
THE GALOIS CORRESPONDENCE AT WORK

KEITH CONRAD

We focus here on Galois groups and composite field extensions LF , where L and F are
extensions of K. Note LF is defined only when L and F are in a common field, even if the
common field is not mentioned: otherwise there is no multiplication of elements of L and
F in a common field, and thus no LF .

1. Examples

Theorem 1.1. Let L1 and L2 be Galois over K. There is an injective homomorphism

Gal(L1L2/K) ↪→ Gal(L1/K)×Gal(L2/K)

given by σ 7→ (σ|L1 , σ|L2). In particular, if L1/K and L2/K are abelian then so is L1L2/K.

Proof. A composite of Galois extensions is Galois, so L1L2/K is Galois.

L1L2

L1 L2

K

Any σ ∈ Gal(L1L2/K) restricted to L1 or L2 is an automorphism since L1 and L2 are
both Galois over K. So we get a function R : Gal(L1L2/K)→ Gal(L1/K)×Gal(L2/K) by
R(σ) = (σ|L1 , σ|L2). We will show R is an injective homomorphism.

To show R is a homomorphism, it suffices to check the separate restriction maps σ 7→ σ|L1

and σ 7→ σ|L2 are each homomorphisms from Gal(L1L2/K) to Gal(L1/K) and Gal(L2/K).
For σ and τ in Gal(L1L2/K) and any α ∈ L1,

(στ)|L1(α) = (στ)(α) = σ(τ(α)),

and τ(α) ∈ L1 since L1/K is Galois, so σ(τ(α)) = σ|L1(τ |L1(α)) = (σ|L1 ◦ τ |L1)(α). Thus
(στ)|L1(α) = (σ|L1 ◦ τ |L1)(α) for all α ∈ L1, so (στ)|L1 = σ|L1 ◦ τ |L1 . The proof that
(στ)|L2 = σ|L2 ◦ τ |L2 is the same.

The kernel of R is trivial, since if σ is the identity on L1 and L2 then it is the identity
on L1L2. Thus R embeds Gal(L1L2/K) into the direct product of the Galois groups of L1

and L2 over K.
If Gal(L1/K) and Gal(L2/K) are abelian, then their direct product is abelian, so the

embedded subgroup Gal(L1L2/K) is abelian. �

The analogue of the end of Theorem 1.1 for cyclic extensions is false: a compositum of
cyclic extensions need not be cyclic. For instance, Q(

√
2)/Q and Q(

√
3)/Q are cyclic, but

Q(
√

2,
√

3)/Q is not: its Galois group is isomorphic to Z/2Z× Z/2Z.
1
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2. Galois groups of composites and translates

We already saw in Theorem 1.1 that if L1/K and L2/K are finite Galois extensions then
Gal(L1L2/K) embeds into the direct product Gal(L1/K)×Gal(L2/K) by

σ 7→ (σ|L1 , σ|L2).

When is this embedding an isomorphism? If it is not an isomorphism, what is its image?

Theorem 2.1. Let L1 and L2 be Galois over K.

a) The embedding

Gal(L1L2/K) ↪→ Gal(L1/K)×Gal(L2/K)

given by σ 7→ (σ|L1 , σ|L2) is an isomorphism if and only if L1 ∩ L2 = K. In
particular, [L1L2 : K] = [L1 : K][L2 : K] if and only if L1 ∩ L2 = K.

b) The image of the embedding in part a is the set of compatible pairs of automorphisms:
{(τ1, τ2) ∈ Gal(L1/K)×Gal(L2/K) : τ1 = τ2 on L1 ∩ L2}.

Proof. a) The embedding is an isomorphism if and only if [L1L2 : K] = [L1 : K][L2 : K],
or equivalently [L1L2 : L2] = [L1 : K]. We will show this equality occurs if and only if
L1 ∩ L2 = K.

L1L2

L1 L2

L1 ∩ L2

K

To compare [L1L2 : L2] and [L1 : K], we will compare Galois groups having these sizes.
Consider the restriction homomorphism

(2.1) Gal(L1L2/L2)→ Gal(L1/K), where σ 7→ σ|L1 .

Any automorphism in the kernel of (2.1) fixes L1 and L2, so also L1L2. Thus the kernel
is trivial. The image of (2.1) has the form Gal(L1/E) for some field E with K ⊂ E ⊂ L1.
The field E is the set of elements of L1 fixed by Gal(L1L2/L2) acting on L1. An element
of L1L2 is fixed by Gal(L1L2/L2) if and only if it lies in L2, so the image of (2.1) is the
elements of L1 that lie in L2. This is L1 ∩ L2, so E = L1 ∩ L2. Thus the image of (2.1) is
Gal(L1/L1 ∩ L2), so

(2.2) Gal(L1L2/L2) ∼= Gal(L1/L1 ∩ L2) by σ 7→ σL1 .

In particular, [L1L2 : L2] = [L1 : L1 ∩ L2], and this is [L1 : K] if and only if L1 ∩ L2 = K.
b) Let H = {(τ1, τ2) ∈ Gal(L1/K)×Gal(L2/K) : τ1 = τ2 on L1 ∩L2}. The image of the

embedding Gal(L1L2/K)→ Gal(L1/K)×Gal(L2/K) lies in H (why?). We will check the
image has the same size as H, so the groups coincide.

To count |H|, for each τ2 ∈ Gal(L2/K) count those τ1 ∈ Gal(L1/K) for which τ1|L1∩L2 =
τ2|L1∩L2 . The restriction map Gal(L1/K) → Gal(L1 ∩ L2/K), where τ1 7→ τ1|L1∩L2 , is
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surjective with kernel Gal(L1/L1 ∩ L2), so each element of Gal(L1 ∩ L2/K) is τ1|L1∩L2 for
|Gal(L1/L1 ∩ L2)| values of τ1 in Gal(L1/K). Thus

|H| =
∑

τ2∈Gal(L2/K)

| {τ1 ∈ Gal(L1/K) : τ1|L1∩L2 = τ2|L1∩L2} |

=
∑

τ2∈Gal(L2/K)

|Gal(L1/L1 ∩ L2)|

= |Gal(L2/K)| · |Gal(L1/L1 ∩ L2)|
= [L2 : K][L1 : L1 ∩ L2]

= [L2 : K][L1L2 : L2] by the end of the proof of part a

= [L1L2 : K]

= |Gal(L1L2/K)|.

�

Part b says that elements of Gal(L1/K) and Gal(L2/K) that are equal on L1 ∩ L2

extend together (uniquely) to an element of Gal(L1L2/K): there is one automorphism in
Gal(L1L2/K) that restricts on L1 and L2 to our original choices.

Example 2.2. Let L1 = Q(
√

2,
√

3) and L2 = Q( 4
√

2, i). Both are Galois over Q, we know
their Galois groups, and L1 ∩L2 = Q(

√
2). Define τ1 ∈ Gal(L1/Q) and τ2 ∈ Gal(L2/Q) by

the conditions

τ1(
√

2) = −
√

2, τ1(
√

3) =
√

3, τ2(
4
√

2) = i
4
√

2, τ2(i) = i.

These agree on
√

2 since τ2(
√

2) = τ2(
4
√

2)2 = −
√

2, so there is a unique σ ∈ Gal(L1L2/Q)
that restricts to τ1 on L1 and τ2 on L2.

Remark 2.3. Theorem 2.1a admits a converse. Suppose L/K is a finite Galois extension
and Gal(L/K) ∼= H1 ×H2 for groups H1 and H2.

{(1, 1)} L

H1 × {1} {1} ×H2 L2 L1

H1 ×H2 K

Let L1 be the field fixed by {1}×H2 and L2 be the field fixed by H1×{1}. Since H1×{1} and
{1}×H2 are normal subgroups of H1×H2, L1 and L2 are Galois over K with Gal(L1/K) ∼=
(H1×H2)/({1}×H2) ∼= H1 and Gal(L2/K) ∼= H2. The subgroup corresponding to L1L2 is
({1} ×H2) ∩ (H1 × {1}) = {(1, 1)}, so L1L2 = L. The subgroup corresponding to L1 ∩ L2

is H1 ×H2 (why?), so L1 ∩ L2 = K.

That [L1L2 : K] = [L1 : K][L2 : K] if and only if L1 ∩ L2 = K remains true if we
remove the Galois hypothesis from just one of L1/K and L2/K, as we’ll see in Theorem 2.6
below. But if we remove the Galois hypothesis from both L1/K and L2/K then there are
counterexamples. Here are two.
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Example 2.4. If K = Q, L1 = Q( 3
√

2), and L2 = Q(ω 3
√

2), then L1 ∩ L2 = K but
[L1L2 : K] = 6 6= [L1 : K][L2 : K]. See the field diagram below on the left.

Example 2.5. If K = Q, L1 = Q(r1), and L2 = Q(r2) where r1 and r2 are two roots of
X4 + 8X + 12 then L1 ∩ L2 = K, but [L1L2 : K] = 12 6= [L1 : K][L2 : K]. See the field
diagram below on the right. If we change L2 to Q(r1 + r2) then we still have L1 ∩ L2 = K
and [L1L2 : K] = 12 6= [L1 : K][L2 : K].

Q(r1, r2)

Q( 3
√

2, ω 3
√

2)

22

Q(r1 + r2)

2

6
Q( 3
√

2) Q(ω 3
√

2)

3

Q(r1)

4

3

Q(r2)

4

3

Q

3

Q

Theorem 2.6. Let L/K be a finite Galois extension and F/K be an arbitrary field extension
such that L and F lie in a common field.

a) The extension LF/F is finite Galois and Gal(LF/F ) ∼= Gal(L/L∩F ) by restriction.
In particular, [LF : F ] = [L : L ∩ F ].

If F/K is finite then [LF : K] = [L : K][F : K]/[L ∩ F : K], so we have
[LF : K] = [L : K][F : K] if and only if L ∩ F = K.

b) The sets of intermediate fields {M : F ⊂ M ⊂ LF} and {M ′ : L ∩ F ⊂ M ′ ⊂ L}
are in bijection by M 7→ L ∩M , with inverse M ′ 7→M ′F .

In particular, every field between F and LF has the form F (α) where α ∈ L, and
if M and M ′ correspond by the bijection then M/F is Galois if and only if M ′/L∩F
is Galois, in which case Gal(M/F ) ∼= Gal(M ′/L ∩ F ) by restriction.

The field diagram for part a looks like the one on the left below, where parallel lines
emphasize the field extensions whose Galois groups we will identify. Think of LF/F as the
result of translating L/K by F (that is, taking the composite of both L and K with F ).

LF LF

L L M

F M ′
{{

;;

F

L ∩ F L ∩ F

K K



THE GALOIS CORRESPONDENCE AT WORK 5

We say Theorem 2.6 describes Galois extensions under “translation” by a field extension.

Proof. a) Since L/K is finite Galois, L is a splitting field over K of a separable polynomial
f(X) ∈ K[X]. Then LF is a splitting field over F of f(X), which is separable over L, so
LF/F is Galois. To show Gal(LF/F ) ∼= Gal(L/L∩F ) by restricting the domain from LF to
L, we essentially repeat the proof of Theorem 2.1a. Consider the restriction homomorphism

(2.3) Gal(LF/F )→ Gal(L/K), where σ 7→ σ|L.

This has a trivial kernel: an automorphism in Gal(LF/F ) that is trivial on L is trivial
on LF since it is automatically trivial on F . Therefore (2.3) is injective. The image
of (2.3) is a subgroup of Gal(L/K), so the image has the form Gal(L/E) for some field
E between K and L. By Galois theory E is the fixed field of the image of (2.3), so
E = {x ∈ L : σ(x) = x for all σ ∈ Gal(LF/F )}. An element of LF is fixed by Gal(LF/F )
precisely when it belongs to F , so E = L∩F . Therefore the image of (2.3) is Gal(L/L∩F ).

From the isomorphism of Galois groups, [LF : F ] = [L : L ∩ F ]. When F/K is a finite
extension, the formula for [LF : K] follows by writing [LF : K] as [LF : F ][F : K] and
[L : L ∩ F ] as [L : K]/[L ∩ F : K].

b) In the diagram below of intermediate fields (on the top) and subgroups (on the bottom)

(2.4) {F ⊂M ⊂ LF} oo //
OO

��

{L ∩ F ⊂M ′ ⊂ L}
OO

��
subgps. of Gal(LF/F ) oo // subgps. of Gal(L/L ∩ F )

we have bijections along the left and right sides by the Galois correspondence and a bijection
on the bottom from the group isomorphism in part a. Specifically, the bijection from left
to right on the bottom is given by H 7→ H|L (restricting all elements of a subgroup H of
Gal(LF/F ) to the field L). Composition of the side and bottom maps in either direction
gives us bijections between the two sets of intermediate fields on the top of the diagram,
and these bijections are inverses of each other. Our task is to show the bijections are given
by the formulas M 7→ L ∩M and M ′ 7→M ′F .

LF LF

L M

yy

L M ′F

L ∩M F M ′

;;

F

L ∩ F L ∩ F

K K

Start with a field M between F and LF . Let H be the subgroup it corresponds to in
Gal(LF/F ) by Galois theory, H ′ be the subgroup of Gal(L/L∩F ) corresponding to H under
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the restriction isomorphism Gal(LF/F ) ∼= Gal(L/L∩F ), and M ′ be the field between L∩F
and L corresponding to H ′ by Galois theory. We will show M ′ = L∩M . By Galois theory

H = {σ ∈ Gal(LF/F ) : σ(m) = m for all m ∈M} = Gal(LF/M), H ′ = {σ|L : σ ∈ H},

and

M ′ = {x ∈ L : σ(x) = x for all σ ∈ H ′} = {x ∈ L : σ(x) = x for all σ ∈ Gal(LF/M)}.

Since LF = LM , we can write H = Gal(LM/M), so M ′ is the fixed field of the restriction
homomorphism Gal(LM/M)→ Gal(L/K). By part a with M in place of F , this fixed field
is L ∩M . Therefore M ′ = L ∩M .

Now pick M ′ between L ∩ F and L, and let M be the field it corresponds to between
F and LF when we use the bijections passing through the Galois groups in (2.4) from the
upper right to the upper left. We want to show M = M ′F . Running the correspondence
of (2.4) in reverse from the upper left to the upper right, we have M ′ = L ∩M by the
previous paragraph. Since our correspondence of intermediate fields is a bijection, to show
M = M ′F it suffices to show M ′ = L ∩M ′F . Obviously M ′ ⊂ L ∩M ′F , so to prove this
containment is an equality it suffices to show [L : M ′] = [L : L ∩M ′F ]. By part a with
M ′F in place of F , [L : L ∩M ′F ] = [LM ′F : M ′F ] = [LF : M ′F ], so we want to show
[LF : M ′F ] = [L : M ′]. The field M ′F is intermediate in the Galois extension LF/F and the
field M ′ is intermediate in the Galois extension L/L∩F . An automorphism σ ∈ Gal(LF/F )
is trivial on F , and thus is trivial on M ′F if and only if it is trivial on M ′, so under the
restriction isomorphism Gal(LF/F ) ∼= Gal(L/L∩F ) we have Gal(LF/M ′F )↔ Gal(L/M ′).
In particular, [LF : M ′F ] = [L : M ′]. The rest of part b is left to the reader. �

Example 2.7. The extension Q(i, 4
√

2)/Q is Galois, with group D4. If we translate it by
Q(i, 3

√
2) (which is not Galois over Q), we get the extension Q(i, 3

√
2, 4
√

2)/Q(i, 3
√

2), which
is Galois. To find its Galois group, start by drawing the field diagram below.

Q(i, 3
√

2, 4
√

2)

Q(i, 4
√

2)

4

8

Q(i, 3
√

2)

3

6
Q(i)

2

Q

By Theorem 2.6, Gal(Q(i, 3
√

2, 4
√

2)/Q(i, 3
√

2) ∼= Gal(Q(i, 4
√

2)/F ), where F is the inter-
section of Q(i, 4

√
2) and Q(i, 3

√
2). Obviously Q(i) ⊂ F , and since [Q(i, 4

√
2) : Q(i)] = 4 and

[Q(i, 3
√

2) : Q(i)] = 3, we have F = Q(i).
The Galois group Gal(Q(i, 4

√
2)/Q(i)) is the subgroup of Gal(Q(i, 4

√
2)/Q) fixing i. This

subgroup is cyclic of order 4, generated are the automorphism σ where σ(i) = i and σ( 4
√

2) =
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i 4
√

2. Therefore Gal(Q(i, 3
√

2, 4
√

2)/Q(i, 3
√

2)) is cyclic of order 4, with generator sending 4
√

2
to i 4
√

2.

Theorem 2.6 did not need F/K to be finite if we’re not interested in computing [LF : K].
Here is a worthwhile application of this level of generality.

Example 2.8. If L/K is a finite Galois extension with Galois group G and F is any field
extension of K lying in a common field with L and satisfying L ∩ F = K, then LF/F is
a Galois extension of F with Gal(LF/F ) ∼= Gal(L/L ∩ F ) = Gal(L/K) = G by σ 7→ σ|L.
Since σ is trivial on F , this tells us Gal(L/K) can be viewed as Gal(LF/F ) by acting on L
as K-automorphisms and fixing all of F . This provides a way to realize Galois groups over
K as Galois groups over finite extensions of K. We will use this at the end of Section 4.

LF
G

L F

K
G

The following useful theorem is a concrete instance of Example 2.8.

Theorem 2.9. Let L/K be a finite Galois extension and let K(T1, . . . , Tn) be the rational
function field over K in n indeterminates for n ≥ 1. Then L(T1, . . . , Tn)/K(T1, . . . , Tn) is a
finite Galois extension. Its Galois group is Gal(L/K) acting on coefficients in L(T1, . . . , Tn).

Proof. The relevant field diagram is below, where we adopt the abbreviated notation T for
the list T1, . . . , Tn.

L(T)

K(T)

L

K

Step 1: L ∩K(T) = K.
It’s obvious that K ⊂ L∩K(T). To prove the reverse inclusion, suppose f(T) ∈ L∩K(T).

Being in L, f is the root of a nonconstant polynomial h(X) ∈ K[X], so h(f(T)) = 0 in
L(T). For each positive integer m, the substitution Ti 7→ Tmi for all i (or T 7→ Tm for
short) is a field homomorphism L(T) → L(T) (not surjective for m > 1!) that fixes the
elements of L, so h(f(Tm)) = 0 for all m. As m varies, the rational functions f(Tm) take
on infinitely many different values if f is nonconstant in K(T), but that means h(X) has
infinitely many roots in the field L(T), which is impossible: a nonconstant polynomial in
K[X] has only finitely many roots in any field extension of K. Thus f is constant in K(T),
or in other words f ∈ K.
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Step 2: Study the extension L(T)/K(T).
By Step 1, Theorem 2.6 says the field extension L(T)/K(T) is Galois with Galois group

isomorphic to Gal(L/K) by σ 7→ σ|L, so each element of Gal(L(T)/K(T)) is determined
by its behavior on L. Since such an element fixes K and each Ti ∈ K(T), every element of
Gal(L(T)/K(T)) is an element of Gal(L/K) that acts on rational functions by fixing each
Ti. Theorem 2.6 tells us all of Gal(L(T)/K(T)) is accounted for by the effect of different
elements of Gal(L/K) acting on coefficients in L(T). �

Example 2.10. The field C(T ) = R(T )(i) is quadratic over R(T ) and Gal(C(T )/R(T ))
is the identity and complex conjugation acting on coefficients.

In the next theorem we continue to use T as shorthand for T1, . . . , Tn.

Theorem 2.11. Let L/K be a finite Galois extension and let π(T) be irreducible in L[T]
with some coefficient in K×. Let f(T) be the product of the different values of σ(π(T)) as
σ runs over Gal(L/K)

a) The polynomial f(T) is in K[T] and is irreducible there.
b) If F (T) is irreducible in K[T] and π(T) is an irreducible factor of F (T) in L[T]

that is scaled so it has a coefficient in K× then, up to a constant scaling factor in
L, an irreducible factoriation of F (T) in L[T] is the product of the different values
of σ(π(T)) as σ runs over Gal(L/K).

In practice we can scale a polynomial so its coefficient in K× is 1. Before proving the
theorem we look some examples to appreciate what the hypotheses and conclusions of the
theorem are telling us and not telling us.

Example 2.12. A special case of part a for single-variable polynomials is basic to the
development of Galois theory: if π(T ) = T − α ∈ L[T ] then the minimal polynomial of α
over K is the product of all the different polynomials σ(T − α) = T − σ(α) as σ runs over
Gal(L/K). That T − α has leading coefficient 1 means it fits the hypothesis of part a.

Example 2.13. For the Galois extension Gal(Q(i)/Q), consider π(X,Y ) = X + iY in
Q(i)[X,Y ]. It is irreducible in Q(i)[X,Y ] since it is linear and it has a coefficient equal
to 1. The nontrivial element of Gal(Q(i)/Q) sends this polynomial to π(X,Y ) = X − iY
and ππ = (X + iY )(X − iY ) = X2 + Y 2, which part a of the theorem says is irreducible in
Q[X,Y ].

If π(X,Y ) = iX− iY = i(X−Y ) then this is irreducible in Q(i)[X,Y ] and the nontrivial
element of Gal(Q(i)/Q) sends it to π(X,Y ) = −iX+iY = −i(X−Y ), with ππ = (X−Y )2,
which is reducible in Q[X,Y ]. This does not contradict part a of the theorem since iX− iY
does not have a coefficient in Q×. If we scale π(X,Y ) to have a coefficient 1 then we get
X−Y , which is equal to itself when applying Gal(Q(i)/Q) to X−Y , and X−Y is already
irreducible in Q[X,Y ].

The polynomial X2 + Y 2 is irreducible in Q[X,Y ] and 2X + 2iY is an irreducible factor
of it in Q(i)[X,Y ]: X2 +Y 2 = (2X+2iY )(X/2− iY/2). One of the coefficients of 2X+2iY
is in Q×, so part b of the theorem says (2X+2iY )(2X−2iY ) is an irreducible factorization
of X2+Y 2 in Q(i)[X,Y ] up to a constant scaling factor. Let’s check: (2X+2iY )(2X−2iY )
is 4X2 +4Y 2 = 4(X2 +Y 2), which is not X2 +Y 2 but does equal it up to a constant scaling
factor.

Proof. a) For σ ∈ Gal(L/K), σ acting on coefficients of L[T] is a ring automorphism of this
UFD, so it preserves irreducibility. Thus each σ(π) is irreducible in L[T]. Let the distinct
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elements of {σ(π) : σ ∈ Gal(L/K)} be listed as {σ1(π), . . . , σm(π)}. The polynomials
σi(π) and σj(π) are not scalar multiples in L[T]: if σi(π) = cσj(π) for some c ∈ L×, then
comparing both sides at a monomial where π(T) has a coefficient in K× implies that c = 1,
but we are assuming that σi(π) 6= σj(π) for all i and j.

For σ ∈ Gal(L/K), we have σ(σi(π)) = (σσi)(π), so each (σσi)(π) is some σj(π). Apply-
ing σ−1 to σj(π) = (σσi)(π) returns us to σi(π), so applying σ to the set {σ1(π), . . . , σm(π)}
is an injective mapping of the set to itself, and thus is also a surjection (the set is finite),
so σ acts on the set as a permutation. This implies that the product

(2.5) f(T) =
m∏
i=1

σi(π) ∈ L[T]

is invariant under σ: σ(f) = f since σ applied to the polynomials σi(π) permutes them.
Thus the coefficients of f(T) ∈ L[T] are each fixed by Gal(L/K), so the coefficients are all
in K: f(T) ∈ K[T].

To show f(T) is irreducible in K[T], let h(T) be a nonconstant factor of f(T) in K[T].
In L[T], (2.5) is a decomposition of f(T) into irreducible factors, so one of them has to be a
factor of h(T), say σi(π) | h(T) in L[T]. Applying σ to polynomials in L[T] is multiplicative
and thus preserves divisibility relations, so σ(σi(π)) | σ(h) in L[T]. Since h has coefficients
in K we have σ(h) = h, so (σσi)(π) | h in L[T]. Since {σσi : σ ∈ Gal(L/K)} = Gal(L/K),
the definition of σ1(π), . . . , σm(π) as being all the different polynomials obtained by applying
Gal(L/K) to π(T) tells us that h(T) is divisible by every σj(π). We showed before that the
irreducibles σj(π) in L[T] are not scalar multiples of each other in L[T], so h(T) is divisible
by the product of all of them! Thus f(T) | h(T) in L[T], so deg f ≤ deg h: by “degree” of
a polynomial in several variables we mean the largest degree of a nonzero monomial in it,
and the degree does not change if the field of coefficients is made larger (like going from K
to L). Therefore a nonconstant factor of f(T) doesn’t have degree less than deg f , so f(T)
is irreducible in K[T].

b) We have a divisibility relation π(T) | F (T) in L[T]. Applying each σ ∈ Gal(L/K) to
this relation implies σ(π) | σ(F ) in L[T], so σ(π) | F since F has coefficients in K. Each
σ(π) is irreducible, and by an argument in part a the condition that π has a coefficient in
K× implies the different σ(π)’s (as σ varies in Gal(L/K)) are not scalar multiples of each
other in L[T]. Thus F (T) is divisible in L[T] by the product of the distinct σ(π)’s. From
part a, the product of the distinct σ(π)’s is irreducible in K[T]. Call this product f(T), so
f(T) ∈ K[T] and f(T) | F (T) in L[T]. We want to show f(T) | F (T) in K[T].

The ratio F (T)/f(T) is in L[T]∩K(T). It should be plausible that L[T]∩K(T) = K[T].
This can be proved in a simple way if n = 1 (single-variable polynomials) using the Euclidean
property of such polynomials, but multivariable polynomials over a field are not Euclidean.
Instead we can argue using the notion of an integral ring extension, as follows. (If you
don’t know what integral extensions are, just accept that L[T] ∩ K(T) = K[T].) Since
L/K is a finite extension of fields, L[T] is an integral extension of K[T], so a polynomial
in L[T] ∩K(T) is a rational function over K that is integral over K[T]. The ring K[T] is
a UFD and UFDs are integrally closed, so a rational function in K(T) that’s integral over
K[T] must be in K[T]. Therefore L[T] ∩K(T) = K[T], so f(T) | F (T) in K[T].

Since f(T) and F (T) are irreducible in K[T], the relation f(T) | F (T) in K[T] implies
F (T) = cf(T) for some c ∈ K× (because f(T) is not constant). �
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We end this section with a substantial numerical application of Theorem 2.6, taking up
the next few pages.

Example 2.14. We will prove the fields Q( 8
√

3) and Q(
√

2 8
√

3) are not isomorphic by
placing them in a common Galois extension of Q and showing the subgroups they correspond
to in the Galois group are not conjugate.

The minimal polynomial of 8
√

3 over Q is X8 − 3 and the minimal polynomial of
√

2 8
√

3
is X8 − 48 = X8 − 16 · 3. The splitting field of X8 − 3 over Q is Q( 8

√
3, ζ8). We have√

2 ∈ Q(ζ8) since

ζ8 = e2πi/8 =
1 + i√

2
=⇒ ζ8 + ζ−18 =

2√
2

=
√

2,

so Q( 8
√

3, ζ8) = Q(
√

2 8
√

3, ζ8). This Galois extension of Q contains both Q( 8
√

3) and
Q(
√

2 8
√

3).
To compute Gal(Q( 8

√
3, ζ8)/Q), we will first determine [Q( 8

√
3, ζ8) : Q].

Q( 8
√

3, ζ8)

?

?

?

Q(
√

2 8
√

3)

8

Q( 8
√

3)

8
Q(ζ8)

4

Q

From the field diagram above, we guess [Q( 8
√

3, ζ8) : Q] = 32, but we should be cautious
about this because we might similarly think [Q( 4

√
2, ζ8) : Q] = 4 · 4 = 16 but in fact

[Q( 4
√

2, ζ8) : Q] = 8. (Indeed, Q( 4
√

2, ζ8) = Q( 4
√

2, i) since i = ζ28 and ζ8 = (1 + i)/
√

2 =

(1 + i)/ 4
√

2
2
, and writing the field as Q( 4

√
2, i) makes it easy to see it has degree 8 over Q).

By Theorem 2.6a with K = Q, L = Q(ζ8), and F = Q( 8
√

3),

[Q(
8
√

3, ζ8) : Q] =
32

[Q( 8
√

3) ∩Q(ζ8) : Q]
.

The intersection Q( 8
√

3)∩Q(ζ8) is inside R since Q( 8
√

3) ⊂ R, and the only real subfields of
Q(ζ8) are Q and Q(

√
2), so if Q( 8

√
3)∩Q(ζ8) is not Q then it must be Q(

√
2). That would

put
√

2 inside of Q( 8
√

3), and there should be a strong feeling in you that
√

2 6∈ Q( 8
√

3).
How do we prove

√
2 6∈ Q( 8

√
3)? One way is to show the only quadratic subfield of

Q( 8
√

3) is Q(
√

3) and then recall that Q(
√

2) 6= Q(
√

3). That is left to you. What we will
do instead is look at quartic subfields of Q( 8

√
3). An obvious one is Q( 4

√
3). If

√
2 ∈ Q( 8

√
3)

then Q(
√

2,
√

3) ⊂ Q( 8
√

3), so Q( 8
√

3) would have two quartic subfields: Q(
√

2,
√

3) and
Q( 4
√

3). (These quartic fields are definitely not equal, since the first one is Galois over Q
and the second one is not.) We’re going to prove Q( 4

√
3) is the only quartic subfield of

Q( 8
√

3), giving a contradiction.1

1Methods from algebraic number theory provide another way to show that
√
2 6∈ Q( 8

√
3).
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Let Q ⊂ F ⊂ Q( 8
√

3) with [F : Q] = 4, so [Q( 8
√

3) : F ] = 2. Then 8
√

3 has two F -
conjugates: itself and some other number. That other number is another 8th root of 3, so
it is some ζc8

8
√

3, where 1 ≤ c ≤ 7. Then the minimal polynomial of 8
√

3 over F is

(X − 8
√

3)(X − ζc8
8
√

3) = X2 − (1 + ζc8)
8
√

3X + ζc8
4
√

3.

The coefficients on the right must be in F , and F ⊂ Q( 8
√

3) ⊂ R, so ζc8
4
√

3 is real. The only
real powers of ζ8 are ±1. Since 1 ≤ c ≤ 7, we must have ζc8 = −1. Therefore the constant

term ζc8
4
√

3 = − 4
√

3 is in F . Since [F : Q] = 4 and 4
√

3 has degree 4 over Q, F = Q( 4
√

3).

This completes the proof that [Q( 8
√

3, ζ8) : Q] = 32 and we fill in all the degrees in the field
diagram below.

Q( 8
√

3, ζ8)

4

8

4

Q(
√

2 8
√

3)

8

Q( 8
√

3)

8
Q(ζ8)

4

Q

Now we compute Gal(Q( 8
√

3, ζ8)/Q), which has size 32 from our field degree calculation.
Each σ in this Galois group is determined by its values on 8

√
3 and ζ8. Under the Galois

group, 8
√

3 goes to an 8th root of 3 and ζ8 goes to a primitive 8th root of unity, so σ(ζ8) = ζa8
and σ( 8

√
3) = ζb8

8
√

3, where a ∈ (Z/8Z)× and b ∈ Z/8Z. Thus each element of the Galois
group gives us two exponents mod 8, a and b, with a mod 8 being invertible. There are 4
choices for a and 8 choices for b, which allows for at most 4 · 8 = 32 possible σ’s. Since the
number of σ’s is 32, every pair of choices for a and b really works: for each a ∈ (Z/8Z)× and
b ∈ Z/8Z, there is a unique σ ∈ Gal(Q( 8

√
3, ζ8)/Q) such that σ(ζ8) = ζa8 and σ( 8

√
3) = ζb8

8
√

3.
Write this σ as σa,b, so

(2.6) σa,b(ζ8) = ζa8 , σa,b(
8
√

3) = ζb8
8
√

3.

To understand the Galois group in terms of the parameters a and b, check that

σa,b ◦ σa′,b′ = σaa′,b+ab′ .

The way the parameters combine on the right is exactly the way the matrices(
a b
0 1

)
multiply, so there is an isomorphism from

(2.7)

{(
a b
0 1

)
: a ∈ (Z/8Z)×, b ∈ Z/8Z

}
to Gal(Q( 8

√
3, ζ8)/Q) given by ( a b0 1 ) 7→ σa,b. The mod 8 matrix group (2.7) will be our

concrete model for Gal(Q( 8
√

3, ζ8)/Q).
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Now that we computed the Galois group of a Galois extension of Q containing Q( 8
√

3)
and Q(

√
2 8
√

3), we are ready to show Q( 8
√

3) 6∼= Q(
√

2 8
√

3) by showing their corresponding
subgroups in Gal(Q( 8

√
3, ζ8)/Q) are not conjugate.

In the matrix model (2.7) of Gal(Q( 8
√

3, ζ8)/Q), the subgroup fixing Q( 8
√

3) is

(2.8)

{(
a 0
0 1

)
: a ∈ (Z/8Z)×

}
=

{(
1 0
0 1

)
,

(
3 0
0 1

)
,

(
5 0
0 1

)
,

(
7 0
0 1

)}
because every σa,0 fixes 8

√
3 (set b = 0 in (2.6)), there are 4 such automorphisms, and

[Q( 8
√

3, ζ8) : Q( 8
√

3)] = 32/8 = 4. To find the subgroup fixing Q(
√

2 8
√

3), we need to find
the (a, b)-solutions to σa,b(

√
2 8
√

3) =
√

2 8
√

3. In terms of 8
√

3 and ζ8,
√

2
8
√

3 = (ζ8 + ζ−18 )
8
√

3,

so

σa,b(
√

2
8
√

3) = (ζa8 + ζ−a8 )ζb8
8
√

3.

Therefore

σa,b(
√

2
8
√

3) =
√

2
8
√

3⇐⇒ (ζa8 + ζ−a8 )ζb8
8
√

3 = (ζ8 + ζ−18 )
8
√

3⇐⇒ (ζa8 + ζ−a8 )ζb8 = ζ8 + ζ−18 .

The number of (a, b)-solutions is [Q( 8
√

3, ζ8) : Q(
√

2 8
√

3)] = 32/8 = 4, and by inspection 4
solutions are (a, b) = (±1, 0) and (±3, 4), so the matrices ( a b0 1 ) fixing

√
2 8
√

3 are

(2.9)

{(
±1 0
0 1

)
,

(
±3 4
0 1

)}
=

{(
1 0
0 1

)
,

(
7 0
0 1

)
,

(
3 4
0 1

)
,

(
5 4
0 1

)}
.

It remains to show that the mod 8 matrix groups (2.8) and (2.9) are not conjugate inside
of (2.7). These subgroups are abstractly isomorphic to each other since they are are each
isomorphic to Z/2Z × Z/2Z, so we can’t rule out them being conjugate from being non-
isomorphic as abstract groups. To rule out conjugacy, we really must look at conjugation
on these subgroups.

Suppose ( x y0 1 ) is a matrix in (2.7) that conjugates (2.8) to (2.9). For any a ∈ (Z/8Z)×,

(2.10)

(
x y
0 1

)(
a 0
0 1

)(
x y
0 1

)−1
=

(
a (1− a)y
0 1

)
.

(Since x cancels out on the right side, we could take x = 1 from now on.) In particular,(
x y
0 1

)(
3 0
0 1

)(
x y
0 1

)−1
=

(
3 −2y
0 1

)
.

Therefore the only conjugate of ( 3 0
0 1 ) in (2.9) is ( 3 4

0 1 ), so −2y ≡ 4 mod 8, so y ≡ 2 mod 4.
Since (

x y
0 1

)(
5 0
0 1

)(
x y
0 1

)−1
=

(
5 −4y
0 1

)
,

the only conjugate of ( 5 0
0 1 ) in (2.9) is ( 5 4

0 1 ), so −4y ≡ 4 mod 8, which implies y ≡ 1 mod 2.
We have incompatible congruences on y, so (2.8) and (2.9) are nonconjugate subgroups in
(2.7). (Each element of (2.8) can be conjugated within the group (2.7) to an element of
(2.9), but there is not one element of the group (2.7) that conjugates all of (2.8) to (2.9).)
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3. Generating a Composite Field with a Sum

From the proof of the primitive element theorem, if α and β are separable over K then
K(α, β) = K(α + cβ) for all but finitely many c ∈ K. It is natural to ask if there is a
condition that assures us we can use c = 1, so α+ β generates K(α, β).

Theorem 3.1. If K has characteristic 0 and K(α, β)/K is a finite extension such that
K(α)/K and K(β)/K are both Galois and K(α) ∩K(β) = K, then K(α, β) = K(α+ β).

Proof. Our argument is taken from [9, p. 65]. Let H = Gal(K(α, β)/K(α + β)). We will
show this group is trivial.

Pick σ ∈ H, so σ(α+ β) = α+ β. Therefore

σ(α)− α = β − σ(β).

Since K(α) and K(β) are Galois over K, σ(α) ∈ K(α) and σ(β) ∈ K(β), so σ(α)−α ∈ K(α)
and β − σ(β) ∈ K(β). This common difference is therefore in K(α) ∩ K(β) = K. Write
σ(α)− α = t, so

σ(α) = α+ t, σ(β) = β − t.
Applying σ repeatedly, σj(α) = α + jt for all integers j. Choose j ≥ 1 such that σj is the
identity (for instance, let j = [K(α, β) : K]). Then α = α + jt, so jt = 0. Since we are in
characteristic 0 and j is a positive integer, we must have t = 0, so σ(α) = α and σ(β) = β.
Therefore σ is the identity on K(α, β). �

Example 3.2. The fields Q(
√

2) and Q(
√

3) are both Galois over Q and their intersection
is Q, so Theorem 3.1 tells us Q(

√
2,
√

3) = Q(
√

2 +
√

3). This can also be seen more simply
by checking

√
2 +
√

3 is not fixed by any element of Gal(Q(
√

2,
√

3)/Q) other than the
identity.

If we drop the Galois hypothesis in Theorem 3.1 completely, then the proof of Theorem
3.1 falls apart and the theorem need not be true anymore.

Example 3.3. Both Q( 3
√

2) and Q(ω 3
√

2) are not Galois over Q and Q( 3
√

2)∩Q(ω 3
√

2) = Q.
The field Q( 3

√
2, ω 3
√

2) = Q( 3
√

2, ω) has degree 6 over Q, but 3
√

2 +ω 3
√

2 = −ω2 3
√

2 (because
1 + ω+ ω2 = 0), which generates the field Q(ω2 3

√
2) of degree 3 over Q. So Q( 3

√
2, ω 3
√

2) 6=
Q( 3
√

2 + ω 3
√

2).

Example 3.4. Let r and r′ be two roots of X4 + 8X + 12. The extensions Q(r) and Q(r′)
have degree 4 over Q, Q(r)∩Q(r′) = Q, and [Q(r, r′) : Q] = 12. The sum r+ r′ has degree
6 over Q (it is a root of X6 − 48X2 − 64), so Q(r, r′) 6= Q(r + r′).

In the proof of Theorem 3.1 we used the condition that K has characteristic 0 in one
place: to know that if jt = 0 in K where j a positive integer then t = 0. The choice of j
comes from σj = id, so j can be chosen as [K(α, β) : K]. Therefore Theorem 3.1 is valid
in characteristic p as long as [K(α, β) : K] 6≡ 0 mod p. What if [K(α, β) : K] is divisible
by p? First of all, there are no problems when K is a finite field. That is, Theorem 3.1 is
true when K is any finite field. See Jyrki Lahtonen’s answer at [11]. But if K = Fp(T ), the
simplest infinite field of characteristic p, counterexamples to Theorem 3.1 occur.

Example 3.5. Consider K = F2(T ), α2 +α+ 1 = 0, and β2 +β+T = 0. The polynomials
X2 +X + 1 and X2 +X + T are separable and irreducible over K (check these quadratics
have no root in F2(T )), so α and β have degree 2 over K and generate Galois extensions
of K (their K-conjugates are α + 1 and β + 1). The field K(α) = F2(T, α) = F2(α)(T )
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is a field of rational functions over F2(α) and X2 + X + T has no root in it (why?), so
[K(α, β) : K(α)] = 2. Therefore [K(α, β) : K] = 4 and K(α) ∩K(β) = K. We have the
following field diagram.

F2(T, α, β)

22

F2(T, α)

2

F2(T, β)

2

F2(T )

Unlike the conclusion of Theorem 3.1, K(α, β) 6= K(α+β) because α+β has degree 2 over
K: (α + β)2 + (α + β) = α2 + β2 + α + β = T + 1. An example of a primitive element of
K(α, β)/K is α + Tβ: its Galois orbit over F2(T ) has order 4. A similar example occurs
over Fp(T ) for any prime p, where αp − α+ 1 = 0 and βp − β + T = 0.

If K has characteristic 0 and just one of K(α) or K(β) in Theorem 3.1 is Galois, the
proof of the theorem no longer works but the theorem is still true! Isaacs [5] found that
Theorem 3.1 is true when K has characteristic 0 with a weaker condition in place of the
Galois hypotheses.

Theorem 3.6. If K has characteristic 0 and K(α, β)/K is a finite extension such that
[K(α, β) : K] = [K(α) : K][K(β) : K] then K(α, β) = K(α+ β).

Proof. See [5] or [6, pp. 363–368]. The hypothesis on field degrees in those references is that
the degrees [K(α) : K] and [K(β) : K] are relatively prime, but the only use of this in the
proof is to guarantee that [K(α, β) : K] = [K(α) : K][K(β) : K] and this degree formula
can be true even without the two factors being relatively prime. �

The degree hypothesis in Theorem 3.6 is equivalent to K(α) ∩ K(β) = K when one of
K(α) or K(β) is Galois over K (Theorem 2.6), so Theorem 3.1 is true when only one of
K(α) or K(β) is Galois over K.

Example 3.7. Theorem 3.6 implies Q( 3
√

2, ω) = Q( 3
√

2 + ω) and Q( 4
√

2, i) = Q( 4
√

2 + i).

Example 3.8. We know Q( 3
√

2, ω 3
√

2) 6= Q( 3
√

2 + ω 3
√

2) and this example does not fit
Theorem 3.6 since [Q( 3

√
2, ω 3
√

2) : Q] = 6 while [Q( 3
√

2) : Q][Q(ω 3
√

2) : Q] = 9.

Example 3.9. Letting r and r′ be two roots of X4 + 8X + 12, we can’t decide if Q(r, r′)
equals Q(r+ r′) from Theorem 3.6 since [Q(r, r′) : Q] = 12 and [Q(r) : Q][Q(r′) : Q] = 16.
The two fields are not the same since Q(r + r′) has degree 6 over Q.

Example 3.10. Does Q( 4
√

2, ζ8) = Q( 4
√

2 + ζ8)? Since Q( 4
√

2, ζ8) = Q( 4
√

2, i) (see Example
2.14) we have [Q( 4

√
2, ζ8) : Q] = 8, and also [Q( 4

√
2) : Q][Q(ζ8) : Q] = 16, so we can’t

answer the question with Theorem 3.6. The Galois orbit of 4
√

2 + ζ8 over Q has size
8, so in fact Q( 4

√
2, ζ8) = Q( 4

√
2 + ζ8). (The minimal polynomial of 4

√
2 + ζ8 over Q is

X8 − 8X5 − 2X4 + 16X3 + 32X2 + 24X + 9.) Thus the degree hypothesis of Theorem 3.6
is sufficient to imply K(α, β) = K(α+ β) in characteristic 0, but it is not necessary.

In [5] and [6], a version of Theorem 3.6 is proved in characteristic p under extra technical
hypotheses. That some extra hypothesis is needed can be seen from Example 3.5; it has
the degree hypothesis of Theorem 3.6 but not the conclusion.
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4. The inverse Galois problem

The inverse Galois problem asks which finite groups arise as Galois groups of a given
field. For instance, the only Galois groups over R are the trivial group and a group of order
2. The most important case of the inverse Galois problem is base field Q: it is conjectured
that every finite group is a Galois group over Q, but this is still not solved.

It is important to remember that the inverse Galois problem is about finite Galois exten-
sions of fields. Every finite extension of fields E/F has an automorphism group Aut(E/F ),
but this might be smaller in size than [E : F ] in which case E/F is not a Galois extension.
For instance, Q( 3

√
2)/Q and Q( 4

√
2)/Q have degree 3 and 4, while Aut(Q( 3

√
2)/Q) is trivial

and Aut(Q( 4
√

2)/Q) has order 2. In 1980, M. Fried [2] proved that every finite group G is
isomorphic to Aut(K/Q) for some finite extension K/Q – in fact, for infinitely many K/Q
– but this doesn’t solve the inverse Galois problem over Q since the fields K need not be
Galois over Q. His proof fixed some mistakes in an earlier proof by E. Fried and J. Kollar
[1]. A simpler proof was given later by W-D. Geyer [3].

The inverse Galois problem is solved over C(T ): each finite group is a Galois group over
C(T ), and this is proved by methods of complex analysis (Riemann surfaces). If the base
field is arbitrary, then every finite group is the Galois group of some field extension. We
will explain this using Cayley’s theorem to embed every finite group in a symmetric group.

Theorem 4.1. Every finite group is the Galois group of some finite Galois extension in
any characteristic.

Proof. Let F be a field. By the symmetric function theorem,

F (T1, . . . , Tn)Sn = F (s1, . . . , sn),

where the si’s are the elementary symmetric functions of the Ti’s. Therefore the field
F (T1, . . . , Tn) is Galois over F (s1, . . . , sn) with Galois group Sn. Any finite group G embeds
into some symmetric group Sn, and thus can be interpreted as a Galois group. �

Theorem 4.1 leaves a lot to be desired: to realize G as a Galois group, the proof tells us
to embed G ↪→ Sn for some n and then G is the Galois group of the extension E/EG where
E = F (T1, . . . , Tn) and G acts on E by permuting the variables using the embedding of G
in Sn. The base field EG = F (T1, . . . , Tn)G of this Galois extension is rather mysterious!

Schur, in the 19th century, used number-theoretic techniques to realize every Sn and An
as Galois groups over Q using splitting fields of truncated power series (e.g., the splitting
field over Q of the truncated exponential series

∑n
k=0X

k/k!, has Galois group Sn unless
4 | n, when the Galois group is An). Later Hilbert introduced geometric methods into the
subject when he showed that if a finite group could be realized as a Galois group over Q(T )
then it could be realized as a Galois group over Q (in infinitely many ways) by suitable
specializations. The buzzword here is “Hilbert’s irreducibility theorem” [4]. For instance,
Xn −X − T is irreducible over Q(T ) and it turns out that its Galois group over Q(T ) is
Sn, so Hilbert’s work implies that for many rational numbers t the polynomial Xn −X − t
is irreducible over Q and the Galois group is Sn. With more work, the particular choice
t = 1 works: Xn −X − 1 is irreducible over Q and its Galois group is Sn [7].

Why does Schur’s realization of every Sn as a Galois group over Q not settle the inverse
Galois problem over Q, even though every finite group is a subgroup of some symmetric
group? The Galois correspondence reverses inclusions, so subgroups of Gal(L/K) have the
form Gal(L/F ) (same top field, changing base field). It is quotients of Gal(L/K) that have
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the form Gal(F/K). Alas, the symmetric groups have very few quotient groups: when
n ≥ 5, the only normal subgroups of Sn are {(1)}, An, and Sn, so the only quotient groups
of Sn are trivial, of size 2, or Sn itself.

By number-theoretic methods, Shafarevich proved in the 1950s that any finite solvable
group is a Galois group over Q. (There was an error concerning the prime 2, which was
later repaired.) Most recent work on the inverse Galois problem uses a geometric approach
inspired by Hilbert’s ideas. As we said above, Hilbert showed that the inverse Galois
problem over Q would be settled (by “specialization”) if we can settle the inverse Galois
problem over Q(T ). See [10] (esp. Chapter 1) for a basic introduction to these ideas and
[8] for a general survey.

As an application of Theorem 2.6, the inverse Galois problem for Q lifts to finite exten-
sions.

Theorem 4.2. If every finite group can be realized as a Galois group over Q then every
finite group can be realized as a Galois group over any finite extension of Q.

Proof. Fix a finite group G and finite extension F/Q. Following Example 2.8, if we can
realize G as a Galois group of an extension L/Q where L ∩ F = Q, then LF/F is Galois
and Gal(LF/F ) ∼= Gal(L/L ∩ F ) = Gal(L/Q) ∼= G. Thus G is realized over F . So the
problem is to find a finite Galois extension L/Q such that G ∼= Gal(L/Q) and L ∩ F = Q.

There are finitely many fields between Q and F (including Q and F ), say n such fields.
By hypothesis all finite groups are Galois groups over Q, so in particular the n-fold product
group Gn is a Galois group over Q. Let Gal(E/Q) ∼= Gn. Inside of Gn are the normal
subgroups

Ni = G×G× · · · × {1} × · · · ×G
for 1 ≤ i ≤ n, where the ith coordinate is trivial and there is no restriction in other
coordinates. So Ni

∼= Gn−1 and Gn/Ni
∼= G. Let Ei be the subfield of E corresponding to

Ni, so Ei/Q is Galois with Gal(Ei/Q) ∼= Gn/Ni
∼= G. Each of the fields E1, . . . , En realizes

G as a Galois group over Q. We are going to prove by counting that at least one of the
fields Ei intersects F in Q. Then the composite FEi realizes G as a Galois group over F .

For i 6= j, Ei∩Ej = Q. Indeed (see the diagram below), Ei∩Ej is the largest subfield of
E that lies in Ei and Ej , so by the Galois correspondence Gal(E/Ei ∩ Ej) is the smallest
subgroup of Gal(E/Q) containing Gal(E/Ei) = Ni and Gal(E/Ej) = Nj . That means
Gal(E/Ei ∩Ej) = 〈Ni, Nj〉. From the definition of Ni and Nj , the subgroup they generate
in Gn is Gn. Since 〈Ni, Nj〉 = Gn, Ei ∩ Ej = Q.

E {1}

Ei Ej Ni Nj

Ei ∩ Ej 〈Ni, Nj〉

Q Gn

Now associate to each Ei the subfield Ei ∩ F of F . There are n fields Ei and n subfields
of F . If the correspondence from the subfields Ei to the intersections Ei ∩ F is a bijection
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then Ei ∩ F = Q for some i and we’re done. If the correspondence is not injective then
we have a repeated intersection Ei ∩ F = Ej ∩ F for some i 6= j. But any element in both
intersections is in Ei∩Ej = Q, which means Ei∩F = Ej∩F = Q and again we’re done. �

The only special feature about a finite extension of the rational numbers that was used
in the proof is that there are finitely many fields between it and Q. So if every finite group
arises as a Galois group over some field K and F/K is a finite extension with finitely many
intermediate fields (e.g., F/K is separable) then the proof of Theorem 4.2 shows every finite
group arises as a Galois group over F .
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