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1. Introduction

A field extension L/K is called simple radical if L = K(α) where αn = a for some n ≥ 1
and a ∈ K×. Examples of simple radical extensions of Q are Q(

√
2), Q( 3

√
2), and more

generally Q( n
√

2). A root of Tn − a will be denoted n
√
a, so a simple radical extension of K

looks like K( n
√
a), but the notation n

√
a in general fields is ambiguous: different nth roots

of a can generate different extensions of K, and they could even be nonisomorphic (e.g.,
have different degrees over K) if Tn − a is reducible in K[T ].

Example 1.1. In C the three roots of T 3 − 8 are 2, 2ω, and 2ω2, where ω is a nontrivial
cube root of unity; note ω2 = 1/ω and ω is a root of (T 3 − 1)/(T − 1) = T 2 + T + 1.
While Q(2) = Q, the extension Q(2ω) = Q(ω) = Q(2/ω) has degree 2 over Q, so when
the notation 3

√
8 denotes any of the roots of T 3 − 8 over Q then the field Q( 3

√
8) has two

different meanings and R( 3
√

8) is R if 3
√

8 = 2 and it is C if 3
√

8 is 2ω or 2ω2.

Example 1.2. In the field Q(
√

5) the number 2 +
√

5 is a cube: 2 +
√

5 = (1+
√
5

2 )3. The

polynomial T 3 − (2 +
√

5) factors over Q(
√

5) as

T 3 − (2 +
√

5) =

(
T − 1 +

√
5

2

)(
T 2 +

1 +
√

5

2
T +

3 +
√

5

2

)
and the second factor is irreducible over Q(

√
5) since it is irreducible over the larger field R

(it is a quadratic with negative discriminant −3(3 +
√

5)/2). If
3
√

2 +
√

5 means (1 +
√

5)/2

then Q(
3
√

2 +
√

5) = Q((1 +
√

5)/2) = Q(
√

5), and if
3
√

2 +
√

5 is a root of the quadratic

factor of T 3 − (2 +
√

5) above then Q(
3
√

2 +
√

5) is a quadratic extension of Q(
√

5).

We will focus here on the degree [K(n
√
a) : K] and irreducibility relations for Tn − a

among different values of n, and intermediate fields between K and K(n
√
a).

2. Basic properties of Tn − a and n
√
a

Theorem 2.1. The degree [K(n
√
a) : K] is at most n, and it equals n if and only if Tn − a

is irreducible over K, in which case the field K( n
√
a) up to isomorphism is independent of

the choice of n
√
a.

Proof. Since n
√
a is a root of Tn − a, which is in K[T ], the minimal polynomial of n

√
a over

K is at most n, and thus [K(n
√
a) : K] ≤ n.

If [K(n
√
a) : K] = n then the minimal polynomial of n

√
a over K has degree n, so it must

be Tn − a since that polynomial has degree n in K[T ] with n
√
a as a root. As a minimal

polynomial in K[T ] for some number, Tn − a is irreducible over K.
1
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Conversely, assume Tn − a is irreducible over K. Then n
√
a has minimal polynomial

Tn−a over K (the minimal polynomial of a number over K is the unique monic irreducible
polynomial in K[T ] with that number as a root), so [K(n

√
a) : K] = deg(Tn − a) = n.

When Tn−a is irreducible over K, the field K(n
√
a) is isomorphic to K[T ]/(Tn−a) using

evaluation at n
√
a and thus, up to isomorphism (not up to equality!), the field K(n

√
a) is

independent of the choice of n
√
a. �

Example 2.2. The polynomial T 3 − 2 is irreducible over Q and the three fields Q( 3
√

2),
Q( 3
√

2ω), and Q( 3
√

2ω2) are isomorphic to each other, where 3
√

2 is the real cube root of 2
(or any cube root of 2 in characteristic 0) and ω is a nontrivial cube root of unity. This is
no longer true if we replace Q by R, since T 3 − 2 has one root in R.

Theorem 2.3. The roots of Tn−a in a splitting field over K are numbers of the form ζ n
√
a

where ζ is an nth root of unity (ζn = 1) in K.

Proof. Set α = n
√
a, which is a fixed choice of root of Tn − a over K. If β is another root

in a splitting field of Tn − a over K then βn = a = αn, so (β/α)n = 1. Set ζ = β/α ∈ K,
so β = ζα = ζ n

√
a and ζn = (β/α)n = 1.

Conversely, if ζn = 1 and ζ ∈ K then (ζ n
√
a)n = ζna = a, so ζ n

√
a is a root of Tn − a in

K. �

3. Prime exponents

In degree greater than 3, lack of roots ordinarily does not imply irreducibility. Consider
(T 2−2)(T 2−3) in Q[T ]. The polynomial T p−a, where the exponent is prime, is a surprising
counterexample: for these polynomials lack of a root is equivalent to irreducibility.

Theorem 3.1. For an arbitrary field K and prime number p, and a ∈ K×, T p − a is
irreducible in K[T ] if and only if it has no root in K. Equivalently, T p − a is reducible in
K[T ] if and only if it has a root in K.

Proof. Clearly if T p − a is irreducible in K[T ] then it has no root in K (since its degree is
greater than 1).

In order to prove that T p−a not having a root in K implies it is irreducible we will prove
the contrapositive: if T p − a is reducible in K[T ] then it has a root in K.

Write T p− a = g(T )h(T ) in K[T ] where m = deg g satisfies 1 ≤ m ≤ p− 1. Since T p− a
is monic the leading coefficients of g and h multiply to 1, so by rescaling (which doesn’t
change degrees) we may assume g is monic and thus h is monic.

Let L be a splitting field of T p − a over K and α = p
√
a be one root of T p − a in L. Its

other roots in L are ζα where ζp = 1 (Theorem 2.3), so in L[T ]

T p − a = (T − ζ1α)(T − ζ2α) · · · (T − ζpα)

where ζpi = 1. (Possibly ζi = ζj when i 6= j; whether or not this happens doesn’t matter.)
By unique factorization in L[T ], every monic factor of T p − a in L[T ] is a product of some
number of (T − ζiα)’s. Therefore

(3.1) g(T ) = (T − ζi1α)(T − ζi2α) · · · (T − ζimα)

for some pth roots of unity ζi1 , . . . , ζim .
Now let’s look at the constant terms in (3.1). Set c = g(0), so

c = (−1)m(ζi1 · · · ζim)αm.
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Since g(T ) ∈ K[T ], c ∈ K and c 6= 0 on account of g(0)h(0) = 0p − a = −a. Therefore

(3.2) c = (−1)m(ζi1 · · · ζim)αm ∈ K×.
We want to replace αm with α, and will do this by raising αm to an additional power to
make the exponent on α congruent to 1 mod p.

Because p is prime and 1 ≤ m ≤ p − 1, m and p are relatively prime: we can write
mx+ py = 1 for some x and y in Z. Raise the product in (3.2) to the x-power to make the
exponent on α equal to mx = 1− py:

cx = (−1)mx(ζi1 · · · ζim)xαmx

= (−1)mx(ζi1 · · · ζim)xα1−py

= (−1)mx(ζi1 · · · ζim)x
α

(αp)y

= (−1)mx(ζi1 · · · ζim)x
α

ay
,

so
(ζi1 · · · ζim)xα = ay(−1)mxcx ∈ K×

and the left side has the form ζα where ζp = 1, so K contains a root of T p − a. �

Remark 3.2. For an odd prime p and any field K, the irreducibility of T p − a over K
implies irreducibility of T pr − a for all r ≥ 1, which is not obvious! And this doesn’t quite
work when p = 2: irreducibility of T 4 − a implies irreducibility of T 2r − a for all r ≥ 2
(again, not obvious!), but irreducibility of T 2− a need not imply irreducibility of T 4− a. A
basic example is that T 2 + 4 is irreducible in Q[T ] but T 4 + 4 = (T 2 + 2T + 2)(T 2−2T + 2).
See [2, pp. 297–298] for a precise irreducibility criterion for Tn − a over any field, which
is due to Vahlen [4] in 1895 for K = Q, Capelli [1] in 1897 for K of characteristic 0, and
Rédei [3] in 1959 for positive characteristic.

4. Irreducibility relations among Tn − a for different exponents

Theorem 4.1. Let K be a field, a ∈ K×, and assume Tn−a is irreducible over K. If d | n
then T d − a is irreducible over K. Equivalently, if [K(n

√
a) : K] = n for some nth root of a

over K then for all d | n we have [K( d
√
a) : K] = d for every dth root of a.

Proof. We prove irreducibility of Tn−a implies irreducibility of T d−a in two ways: working
with polynomials and working with field extensions.

Polynomials: assume T d − a is reducible over K, so T d − a = g(T )h(T ) where 0 <

deg g(T ) < d. Replacing T with Tn/d in this equation, we get Tn − a = g(Tn/d)h(Tn/d)

where deg g(Tn/d) = (n/d) deg g < (n/d)d = n and clearly deg g(Tn/d) > 0.
Field extensions: let n

√
a be an nth root of a over K, so [K(n

√
a) : K] = n by Theorem

2.1. Define d
√
a = n

√
a
n/d

. This is a root of T d − a since d
√
a
d

= ( n
√
a
n/d

)d = n
√
a
n

= a. To
prove T d − a is irreducible over K we will prove [K( d

√
a) : K] = d using that choice of d

√
a.

In the tower K ⊂ K( d
√
a) ⊂ K( n

√
a), we have [K( d

√
a) : K] ≤ d and [K(n

√
a) : K( d

√
a)] ≤

n/d by Theorem 2.1, since d
√
a is a root of T d − a ∈ K[T ] and n

√
a is a root of Tn/d − d

√
a ∈

K( d
√
a)[T ]. We have

[K(n
√
a) : K] = [K(n

√
a) : K( d

√
a)][K( d

√
a) : K]

and our irreducibility hypothesis implies the left side is n, so it follows that our upper bounds
n/d and d for the factors on the right must be equalities. In particular, [K( d

√
a) : K] = d

so T d − a is irreducible over K (it has a root with degree d over K). �
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There was an important calculation in this proof that we will use repeatedly below: if

d | n then K(n
√
a) contains K( d

√
a), where d

√
a := n

√
a
n/d

. This is a root of T d − a, so the
notation is reasonable, but note that d

√
a is not an arbitrary dth root of a: it depends on

the choice made first of n
√
a.

By Theorem 4.1 and Remark 3.2, for odd primes p irreducibility of T p − a is equivalent
to irreducibility of T pr − a for any single r ≥ 1, and for the prime 2 irreducibility of T 4 − a
is equivalent to irreducibility of T 2r − a for any single r ≥ 2.

Theorem 4.2. For relatively prime positive integers m and n, Tmn − a is irreducible over
K if and only if Tm−a and Tn−a are each irreducible over K. Equivalently, if m and n are
relatively prime positive integers then [K(mn

√
a) : K] = mn if and only if [K(m

√
a) : K] = m

and [K(n
√
a) : K] = n.

Proof. That irreducibility of Tmn − a over K implies irreducibility of Tm − a and Tn − a
over K follows from Theorem 4.1.

To prove irreducibility of Tm − a and Tn − a over K implies irreducibility of Tmn − a
over K we will work with roots of these polynomials. It is convenient to select mth, nth,
and mnth roots of a in a multiplicatively compatible way: fix a root mn

√
a of Tmn − a over

K and define m
√
a := mn

√
a
n

and n
√
a := mn

√
a
m

. Then m
√
a is a root of Tm − a and n

√
a is a

root of Tn − a, so we have the following field diagram, where the containments are due to
m
√
a and n

√
a being powers of mn

√
a.

K(mn
√
a)

≤n ≤m

K(m
√
a)

m

K(n
√
a)

n

K

The bottom field degree values come from Tm−a and Tn−a being irreducible over K, and
the top field degree upper bounds come from mn

√
a being a root of Tn− m

√
a ∈ K(m

√
a)[T ] and

Tm − n
√
a ∈ K(n

√
a)[T ]. Let d = [K(mn

√
a) : K], so by reading the field diagram along either

the left or right we have d ≤ mn . Also d is divisible by m and by n since field degrees are

multiplicative in towers, so from relative primality of m and n we get m | d, n | d =⇒ mn | d,

so mn ≤ d . Thus d = mn, so Tmn−a is the minimal polynomial of mn
√
a over K and thus

is irreducible over K. �

Corollary 4.3. For an integer N > 1 with prime factorization pe11 · · · p
ek
k , TN − a is irre-

ducible over K if and only if each T p
ei
i − a is irreducible over K.

Proof. Use Theorem 4.2 with the factorization N = pe11 (pe22 · · · p
ek
k ) to see irreducibility of

TN − a over K is equivalent to irreducibility of T p
e1
1 − a and T p

e2
2 ···p

ek
k − a over K, and

then by induction on the number of different prime powers in the degree, irreducibility of

T p
e2
2 ···p

ek
k − a over K is equivalent to irreducibility of T p

ei
i − a over K for i = 2, . . . , k. �

Example 4.4. Irreducibility of T 90 − a over K is equivalent to irreducibility of T 2 − a,
T 9 − a, and T 5 − a over K.
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Remark 4.5. By Remark 3.2, if N is odd then irreducibility of TN−a over K is equivalent
to irreducibility of T pi − a over K as pi runs over the prime factors of N (the multiplicities
ei don’t matter!), and for these we know the story for irreducibility by Theorem 3.1: it’s
the same thing as T pi − a not having a root in K for each pi.

Example 4.6. Irreducibility of T 75 − a over K is equivalent to a not having a cube root
or fifth root in K.

5. Intermediate fields in a simple radical extension

For a choice of nth root n
√
a and a factor d | n, d

√
a := n

√
a
n/d

is a root of T d − a in
K(n
√
a), so we have the following field diagram.

K( n
√
a)

K( d
√
a)

K

It’s natural to ask if every field between K and K(n
√
a) is K( d

√
a) for some d dividing n.

The simplest setting to study this is when Tn−a is irreducible over K (and thus also T d−a
is irreducible over K, by Theorem 4.1), so [K( d

√
a) : K] = d. Is K( d

√
a) the only extension

of K of degree d inside K(n
√
a)? This is not always true.

Example 5.1. Let K = Q and consider the field Q( 4
√
−1). Set α = 4

√
−1, so α4 + 1 = 0.

The polynomial T 4 + 1 is irreducible over Q because it becomes Eisenstein at 2 when T is
replaced with T + 1. Since [Q( 4

√
−1) : Q] = 4, any field strictly between Q and Q( 4

√
−1) is

quadratic over Q. One of these is Q(
√
−1), but it is not the only one.

Q( 4
√
−1)

Q(
√

2) Q(
√
−1) Q(

√
−2)

Q

If α4 = −1 then (α + 1/α)2 = α2 + 2 + 1/α2 = (α4 + 1)/α2 + 2 = 2 and (α − 1/α)2 =
α2 − 2 + 1/α2 = (α4 + 1)/α2 − 2 = −2, so Q( 4

√
−1) contains Q(

√
2) and Q(

√
−2). None of

the fields Q(i), Q(
√

2), and Q(
√
−2) are the same, so we have at least three (and in fact

there are just these three) quadratic extensions of Q in Q( 4
√
−1).

In the above example, the “reason” for the appearance of more intermediate fields between
Q and Q( 4

√
−1) than just Q(

√
−1) is that there are 4th roots of unity in Q( 4

√
−1) that are

not in Q, namely ±
√
−1. The following theorem shows we get no such unexpected fields if

all nth roots of unity in the top field are actually in the base field.
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Theorem 5.2. Let K be a field, a ∈ K×, and assume Tn − a is irreducible over K. If
all nth roots of unity in K(n

√
a) are in K then for each d | n the only field between K and

K(n
√
a) of degree d over K is K( d

√
a), where d

√
a := n

√
a
n/d

.

Proof. Every field between K and K(n
√
a) has degree over K that divides n. For d | n

suppose L is a field with K ⊂ L ⊂ K(n
√
a) and [L : K] = d. To prove L = K( d

√
a), it

suffices to show d
√
a ∈ L, since that would give us K( d

√
a) ⊂ L and we know K( d

√
a) has

degree d over K, so the containment K( d
√
a) ⊂ L would have to be an equality.

K(n
√
a)

n/d

L

d

K

Let f(T ) be the minimal polynomial of n
√
a over L, so f(T ) | (Tn− a) and deg f = n/d.

We can write any other root of f(T ) as ζ n
√
a for some nth root of unity ζ. (Theorem

2.3). In a splitting field of Tn − a over K, the factorization of f(T ) is
∏

i∈I(T − ζi n
√
a)

for some nth roots of unity ζi (I is just an index set). The constant term of f(T ) is in

L, so (
∏

i∈I ζi)
n
√
a
n/d ∈ L. Therefore (

∏
i∈I ζi)

n
√
a
n/d ∈ K(n

√
a), so

∏
i∈I ζi ∈ K(n

√
a). The

only nth roots of unity in K(n
√
a) are, by hypothesis, in K, so

∏
i∈I ζi ∈ K ⊂ L. Therefore

n
√
a
n/d

= d
√
a is in L, so we’re done. �

Example 5.3. If K = Q, a > 0, and Tn−a is irreducible over Q then Q(n
√
a) is isomorphic

to a subfield of R (using the real positive nth root of a), which implies the only roots of
unity in Q(n

√
a) are ±1 and those both lie Q. For example, the only fields between Q and

Q(n
√

2) are Q( d
√

2) where d | n and d
√

2 = n
√

2
n/d

.

Example 5.4. Let F be a field and K = F (u), the rational functions over F in one
indeterminate. The polynomial Tn − u is irreducible over F (u) since it is Eisenstein at u.
We let n

√
u denote one root of Tn − u, so K(n

√
u) = F (n

√
u) has degree n over F (u). All

roots of unity in F (n
√
u) – not just nth roots of unity – are in F , because F (n

√
u) is itself

a rational function field in one indeterminate over F (since n
√
u is transcendental over F )

and all elements of a rational function field in one indeterminate over F that are not in F
are transcendental over F and thus can’t be a root of unity. Therefore by Theorem 5.2, the
fields between F (u) and F (n

√
u) are F ( d

√
u) for d | n.

Example 5.5. An example where the hypothesis that all nth roots of unity in K(n
√
a) are

in K is false, yet the conclusion of Theorem 5.2 is true, is K = Q(i), a = 2, and n = 8: it
can be shown that [Q(i, 8

√
2) : Q(i)] = 8 and the only fields between Q(i) and Q(i, 8

√
2) are

Q(i, d
√

2) for d = 1, 2, 4, 8 while 1+i√
2

is an 8th root of unity in Q( 8
√

2, i) that is not in Q(i).
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[1] A. Capelli, Sulla riduttibilità delle equazioni algebriche, Nota prima, Rend. Accad. Sci. Fis. Mat. Soc.
Napoli 3 (1897), 243–252.

[2] S. Lang, “Algebra,” 3rd revised ed., Springer-Verlag, New York, 2002.
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