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KEITH CONRAD

1. Introduction

Separability of a finite field extension L/K can be described in several different ways. The
original definition is that every element of L is separable over K (that is, has a separable
minimal poynomial in K[X]). We will give here three descriptions of separability for a finite
extension and use each of them to prove two theorems about separable extensions.

Theorem 1.1. Let L/K be a finite extension. Then L/K is separable if and only if the
trace function TrL/K : L→ K is not identically 0.

The trace function is discussed in Appendix A.

Theorem 1.2. Let L/K be a finite extension and write K for an algebraic closure of K.
Then L/K is separable if and only if the ring K ⊗K L has no nonzero nilpotent elements.

When L/K is separable, the ring K ⊗K L is isomorphic to K
[L:K]

.

Example 1.3. Consider the extension Q(
√

2)/Q. Since Q(
√

2) ∼= Q[X]/(X2−2), tensoring
with Q gives

Q⊗Q Q(
√

2) ∼= Q[X]/(X2 − 2) = Q[X]/((X +
√

2)(X −
√

2)) ∼= Q×Q,

which is a product of 2 copies of Q (associated to the 2 roots of X2−2) and has no nilpotent
elements besides 0.

Example 1.4. Consider the extension F2(
√
u)/F2(u). Since F2(

√
u) ∼= F2(u)[X]/(X2−u),

F2(u)⊗F2(u) F2(
√
u) ∼= F2(u)[X]/(X2 − u) = F2(u)[X]/(X −

√
u)2,

which has the nonzero nilpotent element X −
√
u.

Theorem 1.5. Let L/K be a finite extension. Then L is separable over K if and only if
each derivation of K has a unique extension to a derivation of L.

Derivations are discussed in Appendix B.
The proofs of Theorems 1.1 and 1.2 both use tensor products. For those two proofs,

the reader should be comfortable with the fact that injectivity and surjectivity of a linear
map of vector spaces can be detected after a base extension: a linear map is injective or
surjective if and only if its base extension to a larger field is injective or surjective.

Each of the three theorems above will be proved and then lead in its own way to proofs
of the following two theorems.

Theorem 1.6. If L = K(α1, . . . , αr) and each αi is separable over K then every element
of L is separable over K (so L/K is separable).

Theorem 1.7. Let L/K be a finite extension and F be an intermediate field. If L/F and
F/K are separable then L/K is separable
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Here is a brief outline of this handout. In Sections 2, 3 and 4 we will respectively prove
Theorems 1.1, 1.2 and 1.5 and apply each one to prove Theorems 1.6 and 1.7. In Section 5
we will use our new viewpoints to define separability for arbitrary (possibly non-algebraic)
field extensions.

2. Theorem 1.1: Traces

Review Appendix A before reading this section.
We want to show L/K is separable if and only if TrL/K : L→ K is not identically 0. The

trace map is either identically 0 or it is onto, since it is K-linear with target K, so another
way of putting Theorem 1.1 is that we want to show L/K is separable if and only if the
trace from L to K is onto.

Proof. We might as well take K to have positive characteristic p, since in characteristic 0 all
finite field extensions are separable and the trace is not identically 0: TrL/K(1) = [L : K] 6= 0
in characteristic 0.

If L/K is separable, by the primitive element theorem we can write L = K(α) where α is
separable over K. To show the trace is surjective for finite separable extensions, it suffices
to prove surjectivity of the trace map on K(α)/K when K is an arbitrary base field and α
is separable over K.

If L/K is inseparable, then there must be some α ∈ L that is inseparable over K. Since
TrL/K = TrK(α)/K ◦TrL/K(α), it suffices to prove the trace map on K(α)/K vanishes when
α is inseparable over K.

For both cases of the field extension K(α)/K (α separable or inseparable over K), let
α have minimal polynomial π(X) in K[X]. Write π(X) = π̃(Xpm) where m is as large as
possible, so π̃(X) is separable. Thus π(X) is separable if and only if m = 0.

Let n = deg π = pmd, with d = deg π̃. In K[X],

π̃(X) = (X − β1) · · · (X − βd)

for some βi’s, which are all distinct since π̃(X) is separable. Write βi = γp
m

i , so the γi’s are
distinct. Then

π(X) = π̃(Xpm) = (Xpm − β1) · · · (Xpm − βd) = (X − γ1)p
m · · · (X − γd)p

m
.

Consider now the extension of scalars up to K of the trace map TrK(α)/K : K(α)→ K:

(2.1) Tr = idK ⊗ TrK(α)/K : K ⊗K K(α)→ K ⊗K K ∼= K.

By Theorem A.8, Tr is the trace map on K ⊗K K(α) as a K-vector space.
Since tensoring with a field extension preserves injectivity and surjectivity of a linear

map,

TrK(α)/K is onto ⇐⇒ Tr is onto, TrK(α)/K = 0⇐⇒ Tr = 0.

Since K(α) ∼= K[X]/(π(X)) as K-algebras, K ⊗K K(α) ∼= K[X]/(π(X)) as K-algebras,
and thus is isomorphic to the direct product of the rings K[X]/(Xpm − βi). Theorem A.5
tells us that the trace in (2.1) is the sum of the traces to K on each K[X]/(Xpm−βi). Let’s
look at the trace from K[X]/(Xpm − βi) to K.

In K[X], Xpm − βi = (X − γi)
pm . Then K[X]/(Xpm − βi) = K[Y ]/(Y pm), where

Y = X − γi. If m = 0, then K[Y ]/(Y pm) = K, so the trace to K is the identity. If
m > 0, every element of K[Y ]/(Y pm) is the sum of a constant plus a multiple of Y , which
is a constant plus a nilpotent element (since Y mod Y pr is nilpotent). Any constant in
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K[Y ]/(Y pm) has trace 0 since pm = 0 in K (because m > 0). A nilpotent element has trace
0 (Example A.3). Thus the trace to K of each element of K[Y ]/(Y pm) is 0.

To summarize, when α is separable over K (i.e., m = 0), the trace map from K(α) to
K is onto since it is onto after extending scalars to K. When α is inseparable over K (i.e.,
m > 0), the trace map is identically 0 since it vanishes after extending scalars. �

Corollary 2.1. Theorem 1.1 implies Theorem 1.6.

Proof. Set L0 = K, L1 = K(α1) = L0(α1), and more generally Li = K(α1, . . . , αi) =
Li−1(αi) for i ≥ 1. So we have the tower of field extensions

(2.2) K = L0 ⊂ L1 ⊂ L2 ⊂ · · · ⊂ Lr−1 ⊂ Lr = L.

By transitivity of the trace,

TrL/K = TrL1/L0
◦ TrL2/L1

◦ · · · ◦ TrLr/Lr−1
.

Since αi is separable over K and the minimal polynomial of αi over Li−1 divides its minimal
polynomial over K, αi is separable over Li−1. Therefore TrLi−1(αi)/Li−1

: Li → Li−1 is onto
from the proof of Theorem 1.1, so the composite map TrL/K : L → K is onto. Therefore
L/K is separable by Theorem 1.1. �

Corollary 2.2. Theorem 1.1 implies Theorem 1.7.

Proof. By Theorem 1.1 and the hypothesis of Theorem 1.7, both TrL/F and TrF/K are onto.
Therefore their composite TrL/K is onto, so L/K is separable by Theorem 1.1. �

3. Theorem 1.2: Nilpotents

Proof. We will begin with the case of a simple extension L = K(α). Let π(X) be the
minimal polynomial of α over K, so L ∼= K[X]/(π(X)) as K-algebras and

K ⊗K L ∼= K[X]/(π(X))

as K-algebras. This ring was considered in the proof of Theorem 1.1, where we saw its struc-
ture is different when π(X) is separable or inseparable. If π(X) is separable in K[X], then
K[X]/(π(X)) is a product of copies of the field K, so it has no nonzero nilpotent elements.
If π(X) is inseparable, then K[X]/(π(X)) is a product of copies of rings K[Y ]/(Y pm) with
m > 0, which all have nonzero nilpotents.

Now we consider the structure of K ⊗K L when L/K is a finite extension.
First assume L/K is separable. By the primitive element theorem, we can write L = K(α)

and α is separable over K. By the first paragraph of the proof, K ⊗K L ∼= K
[L:K]

since
π(X) has distinct linear factors in K.

If L/K is inseparable, then some α ∈ L is inseparable over K. Tensoring the inclusion
map K(α) ↪→ L up to K, we have an inclusion

K ⊗K K(α) ↪→ K ⊗K L.

The ring K ⊗K K(α) has a nonzero nilpotent element by the first paragraph of the proof,
so K ⊗K L does as well. �

Corollary 3.1. The proof of Theorem 1.2 implies Theorem 1.6.
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Proof. Make a tower of intermediate extensions in L/K as in (2.2). Note K is an algebraic
closure of every field Li in the tower. Since

K ⊗K L ∼= (K ⊗K L1)⊗L1 L

and L1 = K(α1) with α1 separable over K, the proof of Theorem 1.2 implies

K ⊗K L1
∼= K

[L1:K]

as K-algebras. Therefore

K ⊗K L ∼= K
[L1:K] ⊗L1 L

∼= (K ⊗L1 L)[L1:K].

Since L = L1(α2, . . . , αr) with each αi separable over L1, we can run through the same

computation for K ⊗L1 L as we did for K ⊗K L, and we get K ⊗L1 L
∼= (K ⊗L2 L)[L2:L1], so

K ⊗K L ∼= (K ⊗L2 L)[L2:L1][L1:K] = (K ⊗L2 L)[L2:K].

Repeating this enough, in the end we get

K ⊗K L ∼= (K ⊗Lr L)[Lr:K] ∼= K
[L:K]

. �

Corollary 3.2. The proof of Theorem 1.2 implies Theorem 1.7.

Proof. The field K is an algebraic closure of F and L. Using Theorem 1.2,

K ⊗K L ∼= (K ⊗K F )⊗F L
∼= K

[F :K] ⊗F L since F/K is separable

∼= (K ⊗F L)[F :K]

∼= K
[L:F ][F :K]

since L/F is separable

∼= K
[L:K]

.

Thus L/K is separable by Theorem 1.2. �

4. Theorem 1.5: Derivations

Review Appendix B before reading this section.
We prove Theorem 1.5 by starting with a theorem about extending derivations.

Theorem 4.1. Let L/K be an extension of fields, and α ∈ L be algebraic over K. Then
α is separable over K if and only if every derivation on K has a unique extension to a
derivation on K(α).

Proof. When α ∈ L is separable over K, Corollary B.10 shows every derivation on K extends
uniquely to a derivation on K(α).

Now suppose α ∈ L is inseparable over K. Then π′(X) = 0, where π(X) is the minimal
polynomial of α over K. In particular π′(α) = 0. We are going to use this vanishing of
π′(α) to construct a nonzero derivation on K(α) that extends the zero derivation on K.
Then the zero derivation on K has two lifts to K(α): the zero derivation on K(α) and this
other derivation we will construct.

Define Z : K(α)→ K(α) by Z(f(α)) = f ′(α), where f(X) ∈ K[X]. Is this well-defined?
Well, if f1(α) = f2(α), then f1(X) ≡ f2(X) mod π(X), say

f1(X) = f2(X) + π(X)k(X).
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Differentiating both sides with respect to X,

f ′1(X) = f ′2(X) + π(X)k′(X) + π′(X)k(X).

Evaluating both sides at α yields f ′1(α) = f ′2(α) since π′(α) = 0. So Z : K(α) → K(α) is
well-defined.

It is left to the reader to check Z is a derivation on K(α). This derivation kills K,
but Z(α) = 1, so Z extends the zero derivation on K while not being the zero derivation
itself. �

The reader can check more generally that when α is inseparable over K and β ∈ K(α) is
arbitrary the map f(α) 7→ f ′(α)β is a derivation on K(α) that extends the zero derivation
on K and sends α to β. So there are many extensions of the zero derivation on K to K(α):
one for each element of K(α).

We need a lemma to put inseparable extensions into a convenient form for our derivation
constructions later.

Lemma 4.2. Let L/K be a finite inseparable field extension. Then there is an α ∈ L and
intermediate field F such that L = F (α) and α is inseparable over F .

Proof. Inseparable field extensions only occur in positive characteristic. Let p be the char-
acteristic of K. Necessarily [L : K] > 1. Since L/K is inseparable, there is some β ∈ L
that is inseparable over K.

Write L = K(α1, . . . , αr). We will show by contradiction that some αi has to be insepa-
rable over K. Assume every αi is separable over K. Then we can treat L/K as a succession
of simple field extensions as in (2.2), where Li = Li−1(αi) with αi separable over Li−1. By
Theorem 4.1, every derivation on Li−1 extends to a derivation on Li, so every derivation
on K extends to a derivation on L. Moreover, this extended derivation on L is unique.1 To
show that, consider two derivations D and D′ on L that are equal on K. Since L1 = K(α1)
and α1 is separable over K, the proof of Corollary B.10 tells us that D and D′ both send
L1 to L1 and are equal on L1. Now using L1 in place of K, D and D′ being equal on L1

implies they are equal on L2 since L2 = L1(α2) and α2 is separable over L1. We can keep
going like this until we get D = D′ on Lr = L. As a special case of this uniqueness, the
only derivation on L that vanishes on K is the zero derivation on L.

Now replace K as base field with K(β), over which the αi’s are of course still separable.
Then every derivation on K(β) extends uniquely to a derivation on L. But in the proof
of Theorem 4.1 we saw there is a nonzero derivation Z on K(β) that vanishes on K, and
an extension of that to a derivation on L is2 nonzero on L and is zero on K. We have a
contradiction of the uniqueness of extensions, so in each set of field generators {α1, . . . , αr},
some αi must be inseparable in K.

Choose a generating set {α1, . . . , αr} with as few inseparable elements as possible. At
least one αi is inseparable over K and we may assume that αr is one of them. Set α = αr and
F = K(α1, . . . , αr−1) (so F = K if r = 1). Then L = F (α). We will show by contradiction
that α must be inseparable over F , which is the point of the lemma.

1This is not automatic from the uniqueness in Theorem 4.1 because we need to rule out the possibility
that a derivation on L might not send Li back to Li.

2It is crucial that we know in advance that all derivations on K(β) really do extend to L, so we’re not
just talking hypothetically about an extended derivation. A nonzero derivation on a field sometimes has no
extensions to a particular larger field. See Example B.9.
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Suppose α is separable over F . Then α is separable over the larger field F (αp) since its
minimal polynomial over F (αp) divides its minimal polynomial over F . Since α is a root
of Xp − αp ∈ F (αp)[X], its (separable) minimal polynomial in F (αp)[X] is a factor of this,
so that polynomial must be X − α. Therefore α ∈ F (αp). Taking pk-th powers for k ≥ 0,

αp
k ∈ F (αp

k+1
), so

F (αp
k
) ⊂ F (αp

k+1
).

The reverse inclusion is obvious, so F (αp
k
) = F (αp

k+1
) for all k ≥ 0. Therefore

L = F (α) = F (αp
k
) = K(α1, . . . , αr−1, α

pk

r )

for all k ≥ 0. We can pick k so that αp
k

is separable over K (why?). Then the generating

set {α1, . . . , αr−1, α
pk
r } has one less inseparable element among the field generators. This

contradicts the choice of generators to have as few members in the list as possible that are
inseparable over K, so α has to be inseparable over F . �

Now we turn to a proof of Theorem 1.5.

Proof. Assume L/K is separable, so by the primitive element theorem L = K(α) where α
is separable over K. Any derivation on K can be extended (using Theorem 4.1) uniquely
to a derivation on L.

If L/K is inseparable, then Lemma 4.2 lets us write L = F (α) with α inseparable over
F , and F ⊃ K. Then, by a construction used in the proof of Theorem 4.1, f(α) 7→ f ′(α)
with f(X) ∈ F [X] is a nonzero derivation on L that is zero on F , and thus also zero on the
smaller field K. This shows the zero derivation on K has a nonzero extension (and thus
two extensions) to a derivation on L. �

Corollary 4.3. The proof of Theorem 1.5 implies Theorem 1.6.

Proof. Again we consider the tower of field extensions (2.2). Since Li = Li−1(αi) and αi
is separable over Li−1, the proof of Theorem 1.5 shows every derivation on Li−1 extends
uniquely to a derivation on Li. Therefore every derivation on K = L0 can be extended
step-by-step through the tower (2.2) to a derivation on Lr = L. By the argument in the
proof of Lemma 4.2, this derivation on L is unique. �

Lemma 4.4. Let L/K be a finite extension and F be an intermediate extension such that
F/K is separable. Then every derivation F → L that sends K to K has values in F .

Proof. Pick α ∈ F , so α is separable over K. Now use Corollary B.10 to see the derivation
F → L sends α to an element of K(α) ⊂ F . �

Corollary 4.5. Theorem 1.5 implies Theorem 1.7.

Proof. To prove L/K is separable, we want to show every derivation on K has a unique
extension to a derivation on L. Since F/K is separable, a derivation on K extends to a
derivation on F . Since L/F is separable, a derivation on F extends to a derivation on L.
For uniqueness, let D1 and D2 be derivations on L that extend the same derivation on K.
Since D1(K) ⊂ K and D2(K) ⊂ K, we have D1(F ) ⊂ F and D2(F ) ⊂ F by Lemma 4.4.
Then D1 = D2 on F since F/K is separable, and D1 = D2 on L since L/F is separable. �
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5. Separability for infinite extensions

When L/K is an algebraic extension of possibly infinite degree, here is the way separa-
bility is defined.

Definition 5.1. An algebraic extension L/K is called separable if every finite subextension
of L/K is separable. Equivalently, L/K is separable when every element of L is separable
over K.

This definition makes no sense if L/K is not an algebraic extension since a non-algebraic
extension is not the union of its finite subextensions. To deal with non-algebraic extensions,
we can considering using the three new characterizations of separability for finite extensions
in Theorems 1.1, 1.2, and 1.5, if they would make sense for infinite extensions.

Theorem 1.1 has a problem in the infinite-degree case: there is no natural trace map.
However, the conditions in Theorems 1.2 and 1.5 both make sense for a general L/K. (In
the case of Theorem 1.2, we have to drop the specification of K⊗K L as a product of copies
of K, and just leave the statement about the tensor product having no nonzero nilpotent
elements.) It is left to the reader to check for an infinite algebraic extension L/K that the
conditions of Theorems 1.2 and 1.5 match Definition 5.1.

The conditions in Theorems 1.2 and 1.5 both make sense if L/K is not algebraic, so
they could each potentially be used to define separability of a completely arbitrary field
extension. But there is a problem: for transcendental (that is, non-algebraic) extensions
the conditions in Theorems 1.2 and 1.5 are no longer equivalent. Indeed, take L = K(u),
with u transcendental over K. Then K⊗K L = K(u) is a field, so the condition in Theorem
1.2 is satisfied. However, the zero derivation on K has more than one extension to K(u):
the zero derivation on K(u) and differentiation with respect to u on K(u).

Since the conditions in Theorems 1.2 and 1.5 do not describe the same kinds of extensions
in general, which one should be used to define separability? The answer is to use the
condition in Theorem 1.2.

Definition 5.2. A commutative ring with no nonzero nilpotent elements is called reduced.

A domain is reduced, but a more worthwhile example is a product of domains, like
F3 ×Q[X], which is not a domain but is reduced.

Definition 5.3. An arbitrary field extension L/K is called separable when the ring K⊗K L
is reduced.

Using this definition, in characteristic 0 all field extensions are separable. In characteristic
p, a purely transcendental extension is separable. The condition in Theorem 1.5, that
derivations on the base field admit unique extensions to a larger field, characterizes not
separable field extensions in general, but separable algebraic field extensions.

A condition equivalent to that in Definition 5.3 is that F ⊗K L is reduced as F runs over
the finite extensions of K.

The condition that K⊗K L is reduced makes sense not just for field extensions L/K, but
for commutative K-algebras. Define an arbitrary commutative K-algebra A to be separable
when the ring K ⊗K A is reduced. This condition is equivalent to A ⊗K F being reduced
for every finite extension field F/K.

Example 5.4. Let A = K[X]/(f(X)) for a nonconstant f(X) ∈ K[X]. The polynomial
f(X) need not be irreducible, so A might not be a field. It is a separable K-algebra precisely
when f(X) is a separable polynomial in K[X].
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When [A : K] is finite, an analogue of Theorem 1.1 can be proved: A is a separable
K-algebra if and only if the trace pairing 〈x, y〉 = TrA/K(xy) from A × A to K is non-
degenerate.

Appendix A. Traces

Let A be a finite-dimensional commutative K-algebra (with identity), such as a finite
extension field of K or the product ring Kn or even a mixture of the two: a product of
finite extensions of K. To each a ∈ A we associate the K-linear map ma : A → A that is
left multiplication by a:

x 7→ ax.

For a, b ∈ A and α ∈ K, ma+b = ma + mb and mαa = αma, so a 7→ ma is a K-linear map
from A to Homk(A,A).

Definition A.1. For a finite-dimensional K-algebra A, the trace of a ∈ A is the trace of
ma.

That is, the trace of a is tr(ma) ∈ K, usually written as TrA/K(a), so TrA/K : A → K.
The trace from A to K is K-linear, hence identically zero or surjective since K is a one-
dimensional K-vector space.

Example A.2. Since m1 is the identity function, TrA/K(1) = [A : K].

Example A.3. Suppose a ∈ A is nilpotent: ar = 0 for some r ≥ 1. Then mr
a = O, so ma

is a nilpotent linear transformation. Thus its eigenvalues are all 0, so TrA/K(a) = 0.

We now consider a finite-dimensional L-algebra A with K a subfield of L such that
[L : K] <∞. We have finite-dimensional algebras A/L, A/K, and L/K. The next theorem
is called the transitivity of the trace.

Theorem A.4. In the above notation, TrA/K = TrL/K◦ TrA/L. In particular, if a ∈ L,
then TrA/K(a) = [A : L]TrL/K(a).

Proof. Let (e1, . . . , em) be an ordered L-basis of A and (f1, . . . , fn) be an ordered K-basis
of L. Thus as an ordered K-basis of A we can use

(e1f1, . . . , e1fn; . . . ; emf1, . . . , emfn).

For a ∈ A, let

aej =

m∑
i=1

cijei, cijfs =

n∑
r=1

bijrsfr,

for cij ∈ L and bijrs ∈ K. Thus a(ejfs) =
∑

i

∑
r bijrseifr. So

[ma]A/L = (cij), [mcij ]L/K = (bijrs), [ma]A/K = ([mcij ]L/K).

Thus

TrL/K(TrA/L(a)) = TrL/K(
∑
i

cii)

=
∑
i

TrL/K(cii)

=
∑
i

∑
r

biirr

= TrA/K(a). �
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Theorem A.5. Let A and B be finite-dimensional K-algebras. For (a, b) in the product
ring A×B, Tr(A×B)/K(a, b) = TrA/K(a) + TrB/K(b).

Proof. Let e1, . . . , em be a K-basis of A and f1, . . . , fn be a K-basis of B. In A × B,
ei · fj = 0. Therefore the matrix for multiplication by (a, b), with respect to the K-basis

{e1, . . . , em, f1, . . . , fn}, is a block-diagonal matrix (
[ma] 0
0 [mb]

), whose trace is TrA/K(a) +

TrB/K(b). �

Theorem A.6. Let A be a finite-dimensional K-algebra, L/K be a field extension, and
B = L⊗KA be the base extension of A to an L-algebra. For a ∈ A, TrB/L(1⊗a) = TrA/K(a).

Proof. Let e1, . . . , en be a K-basis of A. Write aej =
∑n

i=1 cijei, so the matrix for ma in
this basis is (cij).

The tensors 1⊗ e1, . . . , 1⊗ en are an L-basis of B, and we have

(1⊗ a)(1⊗ ej) = 1⊗ aej =

n∑
i=1

cij(1⊗ ei),

so the matrix for m1⊗a on B is the same as the matrix for ma on A. Thus TrA/K(a) =
TrB/L(1⊗ a). �

Remark A.7. Because m1⊗a and ma have the same matrix representation, not only are
their traces the same but their characteristic polynomials are the same.

Theorem A.8. Let A be a finite-dimensional K-algebra. For a field extension L/K, the
base extension by K of the trace map A → K is the trace map L ⊗K A → L. That is, the
function id⊗ TrA/K : L⊗K A→ L that sends an elementary tensor x⊗ a to xTrA/K(a) is
the trace map Tr(L⊗KA)/L.

Proof. We want to show Tr(L⊗KA)/L(t) = (id⊗TrA/K)(t) for all t ∈ L⊗KA. The elementary
tensors additively span L ⊗K A so it suffices to check equality when t = x ⊗ a for x ∈ K
and a ∈ A. This means we need to check Tr(L⊗KA)/K(x⊗ a) = xTrA/K(a).

Pick a K-basis e1, . . . , en for A and write aej =
∑n

i=1 cijei with cij ∈ K. The elementary
tensors 1⊗ e1, . . . , 1⊗ en are an L-basis of L⊗K A and

(x⊗ a)(1⊗ ej) = x⊗ aej =

n∑
i=1

cij(x⊗ ei) =

n∑
i=1

cijx(1⊗ ei)

by the definition of the L-vector space structure on L⊗KA. So the matrix for multiplication
by x⊗ a in the basis {1⊗ ei} is (cijx), which implies

Tr(L⊗KA)/L(x⊗ a) =

n∑
i=1

ciix = x

n∑
i=1

cii = xTrA/K(a). �

Appendix B. Derivations

A derivation is an abstraction of differentiation on polynomials. We want to work with
derivations on fields, but polynomial rings will intervene, so we need to understand deriva-
tions on rings before we focus on fields.

Let R be a commutative ring and M be an R-module (e.g., M = R). A derivation
on R with values in M is a map D : R → M such that D(a + b) = D(a) + D(b) and
D(ab) = aD(b) + bD(a). Easily, by induction D(an) = nan−1D(a) for all n ≥ 1. When
M = R, we will speak of a derivation on R.
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Example B.1. For a commutative ring A, differentiation with respect to X on A[X] is a
derivation on A[X] (R = M = A[X]).

Example B.2. Let R = A[X] and M = A as an R-module by f(X)a := f(0)a. Then
D : R→M by D(f) = f ′(0) is a derivation.

Example B.3. Let D : R→ R be a derivation. For f(X) =
∑

i aiX
i in R[X], set fD(X) =∑

iD(ai)X
i. This is the application of D coefficientwise to f(X). The operation f 7→ fD

is a derivation on R[X] (to check the product rule, it suffices to look at monomials).
If R = F2[u] and D is the usual u-derivative on F2[u], then the polynomial f(X) =

(u3 + u)X4 + uX3 + u2X + 1 in R[X] has fD(X) = (u2 + 1)X4 +X3.

Any element of R satisfying D(a) = 0 is called a D-constant, or just a constant if the
derivation is understood. The constants for a derivation form a subring. For instance, from
the product rule, taking a = b = 1, we obtain D(1) = 0.

Example B.4. The set of all constants for X-differentiation on K[X] is K when K has
characteristic 0 and K[Xp] when K has characteristic p.

Example B.5. If D : R → R is a derivation and f 7→ fD is the corresponding derivation
on R[X] from Example B.3, its ring of constants is C[X], where C is the constants for D.

We will generally focus on derivations from R to R, although it will be convenient to
allow R-modules as the target space for derivations in Corollary B.10 below, which is used
in the main text in the proofs of Theorem 1.5 and Lemma 4.4.

Example B.6. Let’s check that every derivation on K[X] that has the elements of K
among its constants has the form D(f) = hf ′ for some h ∈ K[X]. (When h = 1, this is the
usual X-derivative.)

When K is among the constants of D, D is K-linear: D(cf) = cD(f) + fD(c) = cD(f).
Therefore D is determined by what it does to a K-basis of K[X], such as the power functions
Xn. By induction, D(Xn) = nXn−1D(X) for all n ≥ 1. Therefore, by linearity, D(f) =
f ′(X)D(X) for every f ∈ K[X]. Set h = D(X).

Theorem B.7. Let R be a domain with fraction field K. Any derivation D : R → K

uniquely extends to D̃ : K → K, given by the quotient rule: D̃(a/b) = (bD(a)− aD(b))/b2.

Proof. Suppose there is an extension of D to a derivation on K. Then, if x = a/b is in K
(with a, b ∈ R), a = bx, so

D(a) = bD(x) + xD(b).

Therefore in K,

D(x) =
D(a)− xD(b)

b
=
bD(a)− aD(b)

b2
.

To see, conversely, that this formula does give a derivation D̃ on K, first we check it is
well-defined: if a/b = c/d (with b and d nonzero), then ad = bc, so

aD(d) + dD(a) = bD(c) + cD(b).
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Therefore

bD(a)− aD(b)

b2
− dD(c)− cD(d)

d2
=
d2(bD(a)− aD(b))− b2(dD(c)− cD(d))

b2d2

=
bd(dD(a)− bD(c))− d2aD(b) + b2cD(d)

b2d2

=
bd(cD(b)− aD(d))− d2aD(b) + b2cD(d)

b2d2

=
(bc− ad)dD(b)− (ad− bc)bD(d)

b2d2

= 0 since ad = bc.

That D̃ satisfies the sum and product rules is left to the reader to check. �

Theorem B.8. Let L/K be a finite extension of fields, and D : K → K be a derivation.
Suppose α ∈ L is separable over K, with minimal polynomial π(X) ∈ K[X]. That is, π(X)
is irreducible in K[X], π(α) = 0, and π′(α) 6= 0. Then D has a unique extension from K
to a derivation on the field K(α), and it is given by the rule

(B.1) D(f(α)) = fD(α)− f ′(α)
πD(α)

π′(α)

for all f(X) ∈ K[X].

Proof. The rule (B.1) looks bizarre at first. To make it less so, we start by assuming D
has an extension to K(α), and prove by a direct computation that it must be given by the
indicated formula. For β ∈ K(α), write β = f(α), where f(X) =

∑r
i=0 ciX

i and ci ∈ K.
Then

(B.2) D(β) = D(f(α)) =
r∑
i=0

(D(ci)α
i + ci(iα

i−1D(α))) = fD(α) + f ′(α)D(α).

Taking f(X) = π(X) to be the minimal polynomial of α over K, f(α) = 0, so if D has an
extension to K(α) then (B.2) becomes

0 = πD(α) + π′(α)D(α),

which proves (since π′(α) 6= 0) that D(α) must be given by the formula −πD(α)/π′(α).
Plugging this formula for D(α) into (B.2) shows D(β) must be given by the formula (B.1).
Since β was a general element of K(α), this proves D has at most one extension to a
derivation on K(α).

Now, to show the formula (B.1) works, we start over and define

D(f(α)) := fD(α)− f ′(α)
πD(α)

π′(α)
.

We need to show this formula is well-defined.
Suppose f1(α) = f2(α) for f1, f2 ∈ K[X]. Then f1(X) ≡ f2(X) mod π(X), say

(B.3) f1(X) = f2(X) + π(X)k(X)

for some k(X) ∈ K[X]. Differentiating both sides with respect to X in the usual way,

f ′1(X) = f ′2(X) + π(X)k′(X) + π′(X)k(X).



12 KEITH CONRAD

Evaluating at X = α,
f ′1(α) = f ′2(α) + π′(α)k(α).

Since π′(α) 6= 0, we divide by π′(α) and multiply through by −πD(α) to get

(B.4) − f ′1(α)
πD(α)

π′(α)
= −f ′2(α)

πD(α)

π′(α)
− πD(α)k(α).

We want to add fD1 (α) to both sides. First, apply D to the coefficients in (B.3), which is a
derivation on K[X] (Example B.3), to get

fD1 (X) = fD2 (X) + π(X)kD(X) + πD(X)k(X).

Therefore
fD1 (α) = fD2 (α) + πD(α)k(α).

Add this to both sides of (B.4) to get

fD1 (α)− f ′1(α)
πD(α)

π′(α)
= fD2 (α) + πD(α)k(α)− f ′2(α)

πD(α)

π′(α)
− πD(α)k(α)

= fD2 (α)− f ′2(α)
πD(α)

π′(α)
.

This proves the formula for a derivation on K(α) is well-defined. It is left to the reader to
check this really is a derivation. �

Example B.9. In contrast with Theorem B.8, consider K = Fp(u) and L = K(α) where
α is a root of Xp − u ∈ K[X]. This is an inseparable irreducible polynomial over K. The
u-derivative on K does not have an extension to a derivation on L. Indeed, suppose the
u-derivative on K has an extension to L, and call it D. Applying D to the equation αp = u
gives

pαp−1D(α) = D(u).

The left side is 0 since we’re in characteristic p. The right side is 1 since D is the u-derivative
on Fp(u). This is a contradiction, so D does not exist.

Corollary B.10. Let L/K be a finite extension of fields. For each derivation D : K → L
and α ∈ L that is separable over K, D has a unique extension to a derivation K(α) → L.
If D(K) ⊂ K then D(K(α)) ⊂ K(α).

Proof. Follow the argument in the proof of Theorem B.8, allowing derivations to have values
in L rather than in K(α). The formula for D(f(α)) still turns out to be the same as in
(B.1). In particular, if D(K) ⊂ K then the extension of D to a derivation on K(α) actually
takes values in K(α). �
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