
SOME EXAMPLES OF THE GALOIS CORRESPONDENCE

KEITH CONRAD

Example 1. The field extension Q( 3
√

2, ω)/Q, where ω is a nontrivial cube root of unity, is
Galois: it is a splitting field over Q for X3− 2, which is separable since every irreducible in
Q[X] is separable. The number of field automorphisms of Q( 3

√
2, ω)/Q is [Q( 3

√
2, ω) : Q] =

6. (For comparison, the number of field automorphisms of Q( 3
√

2)/Q is 1, even though the
field extension has degree 3: there is just nowhere for 3

√
2 to go in Q( 3

√
2) except to itself.)

We will give two ways to think about Gal(Q( 3
√

2, ω)/Q).

Q( 3
√

2, ω)

Q( 3
√

2)

3
Q(ω)

Q

2

For the first way, each σ in Gal(Q( 3
√

2, ω)/Q) is determined by its effect on the 3 roots of
X3 − 2, which are 3

√
2, ω 3
√

2, and ω2 3
√

2: these roots generate the top field over the bottom
field (note ω = ω 3

√
2/ 3
√

2 is a ratio of two cube roots of 2). There are at most 6 permutations
of these 3 roots, and since we know there are 6 automorphisms, each permutation of the
roots comes from an automorphism of the field extension. Thus Gal(Q( 3

√
2, ω)/Q) ∼= S3

with S3 thought of as the symmetric group on the set of 3 roots of X3 − 2.
For another viewpoint, any σ in the Galois group is determined by the two values σ( 3

√
2) ∈

{ 3
√

2, ω 3
√

2, ω2 3
√

2} and σ(ω) ∈ {ω, ω2}. Therefore there are at most 3 · 2 = 6 possibilities
for σ. Since 6 is the number of automorphisms, all of these possibilities really work: each
choice of a root of X3− 2 for σ( 3

√
2) and a nontrivial cube root of unity for σ(ω) does come

from an automorphism σ. Write σ(ω) = ωaσ where aσ ∈ (Z/(3))× and σ( 3
√

2) = ωbσ 3
√

2
where bσ ∈ Z/(3). For two automorphisms σ and τ ,

σ(τ(ω)) = σ(ωaτ ) = σ(ω)aτ = ωaσaτ

and

σ(τ(
3
√

2)) = σ(ωbτ
3
√

2) = σ(ω)bτσ(
3
√

2) = ωaσbτωbσ
3
√

2 = ωaσbτ+bσ
3
√

2.

Looking at the exponents of ω on the right side of these two equations, composition of σ and
τ behaves like multiplication of matrices ( a b0 1 ) with entries in Z/(3), since ( a b0 1 )( a

′ b′
0 1 ) =

( aa
′ ab′+b

0 1
): Gal(Q( 3

√
2, ω)/Q) is isomorphic to the group of mod 3 invertible matrices ( a b0 1 )

by σ 7→ ( aσ bσ
0 1 ).

1
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That we found two models for Gal(Q( 3
√

2, ω)/Q), as permutations and as matrices, is no
surprise: both models are nonabelian and all nonabelian groups of order 6 are isomorphic.

Example 2. The extension Q( 4
√

2, i)/Q is Galois by the same reasoning as in the previous
example: the top field is the splitting field over Q for X4 − 2, which is separable. The
diagram below shows some of the intermediate fields, but these are not all the intermediate
fields. For instance, Q(

√
2) ⊂ Q( 4

√
2), but this is not the only missing subfield.

Q( 4
√

2, i)

Q( 4
√

2)

4

Q(i 4
√

2)

4 Q(i)

Q

2

Although each element of Gal(Q( 4
√

2, i)/Q) permutes the 4 roots of X4 − 2, not all
24 permutations of the roots are realized by the Galois group. (This is a contrast to
Gal(Q( 3

√
2, ω)/Q)!) For example, 4

√
2 and − 4

√
2 add to 0, so under a field automorphism

these two roots go to roots that are also negatives of each other. No field automorphism
of Q( 4

√
2, i)/Q could send 4

√
2 to i 4

√
2 and − 4

√
2 to 4

√
2 because that doesn’t respect the

algebraic relation x+ y = 0 that holds for x = 4
√

2 and y = − 4
√

2.
To figure out what Gal(Q( 4

√
2, i)/Q) is concretely, we think about an automorphism σ

by what it does to 4
√

2 and i, rather than what it does to all the fourth roots of 2. Since
σ( 4
√

2) has to be a root of X4 − 2 (4 possible values) and σ(i) has to be a root of X2 + 1
(2 possible values), there are at most 4 · 2 = 8 automorphisms of Q( 4

√
2, i)/Q. Because

[Q( 4
√

2, i) : Q] = 8, Gal(Q( 4
√

2, i)/Q) has size 8 and therefore all assignments of σ( 4
√

2) and
σ(i) to roots of X4 − 2 and X2 + 1, respectively, must be realized by field automorphisms.
Let r and s be the automorphisms of Q( 4

√
2, i)/Q determined by

r(
4
√

2) = i
4
√

2, r(i) = i, s(
4
√

2) =
4
√

2, s(i) = −i.
By taking powers and products (that is, composites) of automorphisms, we obtain the
following table of 8 different automorphisms of Q( 4

√
2, i)/Q. (They are different because

they don’t have the same effect on both 4
√

2 and i, which generate the field extension).

σ id r r2 r3 s rs r2s r3s

σ( 4
√

2) 4
√

2 i 4
√

2 − 4
√

2 −i 4
√

2 4
√

2 i 4
√

2 − 4
√

2 −i 4
√

2
σ(i) i i i i −i −i −i −i

Table 1.

A calculation at 4
√

2 and i shows r4 = id, s2 = id, and rs = sr−1, so Gal(Q( 4
√

2, i)/Q) is
isomorphic (not equal, just isomorphic!) to D4, where D4 can be viewed as the 8 symmetries
of the square whose vertices are the four complex roots of X4−2: r is rotation by 90 degrees
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counterclockwise and s is complex conjugation, which is a reflection across one diagonal of
this square. (Strictly speaking, r and s as automorphisms are only defined on Q( 4

√
2, i), not

on all complex numbers. While r looks like a rotation by 90 degrees on the four roots of
X4 − 2, it is not really a rotation on most elements of Q( 4

√
2), since r is not multiplication

by i everywhere. For example, r(1) is 1 rather than i, and r(i) is i rather than −1. The
function s, however, does coincide with complex conjugation on all of Q( 4

√
2, i).)

Since Q( 4
√

2, i) is a Galois extension of Q, we can compute the degree of a number in
Q( 4
√

2, i) over Q by counting the size of its Galois orbit. For example, let

α =
4
√

2 +
√

2 + 1.

Applying Gal(Q( 4
√

2, i)/Q) to α and seeing what different numbers come out amounts to
replacing 4

√
2 in the expression for α by the four different fourth roots of 2 and replacing√

2 = 4
√

2
2

in the expression for α by the squares of those respective fourth roots of 2. We
obtain the list

4
√

2 +
√

2 + 1, i
4
√

2−
√

2 + 1, − 4
√

2 +
√

2 + 1, −i 4
√

2−
√

2 + 1.

Although Gal(Q( 4
√

2, i)/Q) has size 8, the Galois orbit of α only has size 4. Therefore
the field extension Q(α)/Q has degree 4. Since α ∈ Q( 4

√
2), so Q(α) ⊂ Q( 4

√
2), a degree

comparison implies Q(α) = Q( 4
√

2). It is easy to see why the Galois orbit has fewer than 8
numbers in it: complex conjugation s does not change α, so every σ and σs have the same
value at α.

Example 3. The extension Q( 3
√

2, ω)/Q has Galois group isomorphic to S3 (Example 1).
This group has 3 subgroups of order 2 and one subgroup (just A3) of order 3. In the diagram
we have indicated the indices in S3 of subgroups.

S3

A3

2

〈(12)〉

3

〈(13)〉

3

〈(23)〉

3

{(1)}

Let’s flip this upside down, so larger groups are on the bottom.

{(1)}

〈(12)〉

3

〈(13)〉

3

〈(23)〉

3
A3

2

S3
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By the Galois correspondence, the arrangement of subfields of Q( 3
√

2, ω) looks the same,
with indices of a subgroup in the Galois group turning into degrees of a subfield over Q.

Q( 3
√

2, ω)

?

3

?

3

?

3
?

2

Q

So there is one quadratic subfield and three cubic subfields. It is easy to write down enough
such fields by inspection: Q(ω) is quadratic and Q( 3

√
2), Q(ω 3

√
2), and Q(ω2 3

√
2) are all

cubic. (These three cubic fields are distinct since two different cube roots of 2 can’t lie
in the same cubic field.) So these are the only (proper) intermediate fields, and the field
diagram looks like this:

Q( 3
√

2, ω)

Q( 3
√

2)

3

Q(ω 3
√

2)

3

Q(ω2 3
√

2)

3
Q(ω)

2

Q

We were somewhat cavalier about the way we just wrote down the cubic fields without
really paying attention to which ones should correspond to which subgroups of index 3
(order 2) in the Galois group. But we can’t be more careful at this stage (beyond keeping
track of indices of subgroups and degrees of subfields) because we didn’t really keep track
here of how Gal(Q( 3

√
2, ω)/Q) is isomorphic to S3. We simply used the subgroup structure

of S3 to figure out the subfield structure of Q( 3
√

2, ω). If we want to match specific subgroups
with specific subfields through the Galois correspondence, we have to think about S3 as the
Galois group in a definite way. There are three roots of X3 − 2 being permuted by the
Galois group (in all 6 possible ways), so if we label these roots abstractly as 1, 2, and 3 then
we can see what the correspondence should be. Label 3

√
2 as 1, ω 3

√
2 as 2, and ω2 3

√
2 as 3.

Then (12) fixes ω2 3
√

2, and therefore Q(ω2 3
√

2) is contained in the fixed field Q( 3
√

2, ω)〈(12)〉.
The subgroup 〈(12)〉 has index 3 and Q(ω2 3

√
2)/Q has degree 3, so Q(ω2 3

√
2) is the full

fixed field of 〈(12)〉. In a similar way, 〈(13)〉 has fixed field Q(ω 3
√

2) and 〈(23)〉 has fixed



SOME EXAMPLES OF THE GALOIS CORRESPONDENCE 5

field Q( 3
√

2). So the subgroup and subfield diagrams are aligned if we draw them as follows:

{(1)}

〈(12)〉

3

〈(13)〉

3

〈(23)〉

3
A3

2

S3

Q( 3
√

2, ω)

Q(ω2 3
√

2)

3

Q(ω 3
√

2)

3

Q( 3
√

2)

3
Q(ω)

2

Q

Example 4. The extension Q( 4
√

2, i)/Q has Galois group isomorphic to D4 according to
the permutations that the Galois group induces on the fourth roots of 2. Generators are r
and s where r( 4

√
2) = i 4

√
2, r(i) = i and s( 4

√
2) = 4

√
2, s(i) = −i (s is complex conjugation).

See Table 1 in Example 2.
Below is the diagram of all subgroups of D4, written upside down.

{id}

〈s〉 〈r2s〉 〈r2〉 〈rs〉 〈r3s〉

〈r2, s〉 〈r〉 〈r2, rs〉

D4
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All indices of successive subgroups here are 2, so we don’t include that information in the
diagram. The lattice of intermediate fields in Q( 4

√
2, i)/Q looks the same:

Q( 4
√

2, i)

Q( 4
√

2) Q(i 4
√

2) Q(
√

2, i) ? ?

Q(
√

2) Q(i) Q(i
√

2)

Q

To check the fields have been placed correctly according to the Galois correspondence H ;

Q( 4
√

2, i)H , verify in each case that each field in the field diagram is fixed by the subgroup
in the same relative position in the subgroup diagram, and the degree of the field over Q
equals the index of the subgroup over Q: if F ⊂ Q( 4

√
2, i)H and [F : Q] = [D4 : H] then

F = Q( 4
√

2, i)H .
For example, since [Q(i) : Q] = 2, the subgroup H in D4 corresponding to Q(i) has

index 2. Since r(i) = i, 〈r〉 is a subgroup fixing i with index 8/4 = 2, so H = 〈r〉. Thus
Q(i) corresponds to 〈r〉.

Two fields in the field diagram above have been left undetermined. What are they? They
correspond to the subgroups 〈rs〉 and 〈r3s〉, which are the only nontrivial proper subgroups
of 〈r2, rs〉, so we can figure out the undetermined fields by finding an α ∈ Q( 4

√
2, i) of degree

4 over Q that is fixed by rs and not by r2, and likewise finding a β of degree 4 over Q that
is fixed by r3s and not by r2. Then the two missing fields are Q(α) and Q(β).

To find α, rather than blind guessing we simply write a general α in Q( 4
√

2, i) using a
basis over Q and see what the condition rs(α) = α says about its coefficients. Writing

α = a+ b
4
√

2 + c
√

2 + d
4
√

2
3

+ ei+ fi
4
√

2 + gi
√

2 + hi
4
√

2
3
,

with rational coefficients a, b, c, d, e, f, g, h, applying rs to all terms gives

rs(α) = a+ bi
4
√

2− c
√

2− di 4
√

2
3 − ei+ f

4
√

2 + gi
√

2− h 4
√

2
3
,

so the condition rs(α) = α is equivalent to

b = f, c = −c, e = −e, d = −h.

Therefore

α = a+ b(1 + i)
4
√

2 + d(1− i) 4
√

2
3

+ gi
√

2.

The coefficients a, b, d, g can be arbitrary rational numbers. To pick something simple of
degree 4, we try b = 1 and set the other coefficients equal to 0:

α := (1 + i)
4
√

2.

With this choice of α we have r2(α) = −α, so α is fixed by 〈rs〉 but not by 〈r2〉, which
means the field Q(α) is inside the fixed field of 〈rs〉 but is not inside the fixed field of 〈r2〉,
so Q(α) must be the fixed field of 〈rs〉. The number β = (1− i) 4

√
2 is fixed by r3s and not
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by r2, so the fixed field of 〈r3s〉 is Q((1 − i) 4
√

2). Now we have a complete field diagram
corresponding to the subgroup diagram of D4 at the start of this example.

Q( 4
√

2, i)

Q( 4
√

2) Q(i 4
√

2) Q(
√

2, i) Q((1 + i) 4
√

2) Q((1− i) 4
√

2)

Q(
√

2) Q(i) Q(i
√

2)

Q

Note (1 + i) 4
√

2 and (1− i) 4
√

2 are both roots of X4 + 8, so the distinct but isomorphic fields
Q((1 + i) 4

√
2) and Q((1 − i) 4

√
2) are analogous to the fields Q( 4

√
2) and Q(i 4

√
2) that are

each generated by a root of X4 − 2.
All of this work generalizes to the splitting field of X4 −m over Q for nonzero m ∈ Z

if we assume X4 −m is irreducible over Q and m 6= −n2 (so Q(
√
m) 6= Q(i)). Writing

4
√
m for one root of X4−m, the splitting field of X4−m over Q is Q( 4

√
m, i), whose Galois

group over Q is isomorphic to D4 and the diagram below describes all of its subfields, with
(1± i) 4

√
m being roots of X4 + 4m.

Q( 4
√
m, i)

Q( 4
√
m) Q(i 4

√
m) Q(

√
m, i) Q((1 + i) 4

√
m) Q((1− i) 4

√
m)

Q(
√
m) Q(i) Q(i

√
m)

Q

The restriction m 6= −n2 above is important, because without it the splitting field of
X4 −m over Q does not have degree 8. For example, taking n = 1 and m = −n2 = −1,
the polynomial X4 + 1 is irreducible over Q (replacing X by X + 1 makes it Eisenstein at
2) and its splitting field over Q is Q(ζ8) since X4 + 1 is the 8th cyclotomic polynomial,
with Gal(Q(ζ8)/Q) ∼= (Z/8Z)×, which is of order 4 and each nontrivial element has order

2. More generally, if m = −n2 then in is a square root of m, γ :=
√
in is a fourth root of m,

and i = γ2/n is inside Q(γ). If m = −n2 and X4−m is irreducible over Q, its splitting field
over Q is Q(γ, i) = Q(γ), which has degree 4 over Q1 and in Gal(Q(γ)/Q) the nontrivial
elements have order 2: the Q-conjugates of γ are ±γ and ±iγ, and if σ(γ) = −γ then
σ(i) = i (view i as γ2/n) and σ2(γ) = γ, while if τ(γ) = iγ or −iγ then τ(i) = −i and
τ2(γ) = γ (check!).

1If m = −n2 and X4 −m is reducible over Q, then its splitting field over Q is Q(i), so of degree 2.
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Example 5. The polynomial X4 −X2 − 1 is irreducible over Q since it is irreducible mod
3. Let’s find its splitting field over Q and all of its subfields.

The roots of X4−X2−1 are ±
√

(1 +
√

5)/2 and ±
√

(1−
√

5)/2. Let α =
√

(1 +
√

5)/2,

so ±
√

(1−
√

5)/2 = ±i/α. Therefore the splitting field of X4 −X2 − 1 over Q is Q(α, i).

Since α is real, i 6∈ Q(α), so as the diagram below illustrates [Q(α, i) : Q] = 8.

Q(α, i)

2

Q(α)

4 Q(i)

2

Q

Any σ ∈ Gal(Q(α, i)/Q) is determined by σ(α) and σ(i). Since σ(α) has four possible
values (±α and ±i/α) and σ(i) has two possible values (±i), there are at most eight pairs
(σ(α), σ(i)) and hence at most 8 possibilities for σ. The group Gal(Q(α, i)/Q) has order
8, so all 8 possible choices for (σ(α), σ(i)) really do arise. See Table 2. The fifth column is
complex conjugation on Q(α, i).

σ(α) α −α i/α −i/α α −α i/α −i/α
σ(i) i i i i −i −i −i −i

Table 2.

To help us recognize Gal(Q(α, i)/Q), the last two automorphisms in Table 2 have order 4
and the other nonidentity automorphisms in the table have order 2 (check!). The extension
Q(α)/Q is not Galois (after all, α has Q-conjugate i/α, which is not in Q(α) since i/α is
not real), so Gal(Q(α, i)/Q) has a non-normal subgroup and in particular is not abelian.
This is enough information to pin down the Galois group up to isomorphism: the two
nonabelian groups of order 8 are D4 and Q8, and every subgroup of Q8 is normal, so
Gal(Q(α, i)/Q) ∼= D4. To make this isomorphism concrete, let r be the automorphism with
the effect in the second to last column of Table 2 (it has order 4) and let s be complex
conjugation on Q(α, i). Then we can list the automorphisms described in Table 2 as in
Table 3. As an exercise, check from Table 3 that sr = r3s.

σ id r2 rs r3s s r2s r r3

σ(α) α −α i/α −i/α α −α i/α −i/α
σ(i) i i i i −i −i −i −i

Table 3.
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Below is the lattice of subgroups of D4, upside down.

{id} Q(α, i)

〈s〉 〈r2s〉 〈r2〉 〈rs〉 〈r3s〉

〈r2, s〉 〈r〉 〈r2, rs〉

D4 Q

The field fixed by s is a real subfield of Q(α, i) whose degree over Q is 8/2 = 4. This field
must be Q(α), since it has degree 4 and is real. By Table 3, i is fixed by {1, r2, rs, r2s} =
〈r2, rs〉, so the field fixed by 〈r2, rs〉, which must be quadratic, is Q(i). From the diagram
of subgroups of D4, there is a unique quadratic subfield of Q(α) on account of there being
a unique subgroup of D4 containing 〈s〉 with index 2, namely 〈r2, s〉. A quadratic subfield
of Q(α) is Q(α2) = Q((1 +

√
5)/2) = Q(

√
5), so this is the fixed field of 〈r2, s〉.

Here is a diagram of subfields of Q(α, i) so far.

Q(α, i)

Q(α) ? ? ? ?

Q(α2) ? Q(i)

Q

Using Table 3, iα is fixed by r2s, and iα has degree 4 over Q (it’s a root of X4 +
X2 − 1, which is irreducible mod 3 and thus irreducible over Q). Here is a more filled-in
subfield diagram. Check for each number listed in the diagram that its fixed group is the
corresponding subgroup in the subgroup diagram for D4.

Q(α, i)

Q(α) Q(iα) Q(α2, i) ? ?

Q(α2) Q(i(α2 + 1/α2)) Q(i)

Q
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Remark 6. While the quadratic subfields of Q(
√

2, i) in Example 4 are Q(
√

2), Q(i),
and Q(i

√
2), the quadratic subfields of Q(α2, i) include Q(α2) and Q(i) but not Q(iα2)

because iα2 does not have degree 2 over Q: it has degree 4 over Q with minimal polynomial
T 4+3T 2+1. The difference between

√
2 in Example 4 and α2 = (1+

√
5)/2 in this example

is that α2 is not a pure square root of an integer, so iα2 need not be quadratic over Q.

To complete the field diagram we seek elements of degree 4 over Q that are fixed by
rs and r3s. Since both of these automorphisms have order 2, it’s natural to consider
α + (rs)(α) = α + i/α and α + (r3s)(α) = α − i/α. To prove α + i/α generates the fixed
field of rs, let’s use the field diagram: Q(α + i/α) is inside the fixed field of rs, so if it
does not have degree 4 over Q then this field is inside Q(i) and thus is fixed by r2. Since
r2(α+ i/α) = −α− i/α = −(α+ i/α), the only way α+ i/α can be fixed by r2 is if it is 0,
but this would be absurd since α is a real number. So the first question mark in the above
diagram is Q(α+ i/α). In a similar way, the field fixed by r3s is Q(α− i/α).

We can make the generator for the field Q(α+i/α) more explicit. Since α =
√

(1 +
√

5)/2,

by direct calculation(
α+

i

α

)2

= α2 + 2i− 1

α2
=

1 +
√

5

2
+ 2i−

√
5− 1

2
= 1 + 2i,

and likewise (α − i/α)2 = 1 − 2i. Therefore Q(α + i/α) = Q(
√

1 + 2i) and Q(α − i/α) =
Q(
√

1− 2i). Here is the field diagram with more explicit generators of the fields.

Q(α, i)

Q(α) Q(iα) Q(
√

5, i) Q(
√

1 + 2i) Q(
√

1− 2i)

Q(
√

5) Q(
√
−5) Q(i)

Q

Galois theory tells us that Q(
√

1 + 2i) 6= Q(
√

1− 2i) because these fields correspond to
different subgroups of Gal(Q(α, i)/Q). Since s(α+ i/α) = α− i/α, the field Q(

√
1 + 2i) is

carried over to Q(
√

1− 2i) by complex conjugation.


