmetric and mdeg f = (5, 1) does satisfy (3.3). The
verification of (3.3) will depend crucially on f being symmetric.

Since (d1, . . . , dn) is the multidegree of a nonzero monomial in f (the multidegree of the
leading term of f), and f is symmetric, every n-tuple with the di’s permuted is also a
multidegree of a nonzero monomial in f . (This is how the symmetry of f in the Xi’s is
used: under all permutations of the Xi’s, f stays unchanged.) For example, if f in F [x, y]
is symmetric and contains the monomial cx3y2 then f also contains the monomial cx2y3

since permuting x and y turns the first monomial into the second while not changing f .
The multidegree of f is the largest multidegree of all monomials in f , so (d1, . . . , dn)

must be larger in Nn than all of its nontrivial permutations2, which means

d1 ≥ d2 ≥ · · · ≥ dn ≥ 0.

That shows the definition of a1, . . . , an in (3.2) has nonnegative values, so sa11 · · · sann is a
polynomial. Its multidegree is the same as that of f by (3.2). Moreover, by Theorem 2.10,

lead(cds
a1
1 · · · s

an
n ) = (lead cd)(lead s1)

a1 · · · (lead sn)an = cd.

2A trivial permutation is one that exchanges equal coordinates, like (2, 2, 1) and (2, 2, 1).
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So f and cds
a1
1 · · · sann have the same leading term cdX

d1
1 · · ·Xdn

n . Set f1 := f−cdsa11 · · · sann ,
so f1 is symmetric since it is a difference of symmetric polynomials and

f = cds
a1
1 · · · s

an
n + f1.

• If f1 = 0 then f = cds
a1
1 · · · sann and we’re done.

• If f1 6= 0 then

mdeg(f1) = mdeg(f − cdsa11 · · · s
an
n ) < mdeg(f)

by Example 2.11 (the leading terms of f and cds
a1
1 · · · sann match).

Run through the same process with f1 in place of f : let f1 have leading term cd1X
d1 .

Since f1 is symmetric, some product sb11 · · · sbnn has leading term Xd1 , so f1 has the same

leading term as cd1s
b1
1 · · · sbnn . Set f2 := f1 − cd1s

b1
1 · · · sbnn , which is symmetric since it is a

difference of symmetric polynomials and

f = cds
a1
1 · · · s

an
n + f1 = cds

a1
1 · · · s

an
n + cd1s

b1
1 · · · s

bn
n + f2

where d1 < d.

• If f2 = 0 then

f = cds
a1
1 · · · s

an
n + cd1s

b1
1 · · · s

bn
n

and we’re done.
• If f2 6= 0 then mdeg(f2) < mdeg(f1) by Example 2.11.

In this way, we obtain a sequence of formulas

f = gk(s1, . . . , sn) + rk

where gk(s1, . . . , sn) is a polynomial in s1, . . . , sn and rk is a polynomial with mdeg(rk+1) <
mdeg(rk) if rk and rk+1 are not 0.

If rk is never 0 then we get an infinite decreasing sequence

mdeg(r1) > mdeg(r2) > mdeg(r3) · · ·

in Nn. This is impossible by Theorem 2.12, so some rk is 0. Thus f = gk(s1, . . . , sn), which
shows f is a polynomial in s1, . . . , sn. �

Let’s summarize the recursive step: if f is symmetric in X1, . . . , Xn that is not 0 and its

leading term is cdX
d1
1 · · ·X

dn−1

n−1 X
dn
n then either f = cds

d1−d2
1 · · · sdn−1−dn

n−1 sdnn or

mdeg(f − cdsd1−d21 · · · sdn−1−dn
n−1 sdnn ) < mdeg(f).

By repeatedly subtracting off appropriate scalar multiples of products of powers of s1, . . . , sn
we get a sequence of symmetric polynomials with decreasing multidegree if they are never
0, so they must at some point be 0 because there is no infinite decreasing sequence in Nn.

Example 3.1. In three variables, let f(X,Y, Z) = X4+Y 4+Z4. To write f as a polynomial
in the elementary symmetric polynomials in X, Y , and Z, which are

s1 = X + Y + Z, s2 = XY +XZ + Y Z, s3 = XY Z,

use lexicographic ordering with X > Y > Z (that is, X = X1, Y = X2, and Z = X3). The
multidegree of sa1s

b
2s
c
3 is (a+ b+ c, b+ c, c).
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Step 1. The leading term of f is X4, with multidegree (4, 0, 0). This is the multidegree

of s41 = (X + Y + Z)4, which has leading term X4, so set f1 = f − s41. By a calculation,

f1 = −4X3Y − 4XY 3 − 4X3Z − 4XZ3 − 4Y 3Z − 4Y Z3 − 6X2Y 2 − 6X2Z2 − 6Y 2Z2

− 12X2Y Z − 12XY 2Z − 12XY Z2.

Step 2. The symmetric polynomial f1 has leading term−4X3Y , with multidegree (3, 1, 0).
This is (a + b + c, b + c, c) when c = 0, b = 1, a = 2, so f1 has the same leading term as
−4sa1s

b
2s
c
3 = −4s21s2. Set f2 = f1 + 4s21s2:

f2 = 2X2Y 2 + 2X2Z2 + 2Y 2Z2 + 8X2Y Z + 8XY 2Z + 8XY Z2.

Step 3. The symmetric polynomial f2 has leading term is 2X2Y 2 with multidegree
(2, 2, 0). This is (a + b + c, b + c, c) when c = 0, b = 2, a = 0, so f2 has the same
leading term as 2s22. Set f3 = f2 − 2s22:

f3 = 4X2Y Z + 4XY 2Z + 4XY Z2.

Step 4. The symmetric polynomial f3 has leading term is 4X2Y Z, which has multidegree
(2, 1, 1). This is (a+ b+ c, b+ c, c) for c = 1, b = 0, and a = 1, so f3 has the same leading
term as 4s1s3. Set f4 = f3 − 4s1s3 and this vanishes:

f4 = 0.

Here is the decreasing sequence of multidegrees we obtained in successive steps before
the process terminated:

(3.4) (4, 0, 0) > (3, 1, 0) > (2, 2, 0) > (2, 1, 1).

Putting everything back together, we get X4 + Y 4 + Z4 as a polynomial in s1, s2, s3:

X4 + Y 4 + Z4 = f

= (f − f1) + (f1 − f2) + (f2 − f3) + f3

= s41 − 4s21s2 + 2s22 + 4s1s3.(3.5)

Remark 3.2. The finiteness that made the procedure in the proof of Theorem 1.5 terminate
is the finiteness of strictly decreasing sequences in Nn (Theorem 2.12). We did not write the
proof of Theorem 1.5 using induction on the multidegree of symmetric polynomials, since
Nn in the lexicographic ordering does not have finitely many multidegrees below a given
multidegree when n ≥ 2 (see (2.1), where (0, b) < (1, 0) for all b ≥ 0). We can describe
the proof of Theorem 1.5 using induction if we think carefully about what makes the idea
of induction work. Suppose for every d in Nn we have a proposition P (d) (like “every
symmetric polynomial in F [X1, . . . , Xn] of multidegree d is in F [s1, . . . , sn]”) and

• P (0) is true (Base Case),
• if d 6= 0 and P (n) is true for all n < d then P (d) is true (Inductive Step).

It follows that P (d) is true for all d in Nn. To prove that, let S = {d ∈ Nn : P (d) is false}.
We want S to be empty: if there is no d in Nn such that P (d) is false, then P (d) is true
for all d. To show S = ∅ when the two conditions above hold, assume S 6= ∅. Then S has a
least element by Theorem 2.12, say d. By the first condition above, d 6= 0. When n < d,
we have n 6∈ S since d is the least element of S, so P (n) is true for all n < d. Therefore
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P (d) is true by the second condition above. That contradicts the meaning of d being in S,
so S = ∅.3

Let’s see how to think about the proof of Theorem 1.5 in terms of induction on Nn. We
started the proof by noting the theorem is true for nonzero constant polynomials, which
are those of multidegree 0. Next, when f is symmetric with multidegree d > 0, we found
a symmetric polynomial of the form cds

a1
1 · · · sann such that that either

• f = cds
a1
1 · · · sann or

• f 6= cds
a1
1 · · · sann and mdeg(f − cdsa11 · · · sann ) < d.

In the first case, f ∈ F [s1, . . . , sn]. In the second case, f − cds
a1
1 · · · sann is nonzero and

symmetric with multidegree less than d, so if we assume all nonzero symmetric polynomials
in F [X1, . . . , Xn] of multidegree less than d are in F [s1, . . . , sn], then f − cdsa11 · · · sann is
in F [s1, . . . , sn], so f ∈ F [s1, . . . , sn]. Do you see how this fits the format of induction
on Nn? For each d ∈ Nn let P (d) be the proposition “every symmetric polynomial in
F [X1, . . . , Xn] of multidegree d is in F [s1, . . . , sn]”. Then we showed P (0) is true and we
showed that if d 6= 0 and P (n) is true for all n < d then P (d) is true. Thus P (d) is true for
all d by induction on Nn, so Theorem 1.5 is proved for all nonzero symmetric polynomials
in F [X1, . . . , Xn], and it is obvious for the polynomial 0, so the theorem is proved for all
symmetric polynomials.

Another way to prove Theorem 1.5 by induction that might feel less abstract is to modify
the method of ordering Nn: we could compare n-tuples first by the sum of their coordinates,
and in case of a tie break the tie by lexicographic order. This is called graded lexicographic
order. For example, (2, 3) > (1, 7) > (0, 5) in lexicographic order but (1, 7) > (2, 3) > (0, 5)
in graded lexicographic order. The ordering in (3.4) is valid for graded lexicographic order
since all the triples there have the same sum of coordinates (all equal 4), so the comparison
is made by lexicographic order. On nonzero monomials, graded lexicographic order amounts
to comparing first by total degree (sum of exponents) and using lexicographic order only
in case of equal total degree. When Nn is arranged in graded lexicographic order, there
are only finitely many n-tuples below a given n-tuple since that is already the case when
we order Nn just by the sum of the coordinates. This makes graded lexicographic order
closer to your intuition from the standard total ordering on N. Theorem 1.5 is proved by
induction using graded lexicographic order on monomials in [3, Theorem 2.2.2].

Corollary 3.3. Let L/K be a field extension and f(T ) ∈ K[T ] factor as

(T − α1)(T − α2) · · · (T − αn)

in L[T ]. For each positive integer r,

(T − αr1)(T − αr2) · · · (T − αrn) ∈ K[T ].

Proof. For indeterminates X1, . . . , Xn, write

(3.6) (T −Xr
1)(T −Xr

2) · · · (T −Xr
n) =

n∑
k=0

ck(X1, . . . , Xn)T k.

We can view each ck(X1, . . . , Xn) in K[X1, . . . , Xn] (its coefficients are all 0 and 1) and it is
symmetric in X1, . . . , Xn since the left side of (3.6) is symmetric in X1, . . . , Xn. Therefore

3In the case of N, the argument we just gave corresponds to the proof that the Well-Ordering Principle
on N implies the principle of mathematical induction on N. Theorem 2.12 says Nn with the lexicographic
ordering is a well-ordered set even though it has infinitely many elements below some elements if n ≥ 2.
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ck(X1, . . . , Xn) is a polynomial over K in the elementary symmetric functions of X1, . . . , Xn,
say

ck(X1, . . . , Xn) = gk(s1, . . . , sn)

where gk is a polynomial in n indeterminates over K. Then

(T −Xr
1)(T −Xr

2) · · · (T −Xr
n) =

n∑
k=0

gk(s1, . . . , sn)T k.

On both sides of this equation, specialize Xi to αi. (Each si is implicitly a polyno-
mial X1, . . . , Xn and thus also gets specialized.) The elementary symmetric functions of
α1, . . . , αn are the non-leading coefficients of f(T ) (up to a sign), so they lie in K since the
coefficients of f(T ) are in K. Therefore a polynomial in the elementary symmetric functions
of the αi’s with coefficients in K lies in K, so each gk(s1, . . . , sn) is specialized to a value
in K. �

Remark 3.4. The same reasoning shows for each h(X) ∈ K[X], not just h(X) = Xr, that

(T − h(α1))(T − h(α2)) · · · (T − h(αn)) ∈ K[T ].

The coefficient of Tn−1 in (3.6) is −(Xr
1 + · · · + Xr

n). We call Xr
1 + · · · + Xr

n the rth
power sum of X1, . . . , Xn. It can be written as a polynomial in the elementary symmetric
functions s1, . . . , sn. The next example presents some of these polynomials for n = 2 and 3.

Example 3.5. For the second, third, and fourth powers sums in two variables,

X2 + Y 2 = (X + Y )2 − 2XY = s21 − 2s2,

X3 + Y 3 = (X + Y )3 − 3(X + Y )XY = s31 − 3s1s2

X4 + Y 4 = (X + Y )4 − 4(X2 + Y 2)(XY )− 6X2Y 2 = s41 − 4s21s2 + 2s22,

where we use the formula X2 + Y 2 = s21 − 2s2 in the last calculation.

Example 3.6. For the second, third, and fourth powers sums in three variables,

X2 + Y 2 + Z2 = (X + Y + Z)2 − 2(XY +XZ + Y Z) = s21 − 2s2,

X3 + Y 3 + Z3 = (X + Y + Z)3 − 3(XY +XZ + Y Z)(X + Y + Z) + 3XY Z

= s31 − 3s1s2 + 3s3

X4 + Y 4 + Z4 = s41 − 4s21s2 + 2s22 + 4s1s3 by (3.5).

Example 3.7. Let f(T ) = T 2 + 5T + 2 = (T − α)(T − β) where α = (−5 +
√

17)/2 and
β = (−5−

√
17)/2. Although α and β are irrational, their elementary symmetric functions

are integers: s1 = α+ β = −5 and s2 = αβ = 2 . Using the formulas in Example 3.5,

α2 + β2 = p2 = s21 − 2s2 = 21,

α3 + β3 = p3 = s31 − 3s1s2 = −95,

α4 + β4 = p4 = s41 − 4s21s2 + 2s22 = 433.

Numerically, α ≈ −.438 and β ≈ −4.561, so pr = αr + βr is extremely close to βr since
|αr| → 0 rapidly as r grows. In fact, pr turns out to be the nearest integer to βr: compare
β2 ≈ 20.807, β3 ≈ −94.915, and β4 ≈ 432.963. The way we computed the power sums
above needed no approximations or formulas for α and β. The power sums are determined
by the elementary symmetric functions s1 and s2 using exact calculations with integers.
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Example 3.8. Let α, β, and γ be the three roots of T 3 − T − 1, so

T 3 − T − 1 = (T − α)(T − β)(T − γ).

The elementary symmetric functions of α, β, and γ are all s1 = 0 , s2 = −1 , and s3 = 1 ,
so by the formulas in Example 3.6,

α2 + β2 + γ2 = p2 = s21 − 2s2 = 2,

α3 + β3 + γ3 = p3 = s31 − 3s1s2 + 3s3 = 3,

α4 + β4 + γ4 = p4 = s41 − 4s21s2 + 2s22 + 4s1s3 = 2.

The next few power sums are p5 = 5, p6 = 5, p7 = 7, and p8 = 10. We do not need formulas
for α, β, and γ to make these power sum calculations. All of them are determined by the
elementary symmetric function values s1, s2, and s3, which come from the coefficients of
T 3 − T − 1.

Comparing the formulas in Examples 3.5 and 3.6 for the same exponent, they match
in degree 2 but look different in degrees 3 and 4, However, they are the same formula in
degree 3 by taking s3 = 0 for two variables and they are the same formula in degree 4 by
also taking s4 = 0 for two variables. If we let sk(X1, . . . , Xn) = 0 when k > n then there are
“universal” formulas for power sums pr = Xr

1 + · · ·+Xr
n in terms of elementary symmetric

polynomials in any number of variables, starting out as

p1 = s1,

p2 = s21 − 2s2,

p3 = s31 − 3s1s2 + 3s3,

p4 = s41 − 4s21s2 + 2s22 + 4s1s3 − 4s4.

There is some apparent regularity in these formulas: the first two terms in the formula for
pr appear to be sr1−rs

r−2
1 s2. A nice regularity for all r can be seen in determinant formulas:

p2 = det

(
s1 1
2s2 s1

)
, p3 = det

 s1 1 0
2s2 s1 1
3s3 s2 s1

 , p4 = det


s1 1 0 0
2s2 s1 1 0
3s3 s2 s1 1
4s4 s3 s2 s1

 .

4. Uniqueness for Theorem 1.5

The proof of Theorem 1.5 leads to a specific way of writing a symmetric polynomial f
in X1, . . . , Xn as a polynomial in s1, . . . , sn, but that does not automatically mean there
can only be one such representation of f as a polynomial in s1, . . . , sn: just because an
algorithm has a well-determined final result does not mean the problem it is solving only
has one answer. For instance, if we apply Euclid’s algorithm to solve 18x + 5y = 1 in
integers, we get the specific solution (x, y) = (2,−7), but the equation 18x + 5y = 1 has
infinitely many integral solutions: (x, y) = (2 + 5t,−7− 18t) for all t ∈ Z. It turns out that
symmetric polynomials in X1, . . . , Xn do have a unique representation as a polynomial in
s1, . . . , sn.

Theorem 4.1. Every symmetric polynomial in F [X1, . . . , Xn] can be written in only one
way as a polynomial in the elementary symmetric functions of X1, . . . , Xn.
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Proof. Let s1, . . . , sn be the elementary symmetric functions of X1, . . . , Xn. Each polyno-
mial in F [X1, . . . , Xn] that is symmetric in the Xi’s is in F [s1, . . . , sn] by Theorem 1.5.

To prove uniqueness of this representation, suppose g(Y1, . . . , Yn) and h(Y1, . . . , Yn) in
F [Y1, . . . , Yn] satisfy g(s1, . . . , sn) = h(s1, . . . , sn) in F [X1, . . . , Xn]. We want to show g = h
in F [Y1, . . . , Yn] (that is, each monomial in Y1, . . . , Yn has the same coefficients in g and h).
By passing to the difference g(Y1, . . . , Yn)− h(Y1, . . . , Yn), we are reduced to showing that

g(s1, . . . , sn) = 0 in F [X1, . . . , Xn] =⇒ g(Y1, . . . , Yn) = 0 in F [Y1, . . . , Yn].

We will prove the contrapositive: if g(Y1, . . . , Yn) 6= 0 in F [Y1, . . . , Yn] then g(s1, . . . , sn) 6= 0
in F [X1, . . . , Xn].

Write the nonzero g(Y1, . . . , Yn) as a sum of finitely many monomials in the Yi’s:

g(Y1, . . . , Yn) =
∑
i

ciY
i

and some ci is nonzero. Therefore

(4.1) g(s1, . . . , sn) =
∑
i

cis
i1
1 · · · s

in
n .

Different terms in this sum, as a polynomial in X1, . . . , Xn, could share some monomials and
thus lead to cancellation when like monomials are added together. To show g(s1, . . . , sn) 6=
0, we want at least one monomial in the Xi’s not to cancel out in g(s1, . . . , sn).

The subtle issue here is that the leading term of g(Y1, . . . , Yn) need not contain the leading
term of g(s1, . . . , sn) as a polynomial in X1, . . . , Xn. For example, suppose g(Y1, Y2) =
Y 5
1 + Y 5

2 , which has leading term Y 5
1 . Replacing Yi with si,

g(s1, s2) = s51 + s52 = (X1 +X2)
5 + (X1X2)

5,

and the leading term is (X1X2)
5, which comes from the non-leading term Y 5

2 in g(Y1, Y2)
after substituting si for Yi. In the general case, the leading term of g(s1, . . . , sn) as a
polynomial in X1, . . . , Xn comes from somewhere in g(Y1, . . . , Yn) but it’s not clear where.

We can compute the leading term of si11 · · · sinn as a polynomial in X1, . . . , Xn by Example
2.9 and Theorem 2.10 because the multidegree tells us the exponents for the leading term:

mdeg(si11 · · · s
in
n ) =

n∑
k=1

ik mdeg(sk)

= i1(1, 0, 0, . . . , 0) + i2(1, 1, 0, . . . , 0) + · · ·+ in(1, 1, 1, . . . , 1)

= (i1 + i2 + · · ·+ in, i2 + · · ·+ in, . . . , in−1 + in, in).(4.2)

For i and j in Nn, comparing the formulas

mdeg(si11 · · · s
in
n ) = (i1 + i2 + · · ·+ in, i2 + · · ·+ in, . . . , in−1 + in, in),

mdeg(sj11 · · · s
jn
n ) = (j1 + j2 + · · ·+ jn, j2 + · · ·+ jn, . . . , jn−1 + jn, jn)

from rightmost to the leftmost coordinates shows that if mdeg(si11 · · · sinn ) = mdeg(sj11 · · · s
jn
n )

then i = j. Therefore when the n-tuples i and j are different, the polynomials si11 · · · sinn
and sj11 · · · s

jn
n in F [X1, . . . , Xn] have different multidegrees and leading coefficients 1 (each

si has leading coefficient 1). Therefore the terms in (4.1) with nonzero coefficient ci have
different multidegrees, so one of them (we don’t know which!) is greatest. The last part of
Theorem 2.10 extends to more than two polynomials:

mdeg(f1) > mdeg(f2), . . . ,mdeg(fm) =⇒ mdeg(f1 + f2 + · · ·+ fm) = mdeg(f1).
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Apply this when f1, . . . , fm are the nonzero terms in (4.1): mdeg(g(s1, . . . , sn)) is the largest
multidegree of a nonzero term in (4.1). In particular, g(s1, . . . , sn) 6= 0. �

Example 4.2. The only expression of X4 + Y 4 + Z4 as a polynomial in s1, s2, and s3 is
the one appearing in (3.5).

In the proofs of Theorems 1.5 and 4.1, the fact that the coefficients come from a field F
rather than a ring is not important since we never had to divide in F . The same proofs
show for a nonzero commutative ring R that each symmetric polynomial in R[X1, . . . , Xn]
lies in R[s1, . . . , sn] in exactly one way.4 For instance, Theorems 1.5 and 4.1 together using
integer coefficients take the following form.

Theorem 4.3. The set of all symmetric polynomials in Z[X1, . . . , Xn] is Z[s1, . . . , sn], and
each element of Z[s1, . . . , sn] is a polynomial in s1, . . . , sn in exactly one way.

Example 4.4. Taking α and β as in Example 3.7, their elementary symmetric functions are
both integers: α+ β = −5 and αβ = 2. If f(X,Y ) is a symmetric polynomial with integer
coefficients then f(X,Y ) = g(X +Y,XY ) where g is a polynomial with integer coefficients.
Therefore f(α, β) = g(−5, 2) ∈ Z. This implies (T − αr)(T − βr), whose coefficients are
αr + βr and αrβr, has integral coefficients and not just rational coefficients. That is why
the calculations with r = 2, 3, and 4 in Example 3.7 have coefficients in Z.

Remark 4.5. Theorem 4.3 is used in the proof that π is transcendental [1, Section 5.2], [6,
Chapter 3].

5. History

Lexicographic ordering on multivariable polynomials and its application to the proof of
Theorem 1.5 go back to Gauss [4, pp. 36–37], who used Theorem 1.5 in his second proof of
the Fundamental Theorem of Algebra. His description of lexicographic ordering is shown in
Figure 2, where the Latin text says “from the two terms Maαbβcγ · · · and Maα

′
bβ
′
cγ
′ · · · ,

call the first one of higher order than the second if α > α′ or if α = α′ and β > β′, or if
α = α′, β = β′, and γ > γ′, etc.”.

Figure 2. Gauss’s definition of lexicographic ordering.

The lexicographic ordering is just one example of a total ordering on monomials in mul-
tivariable polynomial rings. These orderings are part of computer algebra systems that are
widely used in computational commutative algebra and algebraic geometry.

4There is a slight technicality to be aware of: if R is not a domain then the formula mdeg(fg) =
mdeg f + mdeg g is true only as long as the leading coefficients of f and g are both not zero-divisors in R,
and that is true for the case of elementary symmetric polynomials s1, . . . , sn since their leading coefficients
equal 1.
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