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Let F be a field. A polynomial f(X1, . . . , Xn) ∈ F [X1, . . . , Xn] is called symmetric if it
is unchanged by all permutations of its variables:

f(X1, . . . , Xn) = f(Xσ(1), . . . , Xσ(n))

for every permutation σ of {1, . . . , n}.

Example 1. The sum X1+ · · ·+Xn and product X1 · · ·Xn are symmetric, as are the power
sums Xr

1 + · · ·+Xr
n for all r ≥ 1.

Example 2. Let f(X1, X2, X3) = X5
1 + X2X3. This polynomial is unchanged if we inter-

change X2 and X3, but if we interchange X1 and X3 then f becomes X5
3 +X2X1, which is

not f . This polynomial is only “partially symmetric.”

An important collection of symmetric polynomials occurs as the coefficients in the poly-
nomial

(1) (T −X1)(T −X2) · · · (T −Xn) = Tn − s1Tn−1 + s2T
n−2 − · · ·+ (−1)nsn.

Here s1 is the sum of the Xi’s, sn is their product, and more generally

sk =
∑

1≤i1<···<ik≤n
Xi1 · · ·Xik

is the sum of the products of the Xi’s taken k terms at a time. The sk’s are all symmetric in
X1, . . . , Xn and are called the elementary symmetric polynomials – or elementary symmetric
functions – in the Xi’s

Example 3. Let α = 3+
√
5

2 and β = 3−
√
5

2 . Although α and β are not rational, their
elementary symmetric polynomials are: s1 = α+ β = 3 and s2 = αβ = 1.

Example 4. Let α, β, and γ be the three roots of T 3 − T − 1, so

T 3 − T − 1 = (T − α)(T − β)(T − γ).

Multiplying out the right side and equating coefficients on both sides, the elementary sym-
metric functions of α, β, and γ are s1 = α + β + γ = 0, s2 = αβ + αγ + βγ = −1, and
s3 = αβγ = 1.

Theorem 5. The set of symmetric polynomials in F [X1, . . . , Xn] is F [s1, . . . , sn]. That
is, every symmetric polynomial in n variables is a polynomial in the elementary symmetric
functions of those n variables.

Example 6. In two variables, the polynomial X3 + Y 3 is symmetric in X and Y . As a
polynomial in X + Y and XY ,

X3 + Y 3 = (X + Y )3 − 3XY (X + Y ) = s31 − 3s1s2.
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Our proof of Theorem 5 will proceed by induction on the multidegree of a polynomial in
several variables, which is defined in terms of a certain ordering on multivariable polyno-
mials, as follows.

Definition 7. For two vectors a = (a1, . . . , an) and b = (b1, . . . , bn) in Nn, set a < b if,
for the first i such that ai 6= bi, we have ai < bi.

Example 8. In N4, (3, 0, 2, 4) < (5, 1, 1, 3) and (3, 0, 2, 4) < (3, 0, 3, 1).

For two n-tuples a and b in Nn, either a = b, a < b, or b < a, so Nn is totally ordered
under <. (For example, (0, 0, . . . , 0) < a for all a 6= (0, 0, . . . , 0).) This way of ordering
n-tuples is called the lexicographic (i.e., dictionary) ordering since it resembles the way
words are ordered in the dictionary: first order by the first letter, and for words with the
same first letter order by the second letter, and so on.

It is simple to check that for i, j, and k in Nn,

(2) i < j =⇒ i + k < j + k.

A polynomial f ∈ F [X1, . . . , Xn] can be written in the form

f(X1, . . . , Xn) =
∑
i1,...,in

ci1,...,inX
i1
1 · · ·X

in
n .

We will abbreviate this in multi-index form to f =
∑

i ciT
i, where T i := Xi1

1 · · ·Xin
n for

i = (i1, . . . , in). Note T iT j = T i+j.

Definition 9. For a nonzero polynomial f ∈ F [X1, . . . , Xn], write f =
∑

i ciT
i. Set the

multidegree of f to be

mdeg f = max{i : ci 6= 0} ∈ Nn.

The multidegree of the zero polynomial is not defined. If mdeg f = a, we call caT
a the

leading term of f and ca the leading coefficient of f , written ca = lead f .

Example 10. mdeg(7X1X
5
2 + 3X2) = (1, 5) and lead(7X1X

5
2 + 3X2) = 7.

Example 11. mdeg(X1) = (1, 0, . . . , 0) and mdeg(Xn) = (0, 0, . . . , 1).

Example 12. The multidegrees of the elementary symmetric polynomials are mdeg(s1) =
(1, 0, 0, . . . , 0), mdeg(s2) = (1, 1, 0, . . . , 0), . . . , and mdeg(sn) = (1, 1, 1, . . . , 1). For k =
1, . . . , n, the leading term of sk is X1 · · ·Xk, so the leading coefficient of sk is 1.

Example 13. Polynomials with multidegree (0, 0, . . . , 0) are the nonzero constants.

Remark 14. There is a simpler notion of “degree” of a multivariable polynomial: the
largest sum of exponents of a nonzero monomial in the polynomial, e.g., X1X

3
2 + X2

1 has
degree 4. This degree has values in N rather than Nn. We won’t be using it; the multidegree
is more convenient for our purposes.

Our definition of multidegree is specific to calling X1 the “first” variable and Xn the
“last” variable. Despite its ad hoc nature (there is nothing intrinsic about making X1 the
“first” variable), the multidegree is useful since it permits us to prove theorems about all
multivariable polynomials by induction on the multidegree.

The following lemma shows that a number of standard properties of the degree of poly-
nomials in one variable carry over to multidegrees of multivariable polynomials.
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Lemma 15. For nonzero f and g in F [X1, . . . , Xn], mdeg(fg) = mdeg(f) + mdeg(g) in
Nn and lead(fg) = (lead f)(lead g).

For f and g in F [X1, . . . , Xn], mdeg(f + g) ≤ max(mdeg f,mdeg g) and if mdeg f <
mdeg g then mdeg(f + g) = mdeg g.

Proof. We will prove the first result and leave the second to the reader.
Let mdeg f = a and mdeg g = b, say f = caT

a +
∑

i<a ciT
i with ca 6= 0 and g =

c′bT
b +

∑
j<b c

′
jT

j with c′b 6= 0. This amounts to pulling out the top multidegree terms of f

and g. Then fg has a nonzero term cac
′
bT

a+b and every other term has multidegree a + j,
b + i, or i + j where i < a and j < b. By (2), all these other multidegrees are less than
a + b, so mdeg(fg) = a + b = mdeg f + mdeg g and lead(fg) = cac

′
b = (lead f)(lead g). �

Now we are ready to prove Theorem 5.

Proof. We want to show every symmetric polynomial in F [X1, . . . , Xn] is a polynomial in
F [s1, . . . , sn]. We can ignore the zero polynomial. Our argument is by induction on the
multidegree. Multidegrees are totally ordered, so it makes sense to give a proof using
induction on them. A polynomial in F [X1, . . . , Xn] with multidegree (0, 0, . . . , 0) is in F ,
and F ⊂ F [s1, . . . , sn].

Now pick an d 6= (0, 0, . . . , 0) in Nn and suppose the theorem is proved for all symmetric
polynomials with multidegree less than d. Write d = (d1, . . . , dn). Pick a symmetric
polynomial f with multidegree d. (If there are no symmetric polynomials with multidegree
d, then there is nothing to do and move on the next n-tuple in the total ordering on Nn.)

Pull out the leading term of f :

(3) f = cdX
d1
1 · · ·X

dn
n +

∑
i<d

ciT
i,

where cd 6= 0. We will find a polynomial in s1, . . . , sn with the same leading term as f . Its
difference with f will then be symmetric with smaller multidegree than d, so by induction
we’ll be done.

By Example 12 and Lemma 15, for nonnegative integers a1, . . . , an,

mdeg(sa11 s
a2
2 · · · s

an
n ) = (a1 + a2 + · · ·+ an, a2 + · · ·+ an, . . . , an).

The ith coordinate here is ai + ai+1 + · · · + an. To make this multidegree equal to d, we
must set

(4) a1 = d1 − d2, a2 = d2 − d3, . . . , an−1 = dn−1 − dn, an = dn.

But does this make sense? That is, do we know that d1 − d2, d2 − d3, . . . , dn−1 − dn, dn
are all nonnegative? If that isn’t true then we have a problem. So we need to show the
coordinates in d satisfy

(5) d1 ≥ d2 ≥ · · · ≥ dn ≥ 0.

In other words, an n-tuple that is the multidegree of a symmetric polynomial has to satisfy
(5).

To appreciate this issue, consider f = X1X
5
2 + 3X2. The multidegree of f is (1, 5), so

the exponents don’t satisfy (5). But this f is not symmetric, and that is the key point. If
we took f = X1X

5
2 +X5

1X2 then f is symmetric and mdeg f = (5, 1) does satisfy (5). The
verification of (5) will depend crucially on f being symmetric.

Since (d1, . . . , dn) is the multidegree of a nonzero monomial in f , and f is symmetric,
every vector with the di’s permuted is also a multidegree of a nonzero monomial in f .
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(Here is where the symmetry of f in the Xi’s is used: under all permutations of the Xi’s,
f stays unchanged.) Since (d1, . . . , dn) is the largest multidegree of all the monomials in f ,
(d1, . . . , dn) must be larger in Nn than all of its nontrivial permutations1, which means

d1 ≥ d2 ≥ · · · ≥ dn ≥ 0.

That shows the definition of a1, . . . , an in (4) has nonnegative values, so sa11 · · · sann is a
polynomial. Its multidegree is the same as that of f by (4). Moreover, by Lemma 15,

lead(sa11 · · · s
an
n ) = (lead s1)

a1 · · · (lead sn)an = 1.

Therefore f and cds
a1
1 · · · sann , where cd = lead f , have the same leading term, namely

cdX
d1
1 · · ·Xdn

n . If f = cds
a1
1 · · · sann then we’re done. If f 6= cds

a1
1 · · · sann then the difference

f − cdsa11 · · · sann is nonzero with

mdeg(f − cdsa11 · · · s
an
n ) < (d1, . . . , dn).

The polynomial f−cdsa11 · · · sann is symmetric since both terms in the difference are symmet-
ric. By induction on the multidegree, f − cdsa11 · · · sann ∈ F [s1, . . . , sn], so f ∈ F [s1, . . . , sn].

�

Let’s summarize the recursive step: if f is a symmetric polynomial in X1, . . . , Xn then

leading term of f is cdX
d1
1 · · ·X

dn−1

n−1 X
dn
n =⇒ mdeg(f−cdsd1−d21 · · · sdn−1−dn

n−1 sdnn ) < mdeg(f).

Example 16. In three variables, let f(X,Y, Z) = X4 + Y 4 +Z4. We want to write this as
a polynomial in the elementary symmetric polynomials in X, Y , and Z, which are

s1 = X + Y + Z, s2 = XY +XZ + Y Z, s3 = XY Z.

Treating X,Y, Z as X1, X2, X3, the multidegree of sa1s
b
2s
c
3 is (a+ b+ c, b+ c, c).

The leading term of f is X4, with multidegree (4, 0, 0). This is the multidegree of s41 =
(X + Y + Z)4, which has leading term X4. So we subtract:

f − s41 = −4x3y − 4x3z +−6x2y2 − 12x2yz − 6x2z2 − 4xy3 − 12xy2z − 12xyz2

−4xz3 − 4y3z − 6y2z2 − 4yz3.

This has leading term −4x3y, with multidegree (3, 1, 0). This is (a + b + c, b + c, c) when
c = 0, b = 1, a = 2. So we add 4sa1s

b
2s
c
3 = 4s21s2 to f − s41 to cancel the leading term:

f − s41 + 4s21s2 = 2x2y2 + 8x2yz + 2x2z2 + 8xy2z + 8xyz2 + 2y2z2,

whose leading term is 2x2y2 with multidegree (2, 2, 0). This is (a+b+c, b+c, c) when c = 0,
b = 2, a = 0. So we subtract 2s22:

f − s41 + 4s21s2 − 2s22 = 4x2yz + 4xy2z + 4xyz2.

The leading term is 4x2yz, which has multidegree (2, 1, 1). This is (a + b + c, b + c, c) for
c = 1, b = 0, and a = 1, so we subtract 4s1s3:

f − s41 + 4s21s2 − 2s22 − 4s1s3 = 0.

Thus

(6) X4 + Y 4 + Z4 = s41 − 4s21s2 + 2s22 + 4s1s3.

1A trivial permutation is one that exchanges equal coordinates, like (2, 2, 1) and (2, 2, 1).
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Remark 17. The proof we have given here is based on [2, Sect. 7.1], where there is
an additional argument that shows the representation of a symmetric polynomial as a
polynomial in the elementary symmetric polynomials is unique. (For example, the only
expression of X4 + Y 4 + Z4 as a polynomial in s1, s2, and s3 is the one appearing in
(6).) For a different proof of Theorem 5, which uses the more usual notion of degree of a
multivariable polynomial described in Remark 14, see [1, Sect. 16.1] (there is a gap in that
proof, but the basic ideas are there).

Corollary 18. Let L/K be a field extension and f(T ) ∈ K[T ] factor as

(T − α1)(T − α2) · · · (T − αn)

in L[T ]. Then for all positive integers r,

(T − αr1)(T − αr2) · · · (T − αrn) ∈ K[T ].

Proof. The coefficients of (T − αr1)(T − αr2) · · · (T − αrn) are symmetric polynomials in
α1, . . . , αn with coefficients in K, so these coefficients are polynomials in the elementary
symmetric polynomials in the αi’s with coefficients in K. The elementary symmetric poly-
nomials in the αi’s are (up to sign) the coefficients of f(T ), so they lie in K. Therefore
every polynomial in the elementary symmetric functions of the αi’s with coefficients in K
lies in K. �

Example 19. Let f(T ) = T 2 + 5T + 2 = (T − α)(T − β) where α = (−5 +
√

17)/2 and
β = (−5−

√
17)/2. Although α and β are not rational, their elementary symmetric functions

are rational: s1 = α + β = −5 and s2 = αβ = 2. Therefore each symmetric polynomial in
α and β with rational coefficients is rational (since it is a polynomial in α+ β and αβ with
rational coefficients). In particular, (T − αr)(T − βr) ∈ Q[T ] for all r ≥ 1. Taking r = 2, 3,
and 4, we have

(T − α2)(T − β2) = T 2 − 21T + 4,

(T − α3)(T − β3) = T 2 + 95T + 8,

(T − α4)(T − β4) = T 2 − 433T + 16.

Example 20. Let α, β, and γ be the three roots of T 3 − T − 1, so

T 3 − T − 1 = (T − α)(T − β)(T − γ).

The elementary symmetric functions of α, β, and γ are all rational, so for every positive
integer r, (T − αr)(T − βr)(T − γr) has rational coefficients. As explicit examples,

(T − α2)(T − β2)(T − γ2) = T 3 − 2T 2 + T − 1,

(T − α3)(T − β3)(T − γ3) = T 3 − 3T 2 + 2T − 1.

In the proof of Theorem 5, the fact that the coefficients come from a field F is not
important; we never had to divide in F . The same proof shows for all commutative rings
R that the symmetric polynomials in R[X1, . . . , Xn] are R[s1, . . . , sn]. (Actually, there is a
slight hitch: if R is not a domain then the formula mdeg(fg) = mdeg f + mdeg g is true
only as long as the leading coefficients of f and g are both not zero-divisors in R, and that
is true for the relevant case of elementary symmetric polynomials s1, . . . , sn, whose leading
coefficients equal 1.)
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Example 21. Taking α and β as in Example 19, their elementary symmetric functions are
both integers, so every symmetric polynomial in α and β with integral coefficients is an
integral polynomial in α+ β and αβ with integral coefficients, and thus is an integer. This
implies (T − αr)(T − βr), whose coefficients are αr + βr and αrβr, has integral coefficients
and not just rational coefficients. Examples of this for small r are seen in Example 19.
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