SIMPLE RADICAL EXTENSIONS

KEITH CONRAD

1. Introduction

A field extension L / K is called simple radical if $L=K(\alpha)$ where $\alpha^{n}=a$ for some $n \geq 1$ and $a \in K^{\times}$. Examples of simple radical extensions of \mathbf{Q} are $\mathbf{Q}(\sqrt{2}), \mathbf{Q}(\sqrt[3]{2})$, and more generally $\mathbf{Q}(\sqrt[n]{2})$. A root of $T^{n}-a$ will be denoted $\sqrt[n]{a}$, so a simple radical extension of K looks like $K(\sqrt[n]{a})$, but the notation $\sqrt[n]{a}$ in general fields is ambiguous: different nth roots of a can generate different extensions of K, and they could even be nonisomorphic (e.g., have different degrees over K) if $T^{n}-a$ is reducible in $K[T]$.
Example 1.1. In \mathbf{C} the three roots of $T^{3}-8$ are $2,2 \omega$, and $2 \omega^{2}$, where ω is a nontrivial cube root of unity; note $\omega^{2}=1 / \omega$ and ω is a root of $\left(T^{3}-1\right) /(T-1)=T^{2}+T+1$. While $\mathbf{Q}(2)=\mathbf{Q}$, the extension $\mathbf{Q}(2 \omega)=\mathbf{Q}(\omega)=\mathbf{Q}(2 / \omega)$ has degree 2 over \mathbf{Q}, so when the notation $\sqrt[3]{8}$ denotes any of the roots of $T^{3}-8$ over \mathbf{Q} then the field $\mathbf{Q}(\sqrt[3]{8})$ has two different meanings and $\mathbf{R}(\sqrt[3]{8})$ is \mathbf{R} if $\sqrt[3]{8}=2$ and it is \mathbf{C} if $\sqrt[3]{8}$ is 2ω or $2 \omega^{2}$.
Example 1.2. In the field $\mathbf{Q}(\sqrt{5})$ the number $2+\sqrt{5}$ is a cube: $2+\sqrt{5}=\left(\frac{1+\sqrt{5}}{2}\right)^{3}$. The polynomial $T^{3}-(2+\sqrt{5})$ factors over $\mathbf{Q}(\sqrt{5})$ as

$$
T^{3}-(2+\sqrt{5})=\left(T-\frac{1+\sqrt{5}}{2}\right)\left(T^{2}+\frac{1+\sqrt{5}}{2} T+\frac{3+\sqrt{5}}{2}\right)
$$

and the second factor is irreducible over $\mathbf{Q}(\sqrt{5})$ since it is irreducible over the larger field \mathbf{R} (it is a quadratic with negative discriminant $-3(3+\sqrt{5}) / 2$). If $\sqrt[3]{2+\sqrt{5}}$ means $(1+\sqrt{5}) / 2$ then $\mathbf{Q}(\sqrt[3]{2+\sqrt{5}})=\mathbf{Q}((1+\sqrt{5}) / 2)=\mathbf{Q}(\sqrt{5})$, and if $\sqrt[3]{2+\sqrt{5}}$ is a root of the quadratic factor of $T^{3}-(2+\sqrt{5})$ above then $\mathbf{Q}(\sqrt[3]{2+\sqrt{5}})$ is a quadratic extension of $\mathbf{Q}(\sqrt{5})$.

We will focus here on the degree $[K(\sqrt[n]{a}): K]$ and irreducibility relations for $T^{n}-a$ among different values of n, and intermediate fields between K and $K(\sqrt[n]{a})$.

2. Basic properties of $T^{n}-a$ And $\sqrt[n]{a}$

Theorem 2.1. The degree $[K(\sqrt[n]{a}): K]$ is at most n, and it equals n if and only if $T^{n}-a$ is irreducible over K, in which case the field $K(\sqrt[n]{a})$ up to isomorphism is independent of the choice of $\sqrt[n]{a}$.

Proof. Since $\sqrt[n]{a}$ is a root of $T^{n}-a$, which is in $K[T]$, the minimal polynomial of $\sqrt[n]{a}$ over K is at most n, and thus $[K(\sqrt[n]{a}): K] \leq n$.

If $[K(\sqrt[n]{a}): K]=n$ then the minimal polynomial of $\sqrt[n]{a}$ over K has degree n, so it must be $T^{n}-a$ since that polynomial has degree n in $K[T]$ with $\sqrt[n]{a}$ as a root. As a minimal polynomial in $K[T]$ for some number, $T^{n}-a$ is irreducible over K.

Conversely, assume $T^{n}-a$ is irreducible over K. Then $\sqrt[n]{a}$ has minimal polynomial $T^{n}-a$ over K (the minimal polynomial of a number over K is the unique monic irreducible polynomial in $K[T]$ with that number as a root), so $[K(\sqrt[n]{a}): K]=\operatorname{deg}\left(T^{n}-a\right)=n$.

When $T^{n}-a$ is irreducible over K, the field $K(\sqrt[n]{a})$ is isomorphic to $K[T] /\left(T^{n}-a\right)$ using evaluation at $\sqrt[n]{a}$ and thus, up to isomorphism (not up to equality!), the field $K(\sqrt[n]{a})$ is independent of the choice of $\sqrt[n]{a}$.

Example 2.2. The polynomial $T^{3}-2$ is irreducible over \mathbf{Q} and the three fields $\mathbf{Q}(\sqrt[3]{2})$, $\mathbf{Q}(\sqrt[3]{2} \omega)$, and $\mathbf{Q}\left(\sqrt[3]{2} \omega^{2}\right)$ are isomorphic to each other, where $\sqrt[3]{2}$ is the real cube root of 2 (or any cube root of 2 in characteristic 0) and ω is a nontrivial cube root of unity. This is no longer true if we replace \mathbf{Q} by \mathbf{R}, since $T^{3}-2$ has one root in \mathbf{R}.

Theorem 2.3. The roots of $T^{n}-a$ in a splitting field over K are numbers of the form $\zeta \sqrt[n]{a}$ where ζ is an nth root of unity $\left(\zeta^{n}=1\right)$ in K.

Proof. Set $\alpha=\sqrt[n]{a}$, which is a fixed choice of root of $T^{n}-a$ over K. If β is another root in a splitting field of $T^{n}-a$ over K then $\beta^{n}=a=\alpha^{n}$, so $(\beta / \alpha)^{n}=1$. Set $\zeta=\beta / \alpha \in K$, so $\beta=\zeta \alpha=\zeta \sqrt[n]{a}$ and $\zeta^{n}=(\beta / \alpha)^{n}=1$.

Conversely, if $\zeta^{n}=1$ and $\zeta \in K$ then $(\zeta \sqrt[n]{a})^{n}=\zeta^{n} a=a$, so $\zeta \sqrt[n]{a}$ is a root of $T^{n}-a$ in K.

3. Prime exponents

In degree greater than 3 , lack of roots ordinarily does not imply irreducibility. Consider $\left(T^{2}-2\right)\left(T^{2}-3\right)$ in $\mathbf{Q}[T]$. The polynomial $T^{p}-a$, where the exponent is prime, is a surprising counterexample: for these polynomials lack of a root is equivalent to irreducibility.

Theorem 3.1. For an arbitrary field K and prime number p, and $a \in K^{\times}, T^{p}-a$ is irreducible in $K[T]$ if and only if it has no root in K. Equivalently, $T^{p}-a$ is reducible in $K[T]$ if and only if it has a root in K.

Proof. Clearly if $T^{p}-a$ is irreducible in $K[T]$ then it has no root in K (since its degree is greater than 1).

In order to prove that $T^{p}-a$ not having a root in K implies it is irreducible we will prove the contrapositive: if $T^{p}-a$ is reducible in $K[T]$ then it has a root in K.

Write $T^{p}-a=g(T) h(T)$ in $K[T]$ where $m=\operatorname{deg} g$ satisfies $1 \leq m \leq p-1$. Since $T^{p}-a$ is monic the leading coefficients of g and h multiply to 1 , so by rescaling (which doesn't change degrees) we may assume g is monic and thus h is monic.

Let L be a splitting field of $T^{p}-a$ over K and $\alpha=\sqrt[p]{a}$ be one root of $T^{p}-a$ in L. Its other roots in L are $\zeta \alpha$ where $\zeta^{p}=1$ (Theorem 2.3), so in $L[T]$

$$
T^{p}-a=\left(T-\zeta_{1} \alpha\right)\left(T-\zeta_{2} \alpha\right) \cdots\left(T-\zeta_{p} \alpha\right)
$$

where $\zeta_{i}^{p}=1$. (Possibly $\zeta_{i}=\zeta_{j}$ when $i \neq j$; whether or not this happens doesn't matter.) By unique factorization in $L[T]$, every monic factor of $T^{p}-a$ in $L[T]$ is a product of some number of $\left(T-\zeta_{i} \alpha\right)$'s. Therefore

$$
\begin{equation*}
g(T)=\left(T-\zeta_{i_{1}} \alpha\right)\left(T-\zeta_{i_{2}} \alpha\right) \cdots\left(T-\zeta_{i_{m}} \alpha\right) \tag{3.1}
\end{equation*}
$$

for some p th roots of unity $\zeta_{i_{1}}, \ldots, \zeta_{i_{m}}$.
Now let's look at the constant terms in (3.1). Set $c=g(0)$, so

$$
c=(-1)^{m}\left(\zeta_{i_{1}} \cdots \zeta_{i_{m}}\right) \alpha^{m} .
$$

Since $g(T) \in K[T], c \in K$ and $c \neq 0$ on account of $g(0) h(0)=0^{p}-a=-a$. Therefore

$$
\begin{equation*}
c=(-1)^{m}\left(\zeta_{i_{1}} \cdots \zeta_{i_{m}}\right) \alpha^{m} \in K^{\times} . \tag{3.2}
\end{equation*}
$$

We want to replace α^{m} with α, and will do this by raising α^{m} to an additional power to make the exponent on α congruent to $1 \bmod p$.

Because p is prime and $1 \leq m \leq p-1, m$ and p are relatively prime: we can write $m x+p y=1$ for some x and y in \mathbf{Z}. Raise the product in (3.2) to the x-power to make the exponent on α equal to $m x=1-p y$:

$$
\begin{aligned}
c^{x} & =(-1)^{m x}\left(\zeta_{i_{1}} \cdots \zeta_{i_{m}}\right)^{x} \alpha^{m x} \\
& =(-1)^{m x}\left(\zeta_{i_{1}} \cdots \zeta_{i_{m}}\right)^{x} \alpha^{1-p y} \\
& =(-1)^{m x}\left(\zeta_{i_{1}} \cdots \zeta_{i_{m}}\right)^{x} \frac{\alpha}{\left(\alpha^{p}\right)^{y}} \\
& =(-1)^{m x}\left(\zeta_{i_{1}} \cdots \zeta_{i_{m}}\right)^{x} \frac{\alpha}{a^{y}},
\end{aligned}
$$

so

$$
\left(\zeta_{i_{1}} \cdots \zeta_{i_{m}}\right)^{x} \alpha=a^{y}(-1)^{m x} c^{x} \in K^{\times}
$$

and the left side has the form $\zeta \alpha$ where $\zeta^{p}=1$, so K contains a root of $T^{p}-a$.
Remark 3.2. For an odd prime p and any field K, the irreducibility of $T^{p}-a$ over K implies irreducibility of $T^{p^{r}}-a$ for all $r \geq 1$, which is not obvious! And this doesn't quite work when $p=2$: irreducibility of $T^{4}-a$ implies irreducibility of $T^{2^{r}}-a$ for all $r \geq 2$ (again, not obvious!), but irreducibility of $T^{2}-a$ need not imply irreducibility of $T^{4}-a$. A basic example is that $T^{2}+4$ is irreducible in $\mathbf{Q}[T]$ but $T^{4}+4=\left(T^{2}+2 T+2\right)\left(T^{2}-2 T+2\right)$. See [2, pp. 297-298] for a precise irreducibility criterion for $T^{n}-a$ over any field, which is due to Vahlen [4] in 1895 for $K=\mathbf{Q}$, Capelli [1] in 1897 for K of characteristic 0 , and Rédei [3] in 1959 for positive characteristic.

4. Irreducibility relations among $T^{n}-a$ For different exponents

Theorem 4.1. Let K be a field, $a \in K^{\times}$, and assume $T^{n}-a$ is irreducible over K. If $d \mid n$ then $T^{d}-a$ is irreducible over K. Equivalently, if $[K(\sqrt[n]{a}): K]=n$ for some nth root of a over K then for all $d \mid n$ we have $[K(\sqrt[d]{a}): K]=d$ for every dth root of a.
Proof. We prove irreducibility of $T^{n}-a$ implies irreducibility of $T^{d}-a$ in two ways: working with polynomials and working with field extensions.

Polynomials: assume $T^{d}-a$ is reducible over K, so $T^{d}-a=g(T) h(T)$ where $0<$ $\operatorname{deg} g(T)<d$. Replacing T with $T^{n / d}$ in this equation, we get $T^{n}-a=g\left(T^{n / d}\right) h\left(T^{n / d}\right)$ where $\operatorname{deg} g\left(T^{n / d}\right)=(n / d) \operatorname{deg} g<(n / d) d=n$ and clearly $\operatorname{deg} g\left(T^{n / d}\right)>0$.

Field extensions: let $\sqrt[n]{a}$ be an nth root of a over K, so $[K(\sqrt[n]{a}): K]=n$ by Theorem 2.1. Define $\sqrt[d]{a}=\sqrt[n]{a}{ }^{n / d}$. This is a root of $T^{d}-a$ since $\left.\sqrt[d]{a}=(\sqrt[n]{a})^{n / d}\right)^{d}=\sqrt[n]{a}=a$. To prove $T^{d}-a$ is irreducible over K we will prove $[K(\sqrt[d]{a}): K]=d$ using that choice of $\sqrt[d]{a}$.

In the tower $K \subset K(\sqrt[d]{a}) \subset K(\sqrt[n]{a})$, we have $[K(\sqrt[d]{a}): K] \leq d$ and $[K(\sqrt[n]{a}): K(\sqrt[d]{a})] \leq$ n / d by Theorem 2.1, since $\sqrt[d]{a}$ is a root of $T^{d}-a \in K[T]$ and $\sqrt[n]{a}$ is a root of $T^{n / d}-\sqrt[d]{a} \in$ $K(\sqrt[d]{a})[T]$. We have

$$
[K(\sqrt[n]{a}): K]=[K(\sqrt[n]{a}): K(\sqrt[d]{a})][K(\sqrt[d]{a}): K]
$$

and our irreducibility hypothesis implies the left side is n, so it follows that our upper bounds n / d and d for the factors on the right must be equalities. In particular, $[K(\sqrt[d]{a}): K]=d$ so $T^{d}-a$ is irreducible over K (it has a root with degree d over K).

There was an important calculation in this proof that we will use repeatedly below: if $d \mid n$ then $K(\sqrt[n]{a})$ contains $K(\sqrt[d]{a})$, where $\sqrt[d]{a}:=\sqrt[n]{a}{ }^{n / d}$. This is a root of $T^{d}-a$, so the notation is reasonable, but note that $\sqrt[d]{a}$ is not an arbitrary d th root of a : it depends on the choice made first of $\sqrt[n]{a}$.

By Theorem 4.1 and Remark 3.2, for odd primes p irreducibility of $T^{p}-a$ is equivalent to irreducibility of $T^{p^{r}}-a$ for any single $r \geq 1$, and for the prime 2 irreducibility of $T^{4}-a$ is equivalent to irreducibility of $T^{2^{r}}-a$ for any single $r \geq 2$.

Theorem 4.2. For relatively prime positive integers m and $n, T^{m n}-a$ is irreducible over K if and only if $T^{m}-a$ and $T^{n}-a$ are each irreducible over K. Equivalently, if m and n are relatively prime positive integers then $[K(\sqrt[m n]{a}): K]=m n$ if and only if $[K(\sqrt[m]{a}): K]=m$ and $[K(\sqrt[n]{a}): K]=n$.

Proof. That irreducibility of $T^{m n}-a$ over K implies irreducibility of $T^{m}-a$ and $T^{n}-a$ over K follows from Theorem 4.1.

To prove irreducibility of $T^{m}-a$ and $T^{n}-a$ over K implies irreducibility of $T^{m n}-a$ over K we will work with roots of these polynomials. It is convenient to select m th, n th, and $m n$th roots of a in a multiplicatively compatible way: fix a root $\sqrt[m n]{a}$ of $T^{m n}-a$ over K and define $\sqrt[m]{a}:=\sqrt[m n]{a} \sqrt{n}$ and $\sqrt[n]{a}:=\sqrt[m n]{a} \sqrt{m}$. Then $\sqrt[m]{a}$ is a root of $T^{m}-a$ and $\sqrt[n]{a}$ is a root of $T^{n}-a$, so we have the following field diagram, where the containments are due to $\sqrt[m]{a}$ and $\sqrt[n]{a}$ being powers of $\sqrt[m n]{a}$.

The bottom field degree values come from $T^{m}-a$ and $T^{n}-a$ being irreducible over K, and the top field degree upper bounds come from $\sqrt[m n]{a}$ being a root of $T^{n}-\sqrt[m]{a} \in K(\sqrt[m]{a})[T]$ and $T^{m}-\sqrt[n]{a} \in K(\sqrt[n]{a})[T]$. Let $d=[K(\sqrt[m n]{a}): K]$, so by reading the field diagram along either the left or right we have $d \leq m n$. Also d is divisible by m and by n since field degrees are multiplicative in towers, so from relative primality of m and n we get $m|d, n| d \Longrightarrow m n \mid d$, so $m n \leq d$. Thus $d=m n$, so $T^{m n}-a$ is the minimal polynomial of $\sqrt[m n]{a}$ over K and thus is irreducible over K.

Corollary 4.3. For an integer $N>1$ with prime factorization $p_{1}^{e_{1}} \cdots p_{k}^{e_{k}}, T^{N}-a$ is irreducible over K if and only if each $T^{p_{i}^{e_{i}}}-a$ is irreducible over K.

Proof. Use Theorem 4.2 with the factorization $N=p_{1}^{e_{1}}\left(p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}\right)$ to see irreducibility of $T^{N}-a$ over K is equivalent to irreducibility of $T^{p_{1}^{e_{1}}}-a$ and $T^{p_{2}^{e_{2}} \ldots p_{k}^{e_{k}}}-a$ over K, and then by induction on the number of different prime powers in the degree, irreducibility of $T^{p_{2}^{e_{2}} \ldots p_{k}^{e_{k}}}-a$ over K is equivalent to irreducibility of $T^{p_{i}^{e_{i}}}-a$ over K for $i=2, \ldots, k$.

Example 4.4. Irreducibility of $T^{90}-a$ over K is equivalent to irreducibility of $T^{2}-a$, $T^{9}-a$, and $T^{5}-a$ over K.

Remark 4.5. By Remark 3.2, if N is odd then irreducibility of $T^{N}-a$ over K is equivalent to irreducibility of $T^{p_{i}}-a$ over K as p_{i} runs over the prime factors of N (the multiplicities e_{i} don't matter!), and for these we know the story for irreducibility by Theorem 3.1: it's the same thing as $T^{p_{i}}-a$ not having a root in K for each p_{i}.
Example 4.6. Irreducibility of $T^{75}-a$ over K is equivalent to a not having a cube root or fifth root in K.

5. Intermediate fields in a simple radical extension

For a choice of nth root $\sqrt[n]{a}$ and a factor $d \mid n, \sqrt[d]{a}:=\sqrt[n]{a}{ }^{n / d}$ is a root of $T^{d}-a$ in $K(\sqrt[n]{a})$, so we have the following field diagram.

It's natural to ask if every field between K and $K(\sqrt[n]{a})$ is $K(\sqrt[d]{a})$ for some d dividing n. The simplest setting to study this is when $T^{n}-a$ is irreducible over K (and thus also $T^{d}-a$ is irreducible over K, by Theorem 4.1), so $[K(\sqrt[d]{a}): K]=d$. Is $K(\sqrt[d]{a})$ the only extension of K of degree d inside $K(\sqrt[n]{a})$? This is not always true.

Example 5.1. Let $K=\mathbf{Q}$ and consider the field $\mathbf{Q}(\sqrt[4]{-1})$. Set $\alpha=\sqrt[4]{-1}$, so $\alpha^{4}+1=0$. The polynomial $T^{4}+1$ is irreducible over \mathbf{Q} because it becomes Eisenstein at 2 when T is replaced with $T+1$. Since $[\mathbf{Q}(\sqrt[4]{-1}): \mathbf{Q}]=4$, any field strictly between \mathbf{Q} and $\mathbf{Q}(\sqrt[4]{-1})$ is quadratic over \mathbf{Q}. One of these is $\mathbf{Q}(\sqrt{-1})$, but it is not the only one.

If $\alpha^{4}=-1$ then $(\alpha+1 / \alpha)^{2}=\alpha^{2}+2+1 / \alpha^{2}=\left(\alpha^{4}+1\right) / \alpha^{2}+2=2$ and $(\alpha-1 / \alpha)^{2}=$ $\alpha^{2}-2+1 / \alpha^{2}=\left(\alpha^{4}+1\right) / \alpha^{2}-2=-2$, so $\mathbf{Q}(\sqrt[4]{-1})$ contains $\mathbf{Q}(\sqrt{2})$ and $\mathbf{Q}(\sqrt{-2})$. None of the fields $\mathbf{Q}(i), \mathbf{Q}(\sqrt{2})$, and $\mathbf{Q}(\sqrt{-2})$ are the same, so we have at least three (and in fact there are just these three) quadratic extensions of \mathbf{Q} in $\mathbf{Q}(\sqrt[4]{-1})$.

In the above example, the "reason" for the appearance of more intermediate fields between \mathbf{Q} and $\mathbf{Q}(\sqrt[4]{-1})$ than just $\mathbf{Q}(\sqrt{-1})$ is that there are 4th roots of unity in $\mathbf{Q}(\sqrt[4]{-1})$ that are not in \mathbf{Q}, namely $\pm \sqrt{-1}$. The following theorem shows we get no such unexpected fields if all nth roots of unity in the top field are actually in the base field.

Theorem 5.2. Let K be a field, $a \in K^{\times}$, and assume $T^{n}-a$ is irreducible over K. If all nth roots of unity in $K(\sqrt[n]{a})$ are in K then for each $d \mid n$ the only field between K and $K(\sqrt[n]{a})$ of degree d over K is $K(\sqrt[d]{a})$, where $\sqrt[d]{a}:=\sqrt[n]{a}{ }^{n / d}$.
Proof. Every field between K and $K(\sqrt[n]{a})$ has degree over K that divides n. For $d \mid n$ suppose L is a field with $K \subset L \subset K(\sqrt[n]{a})$ and $[L: K]=d$. To prove $L=K(\sqrt[d]{a})$, it suffices to show $\sqrt[d]{a} \in L$, since that would give us $K(\sqrt[d]{a}) \subset L$ and we know $K(\sqrt[d]{a})$ has degree d over K, so the containment $K(\sqrt[d]{a}) \subset L$ would have to be an equality.

Let $f(T)$ be the minimal polynomial of $\sqrt[n]{a}$ over L, so $f(T) \mid\left(T^{n}-a\right)$ and $\operatorname{deg} f=n / d$. We can write any other root of $f(T)$ as $\zeta \sqrt[n]{a}$ for some nth root of unity ζ. (Theorem 2.3). In a splitting field of $T^{n}-a$ over K, the factorization of $f(T)$ is $\prod_{i \in I}\left(T-\zeta_{i} \sqrt[n]{a}\right)$ for some nth roots of unity ζ_{i} (I is just an index set). The constant term of $f(T)$ is in L, so $\left(\prod_{i \in I} \zeta_{i}\right) \sqrt[n]{a}{ }^{n / d} \in L$. Therefore $\left(\prod_{i \in I} \zeta_{i}\right) \sqrt[n]{a} \sqrt[n]{n / d} \in K(\sqrt[n]{a})$, so $\prod_{i \in I} \zeta_{i} \in K(\sqrt[n]{a})$. The only nth roots of unity in $K(\sqrt[n]{a})$ are, by hypothesis, in K, so $\prod_{i \in I} \zeta_{i} \in K \subset L$. Therefore $\sqrt[n]{a} \sqrt{n / d}^{\sqrt[d]{a}}$ is in L, so we're done.
Example 5.3. If $K=\mathbf{Q}, a>0$, and $T^{n}-a$ is irreducible over \mathbf{Q} then $\mathbf{Q}(\sqrt[n]{a})$ is isomorphic to a subfield of \mathbf{R} (using the real positive nth root of a), which implies the only roots of unity in $\mathbf{Q}(\sqrt[n]{a})$ are ± 1 and those both lie \mathbf{Q}. For example, the only fields between \mathbf{Q} and $\mathbf{Q}(\sqrt[n]{2})$ are $\mathbf{Q}(\sqrt[d]{2})$ where $d \mid n$ and $\sqrt[d]{2}=\sqrt[n]{2}{ }^{n / d}$.
Example 5.4. Let F be a field and $K=F(u)$, the rational functions over F in one indeterminate. The polynomial $T^{n}-u$ is irreducible over $F(u)$ since it is Eisenstein at u. We let $\sqrt[n]{u}$ denote one root of $T^{n}-u$, so $K(\sqrt[n]{u})=F(\sqrt[n]{u})$ has degree n over $F(u)$. All roots of unity in $F(\sqrt[n]{u})$ - not just nth roots of unity - are in F, because $F(\sqrt[n]{u})$ is itself a rational function field in one indeterminate over F (since $\sqrt[n]{u}$ is transcendental over F) and all elements of a rational function field in one indeterminate over F that are not in F are transcendental over F and thus can't be a root of unity. Therefore by Theorem 5.2, the fields between $F(u)$ and $F(\sqrt[n]{u})$ are $F(\sqrt[d]{u})$ for $d \mid n$.
Example 5.5. An example where the hypothesis that all nth roots of unity in $K(\sqrt[n]{a})$ are in K is false, yet the conclusion of Theorem 5.2 is true, is $K=\mathbf{Q}(i), a=2$, and $n=8$: it can be shown that $[\mathbf{Q}(i, \sqrt[8]{2}): \mathbf{Q}(i)]=8$ and the only fields between $\mathbf{Q}(i)$ and $\mathbf{Q}(i, \sqrt[8]{2})$ are $\mathbf{Q}(i, \sqrt[d]{2})$ for $d=1,2,4,8$ while $\frac{1+i}{\sqrt{2}}$ is an 8th root of unity in $\mathbf{Q}(\sqrt[8]{2}, i)$ that is not in $\mathbf{Q}(i)$.

References

[1] A. Capelli, Sulla riduttibilità delle equazioni algebriche, Nota prima, Rend. Accad. Sci. Fis. Mat. Soc. Napoli 3 (1897), 243-252.
[2] S. Lang, "Algebra," 3rd revised ed., Springer-Verlag, New York, 2002.
[3] L. Rédei, "Algebra," Erster Teil, Akad. Verlagsges, Geest \& Portig K.-G., Leipzig, 1959.
[4] K. T. Vahlen, Über reductible Binome, Acta Math. 19 (1895), 195-198.

