
GALOIS GROUPS AS PERMUTATION GROUPS

KEITH CONRAD

1. Introduction

A Galois group is a group of field automorphisms under composition. By looking at the
effect of a Galois group on field generators we can interpret the Galois group as permu-
tations, which makes it a subgroup of a symmetric group. This makes Galois groups into
relatively concrete objects and is particularly effective when the Galois group turns out to
be a symmetric or alternating group.

2. Automorphisms of fields as permutations of roots

The Galois group of a polynomial f(T ) ∈ K[T ] over K is defined to be the Galois group
of a splitting field for f(T ) over K. We do not require f(T ) to be irreducible in K[T ].

Example 2.1. The polynomial T 4− 2 has splitting field Q( 4
√

2, i) over Q, so the Galois of
T 4 − 2 over Q is isomorphic to D4. The splitting field of T 4 − 2 over R is C, so the Galois
group of T 4 − 2 over R is Gal(C/R) = {z 7→ z, z 7→ z}, which is cyclic of order 2.

Example 2.2. The Galois group of (T 2−2)(T 2−3) over Q is isomorphic to Z/2Z×Z/2Z.
Its Galois group over R is trivial since the polynomial splits completely over R.

Writing f(T ) = (T − r1) · · · (T − rn), the splitting field of f(T ) over K is K(r1, . . . , rn).
Each σ in the Galois group of f(T ) over K permutes the ri’s since σ fixes K and therefore
f(r) = 0⇒ f(σ(r)) = 0. The automorphism σ is completely determined by its permutation
of the ri’s since the ri’s generate the splitting field over K. A permutation of the ri’s can
be viewed as a permutation of the subscripts 1, 2, . . . , n.

Example 2.3. Consider the Galois group of T 4 − 2 over Q. The polynomial has 4 roots:
4
√

2, i 4
√

2,− 4
√

2,−i 4
√

2. Two generators of Gal(Q( 4
√

2, i)/Q) are the automorphisms r and s
where r( 4

√
2) = i 4

√
2 and r(i) = i, and s( 4

√
2) = 4

√
2 and s(i) = −i. The effect of the Galois

group on 4
√

2 and i is in Table 1.

Automorphism 1 r r2 r3 s rs r2s r3s

Value on 4
√

2 4
√

2 i 4
√

2 − 4
√

2 −i 4
√

2 4
√

2 i 4
√

2 − 4
√

2 −i 4
√

2
Value on i i i i i −i −i −i −i

Table 1.

The effect of r on the roots of T 4 − 2 is

r(
4
√

2) = i
4
√

2, r(i
4
√

2) = − 4
√

2, r(− 4
√

2) = −i 4
√

2, r(−i 4
√

2) =
4
√

2,

which is a 4-cycle, while the effect of s on the roots of T 4 − 2 is

s(
4
√

2) =
4
√

2, s(i
4
√

2) = −i 4
√

2, s(−i 4
√

2) = i
4
√

2, s(− 4
√

2) = − 4
√

2,
1
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which swaps i 4
√

2 and −i 4
√

2 while fixing 4
√

2 and − 4
√

2. So s is a 2-cycle on the roots.
Indexing the roots of T 4 − 2 as

(2.1) r1 =
4
√

2, r2 = i
4
√

2, r3 = − 4
√

2, r4 = −i 4
√

2,

the automorphism r acts on the roots like (1234) and the automorphism s acts on the roots
like (24). With this indexing of the roots, the Galois group of T 4 − 2 over Q becomes the
group of permutations in S4 in Table 2.

Automorphism 1 r r2 r3 s rs r2s r3s

Permutation (1) (1234) (13)(24) (1432) (24) (12)(34) (13) (14)(23)
Table 2.

Example 2.4. If we label the roots of (T 2 − 2)(T 2 − 3) as

r1 =
√

2, r2 = −
√

2, r3 =
√

3, r4 = −
√

3,

then the Galois group of (T 2 − 2)(T 2 − 3) over Q becomes the following subgroup of S4:

(2.2) (1), (12), (34), (12)(34).

Numbering the roots of f(T ) in different ways can identify the Galois group with different
subgroups of Sn.

Example 2.5. Renaming 4
√

2, i 4
√

2,− 4
√

2,−i 4
√

2 in this order as r2, r4, r3, r1 identifies the
Galois group of T 4 − 2 over Q with the subgroup of S4 in Table 3, which is not the same
subgroup of S4 in Table 2.

Automorphism 1 r r2 r3 s rs r2s r3s

Permutation (1) (1243) (14)(23) (1342) (14) (13)(24) (23) (12)(34)
Table 3.

Example 2.6. If we label
√

2,−
√

2,
√

3,−
√

3 in this order as r2, r4, r1, r3 then the Galois
group of (T 2 − 2)(T 2 − 3) over Q turns into the following subgroup of S4:

(2.3) (1), (13), (24), (13)(24).

This is not the same subgroup as (2.2).

In general, associating to each σ in the Galois group of f(T ) over K its permutation
on the roots of f(T ), viewed as a permutation of the subscripts of the roots when we list
them as r1, . . . , rn, is a homomorphism from the Galois group to Sn. This homomorphism
is injective since its kernel is trivial: an element of the Galois group that fixes each ri is the
identity on the splitting field. Thinking about the Galois group of a polynomial with degree
n as a subgroup of Sn is the original viewpoint of Galois. (The description of Galois theory
in terms of field automorphisms is due to Dedekind and, with more abstraction, Artin.)

Two different choices for indexing the roots of f(T ) can lead to different subgroups of
Sn, but they will be conjugate subgroups. For instance, the subgroups in Tables 2 and
3 are conjugate by the permutation

(
1234
2431

)
= (124), which is the permutation turning one

indexing of the roots into the other, and the subgroups (2.2) and (2.3) are conjugate by
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1234
2413

)
= (1243). Although the Galois group of f(T ) over K does not have a canonical

embedding into Sn in general, its image in Sn is well-defined up to an overall conjugation.
For example, without fixing an indexing of the roots, it doesn’t make sense to ask if a
particular permutation like (132) is in the Galois group as a subgroup of Sn, but it does
make sense to ask if the Galois group contains a permutation with a particular cycle type
(like a 3-cycle).

We can speak about Galois groups of irreducible or reducible polynomials, like T 4− 2 or
(T 2 − 2)(T 3 − 2) over Q. Only for an irreducible polynomial does the Galois group have
a special property, called transitivity, when we turn the Galois group into a subgroup of
Sn. A subgroup G ⊂ Sn is called transitive when, for all i 6= j in {1, 2, . . . , n}, there is a
permutation in G sending i to j.

Example 2.7. The subgroups of S4 in Tables 2 and 3 are transitive. This corresponds to
the fact that for each pair of roots of T 4 − 2 there is an element of its Galois group over Q
taking the first root to the second.

Example 2.8. The subgroup of S4 in (2.2) is not transitive since no element of the subgroup
takes 1 to 3. This corresponds to the fact that an element of Gal(Q(

√
2,
√

3)/Q) can’t send√
2 to

√
3.

Being transitive is not a property of an abstract group. It is a property of subgroups of
Sn.1 A conjugate subgroup of a transitive subgroup of Sn is also transitive since conjugation
on Sn amounts to listing the numbers from 1 to n in a different order.

Theorem 2.9. Let f(T ) ∈ K[T ] be separable of degree n with Galois group Gf over K.

(a) If f(T ) is irreducible over K then |Gf | is divisible by n.
(b) The polynomial f(T ) is irreducible in K[T ] if and only if Gf is a transitive subgroup

of Sn.

Proof. (a) For a root r of f(T ) in K, [K(r) : K] = n is a factor of the degree of the splitting
field over K, which is the size of the Galois group over K.

(b) First suppose f(T ) is irreducible. For two roots ri and rj of f(T ), we can write
rj = σ(ri) for some σ in the Galois group of f(T ) over K. Therefore the Galois group, as a
subgroup of Sn, sends i to j, so it is a transitive subgroup. Now suppose f(T ) is reducible
(so n ≥ 2). It is a product of distinct irreducibles since it is separable. Let ri and rj
be roots of different irreducible factors of f(T ). These irreducible factors are the minimal
polynomials of ri and rj over K. For each σ in the Galois group of f(T ) over K, σ(ri)
has the same minimal polynomial over K as ri, so we can’t have σ(ri) = rj . Therefore, as
a subgroup of Sn, the Galois group of f(T ) does not send i to j, so it is not a transitive
subgroup of Sn. �

3. The group Sp as a Galois group

We will give a criterion that implies a Galois group of prime degree p is as large as
possible, namely Sp.

Lemma 3.1. In Sp, a permutation of order p is a p-cycle.

1More generally, it is a property of groups equipped with a specific action on a set. Subgroups of Sn have
a natural action on the set {1, 2, . . . , n}.
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Proof. Let π ∈ Sp have order p and decompose into disjoint nontrivial cycles as π =
π1π2 · · ·πr, with ni being the order of πi.

Method 1: Suppose π is not a p-cycle. Since we’re in Sp, each πi is therefore a cycle
of length less than p, so each ni is less than p (in fact the length of the cycle πi is ni).
Since the order of a product of disjoint cycles is the least common multiple of the orders of
the cycles, p = lcm(n1, . . . , nr). However, each ni is less than p, so not divisible by p, and
therefore lcm(n1, . . . , nr) is not divisible by p. This is a contradiction.

Method 2: the order of π1π2 · · ·πr is lcm(n1, . . . , nr). Therefore p = lcm(n1, . . . , nr).
Since p is a prime number and ni > 1, we have ni = p for all i. Thus π is a product of
disjoint p-cycles. Since π is in Sp, there can’t be even two disjoint p-cycles, so π is a single
p-cycle. �

Theorem 3.2. Let f(T ) ∈ Q[T ] be an irreducible polynomial of prime degree p with all but
two roots in R. The Galois group of f(T ) over Q is isomorphic to Sp.

Proof. Let L = Q(r1, . . . , rp) be the splitting field of f(T ) over Q. The permutations of the
ri’s by Gal(L/Q) provide an embedding Gal(L/Q) ↪→ Sp and |Gal(L/Q)| is divisible by p
by Theorem 2.9, so Gal(L/Q) contains an element of order p by Cauchy’s theorem. In Sp,
the only permutations of order p are p-cycles (Lemma 3.1). So the image of Gal(L/Q) in
Sp contains a p-cycle.

We may take L to be a subfield of C, since C is algebraically closed. Complex conjugation
restricted to L is a member of Gal(L/Q). Since f(T ) has only two non-real roots by
hypothesis, complex conjugation transposes two of the roots of f(T ) and fixes the others.
Therefore Gal(L/Q) contains a transposition of the roots of f(T ). (This is the reason for
the hypothesis about all but two roots being real.)

We now show the only subgroup of Sp containing a p-cycle and a transposition is Sp,
so Gal(L/Q) ∼= Sp. By suitable labeling of the numbers from 1 to p, we may let 1 be a
number moved by the transposition, so our subgroup contains a transposition τ = (1a).
Let σ be a p-cycle in the subgroup. As a p-cycle, σ acts on {1, 2, . . . , p} by a single orbit,
so some σi with 1 ≤ i ≤ p − 1 sends 1 to a: σi = (1a . . . ). This is also a p-cycle, because
σi has order p in Sp and all elements of order p in Sp are p-cycles, so writing σi as σ
and suitably reordering the numbers 2, . . . , p (which replaces our subgroup by a conjugate
subgroup), we may suppose our subgroup of Sp contains the particular transposition (12)
and the particular p-cycle (12 . . . p). For n ≥ 2, it is a theorem in group theory that the
particular transposition (12) and n-cycle (12 . . . n) generate Sn, so our subgroup is Sp. �

Remark 3.3. While Sp is generated by each transposition and p-cycle for p prime, it is
not true that Sn is generated by each transposition and n-cycle for general n. For example,
(13) and (1234) generate a proper subgroup of S4 (one of the subgroups of order 8).

Example 3.4. The polynomial T 3−T − 1 is irreducible in Q[T ] since it is irreducible mod
2 or since it is a cubic without a rational root. It has one real root (approximately 1.3247),
and one root of a cubic is all but two roots, so its Galois group over Q is isomorphic to S3.

Example 3.5. The polynomials T 3− 3T − 1 and T 3− 4T − 1 are both irreducible in Q[T ]
since they are cubics without a rational root. Each polynomial has three real roots (check!),
so we can’t use Theorem 3.2 to determine their Galois groups over Q.

Example 3.6. The quintic polynomial T 5−T−1 is irreducible in Q[T ] since it is irreducible
mod 3. It has one root in R, not all but two roots in R, so Theorem 3.2 does not tell us
the Galois group.



GALOIS GROUPS AS PERMUTATION GROUPS 5

Example 3.7. The quintic polynomial T 5−4T−1 is irreducible in Q[T ] since it is irreducible
mod 3. It has three real roots, which is all but two roots, so its Galois group over Q is
isomorphic to S5.

4. Alternating groups and the discriminant

The next thing we will do with Galois groups as subgroups of Sn is determine when they
lie in An. Without fixing a labeling of the roots of f(T ), its Galois group is determined as a
subgroup of Sn only up to conjugation, but it is still meaningful to ask if the Galois group
is a subgroup of An since An�Sn. We will introduce a numerical invariant of polynomials,
called the discriminant, to determine when the Galois group is in An.

Definition 4.1. For a nonconstant f(T ) ∈ K[T ] of degree n that factors over a splitting
field as

f(T ) = c(T − r1) · · · (T − rn),

the discriminant of f(T ) is defined to be

disc f =
∏
i<j

(rj − ri)2.

Example 4.2. The polynomial (T − 1)(T − 3)(T − 7) has discriminant 22 · 62 · 42 = 2304.

Example 4.3. The discriminant of T 2 + aT + b = (T − r)(T − r′) is

(r − r′)2 = r2 − 2rr′ + r′2 = (r + r′)2 − 4rr′ = a2 − 4b,

which is the usual discriminant of a monic quadratic polynomial.2

The number disc f is nonzero if f(T ) is separable and is 0 if f(T ) is not separable.
When f(T ) is separable, disc f is a symmetric polynomial in the ri’s, so it is fixed by
Gal(K(r1, . . . , rn)/K) and therefore disc f ∈ K by Galois theory. We have disc f ∈ K if
f(T ) is not separable too, since in that case disc f is 0.

Because disc f is a symmetric polynomial in the roots of f(T ), when f(T ) is monic its
discriminant is a polynomial in the coefficients of f(T ) (which are, up to sign, the elementary
symmetric functions of the roots). In low-degree cases, explicit formulas for discriminants
of some trinomials are

disc(T 2 + aT + b) = a2 − 4b,

disc(T 3 + aT + b) = −4a3 − 27b2,

disc(T 4 + aT + b) = −27a4 + 256b3,

disc(T 5 + aT + b) = 256a5 + 3125b4.

Example 4.4. The discriminant of T 3 − T − 1 is −23, the discriminant of T 3 − 3T − 1 is
81, and the discriminant of T 3 − 4T − 1 is 229.

More generally [3, p. 41],

disc(Tn + aT + b) = (−1)n(n−1)/2((−1)n−1(n− 1)n−1an + nnbn−1),

and even more generally, for 0 < m < n and (m,n) = 1,

disc(Tn + aTm + b) = (−1)n(n−1)/2bm−1((−1)n−1mm(n−m)n−man + nnbn−m).

2The term “discriminant” was introduced by J. J. Sylvester in 1851 [5, p. 406] as a type of determinnant
for cubic polynomials. Previously, for quadratic polynomials, it was called the polynomial’s determinant.
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If (m,n) is not necessarily 1 then [4, Theorem 2]

disc(Tn+aTm+b) = (−1)n(n−1)/2bm−1((−1)n/d−1mm/d(n−m)(n−m)/dan/d+nn/db(n−m)/d)d,

where d = (m,n). We will not derive these formulas here.

Example 4.5. Taking m = 2 and n = 4,

disc(T 4 + aT 2 + b) = 16b(a2 − 4b)2.

Theorem 4.6. Let K not have characteristic 2 and let f(T ) be a separable cubic in K[T ]

with a root r and discriminant D. The splitting field of f(T ) over K is K(r,
√
D).

Note we are not assuming f(T ) is irreducible here.

Proof. The roots and the discriminant of f don’t change if we multiply f by a nonzero
constant, so we may assume f(T ) is monic. Let f(T ) have roots r, r′, and r′′, so the
splitting field of f(T ) over K is K(r, r′, r′′).

K(r, r′, r′′)

K(r)

≤3 K(
√
D)

≤2

K

Over K(r), we can remove a linear factor and write f(T ) = (T − r)g(T ), where g(r) 6= 0.
Explicitly, g(T ) = (T − r′)(T − r′′). (Since f is monic, so is g.) By the quadratic formula
on g(T ), K(r, r′, r′′) = K(r,

√
disc g). It is simple to check, since f is monic, that disc f =

g(r)2 disc g. Since g(r) ∈ K×, K(r,
√

disc g) = K(r,
√

disc f) = K(r,
√
D). �

Theorem 4.7. Let f(T ) ∈ K[T ] be separable of degree n. If K does not have characteristic
2, then the embedding of the Galois group of f(T ) over K into Sn as permutations of the
roots of f(T ) has image in An if and only if disc f is a square in K.

Proof. Set δ =
∏
i<j(rj − ri) 6= 0, so δ ∈ K(r1, . . . , rn) and δ2 = disc f ∈ K. Therefore

disc f is a square in K if and only if δ ∈ K.
For σ ∈ Gal(K(r1, . . . , rn)/K), let εσ = ±1 be its sign as a permutation of the ri’s. By

one of the definitions of the sign of a permutation,

σ(δ) =
∏
i<j

(σ(rj)− σ(ri)) = εσ
∏
i<j

(rj − ri) = εσδ,

so σ(δ) = ±δ. Since δ 6= 0 and K doesn’t have characteristic 2, δ 6= −δ. We have σ ∈ An if
and only if εσ = 1, so σ ∈ An if and only if σ(δ) = δ. Therefore the Galois group of f(T )
over K is in An if and only if δ is fixed by the Galois group, which is the same as δ ∈ K. �

Remark 4.8. Theorem 4.7 is completely false in characteristic 2: discriminants of poly-
nomials are always squares in characteristic 2 but Sn can occur as a Galois group. For
example, if F is a field of characteristic 2, then over F (u) the polynomial T 3 + uT + u is
separable and irreducible with discriminant u2 (a square) and Galois group S3.
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Theorem 4.7 lets us determine the Galois groups of irreducible cubic polynomials outside
of characteristic 2.

Theorem 4.9. Let K not have characteristic 2 and let f(T ) be a separable irreducible cubic
in K[T ] with Galois group Gf over K.

(a) If disc f is a square in K then Gf ∼= A3.
(b) If disc f is not a square in K then Gf ∼= S3.

Proof. Since K(r) is inside the splitting field, |Gf | divisible by [K(r) : K] = 3. The
permutations of the roots of f(T ) by Gf gives an embedding of Gf into S3, so the image is
either A3 or S3 since these are the only subgroups of S3 with order divisible by 3. Theorem
4.7 says the image is in A3 (and thus equal to A3) if and only if disc f is a square in K.

This can also be proved by the formula for the splitting field of a cubic in Theorem
4.6. �

Example 4.10. In Example 3.4 we saw T 3−T −1 has Galois group S3 over Q. We can see
again that T 3 − T − 1 has Galois group S3 over Q since its discriminant is −23 (Example
4.4) and this is not a rational square.

Example 4.11. The Galois groups of T 3 − 3T − 1 and T 3 − 4T − 1 over Q were left
undetermined in Example 3.5 since all of their roots are real. Now we can compute the
Galois groups. From Example 4.4, T 3−3T−1 has discriminant 81 (a square) and T 3−4T−1
has discriminant 229 (a prime). Therefore T 3 − 3T − 1 has Galois group A3 over Q and
T 3−4T −1 has Galois group S3 over Q. So although T 3−3T −1 and T 3−4T −1 both have
all real roots, their Galois groups are not isomorphic. Each root of T 3 − 3T − 1 generates
the splitting field over Q, but this is not true for a root of T 3 − 4T − 1.

Remark 4.12. The cubics T 3 − 2T + 1 and T 3 − 7T − 6 have respective discriminants 5
and 400 = 202, but this does not mean their Galois groups over Q are S3 and A3. Both
polynomials are reducible (factoring as (T − 1)(T 2 +T − 1) and (T + 1)(T + 2)(T − 3)). Do
not forget to check that a cubic is irreducible before you use Theorem 4.9!

The following fantastic theorem of Dedekind uses factorization of a polynomial mod p to
tell us when a Galois group over Q contains permutations with particular cycle structure.

Theorem 4.13 (Dedekind). Let f(T ) ∈ Z[T ] be monic irreducible over Q of degree n. For
a prime p not dividing disc f , let the monic irreducible factorization of f(T ) mod p be

f(T ) ≡ π1(T ) · · ·πk(T ) mod p

and set di = deg πi(T ), so d1 + · · ·+ dk = n. The Galois group of f(T ) over Q, viewed as
a subgroup of Sn, contains a permutation of type (d1, . . . , dk).

The best proof of Theorem 4.13 uses algebraic number theory.3 More elementary proofs
are in [1, pp. 398–400] and [2, pp. 302–304].

Example 4.14. We compute the Galois group of T 4 − T − 1 over Q using Theorem 4.13.
This polynomial is irreducible mod 2, so it is irreducible over Q. Let its roots be

r1, r2, r3, r4. The extension Q(r1)/Q has degree 4, so the Galois group of T 4 − T − 1
over Q has order divisible by 4. Since the Galois group embeds into S4, its size is either 4,
8, 12, or 24. The discriminant of T 4 − T − 1 is −283, which is not a rational square, so the
Galois group is not a subgroup of A4. This eliminates the possibility of the Galois group

3See https://kconrad.math.uconn.edu/blurbs/gradnumthy/galois-Q-factor-mod-p.pdf.

https://kconrad.math.uconn.edu/blurbs/gradnumthy/galois-Q-factor-mod-p.pdf
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having order 12, because the only subgroup of S4 with order 12 is A4. (Quite generally, the
only subgroup of index 2 in Sn is An for n ≥ 2.) There are subgroups of S4 with orders 4,
8, and (of course) 24 outside of A4, so no other size but 12 is eliminated yet.

Using Theorem 4.13 with p = 7, the irreducible factorization of T 4 − T − 1 mod 7 is

T 4 − T − 1 ≡ (T + 4)(T 3 + 3T 2 + 2T + 5) mod 7.

Theorem 4.13 says the Galois group of T 4 − T − 1 over Q contains a permutation of the
roots with cycle type (1, 3), so the group has order divisible by 3. This proves it is S4.

Example 4.15. We find the Galois group of f(T ) = T 4 +8T +12 over Q. This is reducible
mod p for all small p, so the reduction mod p test doesn’t help us prove f(T ) is irreducible
over Q. (In fact, f(T ) factors mod p for all p, so the reduction mod p test never works.)
Let’s look at how f(T ) factors into irreducibles modulo different primes:

T 4 + 8T + 12 ≡ (T + 1)(T 3 + 4T 2 + T + 2) mod 5,

T 4 + 8T + 12 ≡ (T 2 + 4T + 7)(T 2 + 13T + 9) mod 17.

These are only consistent with f(T ) being irreducible over Q (why?).
Since f(T ) is irreducible over Q, its Galois group Gf over Q has size divisible by 4. And

disc f = 331776 = 5762 is a rational square, so Gf ⊂ A4 and therefore |Gf | is 4 or 12. From
the factorization of f(T ) mod 5 above, Gf contains a permutation of the roots whose cycle
type is (1, 3), which is a 3-cycle, so the |Gf | is divisible by 3, and thus 12 | |Gf |, so Gf ∼= A4:
the even permutations of the roots extend to automorphisms of the splitting field over Q,
while the odd permutations do not.

Let’s list all the subfields of the splitting field of T 4 + 8T + 12 over Q. Here is the lattice
(upside down) of subgroups of A4.

{(1)}
2

3
3

3 3
〈(12)(34)〉

2

〈(13)(24)〉

2

〈(14)(23)〉
2

V

3

〈(123)〉
4

〈(124)〉 〈(134)〉 〈(234)〉

4

A4

The corresponding subfield lattice of L = Q(r1, r2, r3, r4) is as follows.

L

2

3
3

3 3
Q(r1 + r2)

2

Q(r1 + r3)

2

Q(r1 + r4)

2

Q(r1r2 + r3r4)

3

Q(r4)

4

Q(r3) Q(r2) Q(r1)

4

Q
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The normal subgroups of A4 are {1}, V , and A4, so the only subfield of L that is Galois
over Q other than L and Q is Q(r1r2+r3r4). Since [L : Q(r1)] = 3 is prime and r2 6∈ Q(r1),
we have L = Q(r1, r2), so [Q(r1, r2) : Q] = 12.

The sums r1 +r2, r1 +r3, and r1 +r4 are roots of T 6−48T 2−64 (check!) and r1r2 +r3r4
is a root of T 3 − 48T − 64. Roots of T 3 − 48T − 64 are squares of roots of T 6 − 48T 2 − 64.
It is left to the reader to check that r1r2 + r3r4 = (r1 + r2)

2 = (r3 + r4)
2.

Remark 4.16. Our Galois group computations have an application to “nonexistent fields.”
If r is a root of T 4 + 8T + 12 then [Q(r) : Q] = 4 and there is no quadratic field in Q(r):
such a field would, by the Galois correspondence, lead to a subgroup of index 2 in A4 and
there is no such subgroup. More generally, for k ≥ 2 there are complex numbers that have
degree 2k over Q and the field they generate over Q contains no quadratic extension of Q.

Example 4.17. Let’s determine the Galois group of T 5 − T − 1 over Q, which was left
unresolved in Example 3.6. Its irreducible factorization mod 2 is

T 5 − T − 1 = (T 2 + T + 1)(T 3 + T 2 + 1) mod 2.

Because the polynomial is irreducible over Q, 5 divides the size of the Galois group. From
the mod 2 factorization, the Galois group contains a permutation of the roots with cycle
type (2, 3), which has order 6, so the Galois group has size divisible by 5 · 6 = 30. Since the
Galois group is a subgroup of S5, its size is either 30, 60, or 120.

It turns out that there is no subgroup of S5 with order 30 and the only subgroup of order
60 is A5. The discriminant of f(x) is 2869 = 19 · 151, which is not a rational square, so the
Galois group is not in A5 by Theorem 4.7. Therefore the Galois group is S5.

Theorem 3.2 gave us a sufficient condition for an irreducible in Q[T ] of prime degree p to
have Galois group Sp: all but 2 roots are real. This condition does not apply to T 3−4T −1
or T 5 − T − 1, although by Examples 4.11 and 4.17 their Galois groups over Q are S3 and
S5. Using Theorem 4.13, there is a different “all but 2 roots” hypothesis that implies a
Galois group is Sp.

Corollary 4.18. Let f(T ) ∈ Z[T ] be monic irreducible over Q of prime degree p. If there
is a prime number ` not dividing disc f such that f(T ) mod ` has all but two roots in F`,
then the Galois group of f(T ) over Q is isomorphic to Sp.

Proof. The proof of Theorem 3.2 can be used again except for the step explaining why the
Galois group of f(T ) over Q contains a transposition. In Theorem 3.2 this came from the
use of complex conjugation to transpose two non-real roots, assuming there are only two
non-real roots. We aren’t assuming that now. By hypothesis the factorization of f(T ) mod `
has all linear factors except for one quadratic irreducible factor. Therefore Theorem 4.13
says the Galois group contains a permutation of the roots with cycle type (1, 1, . . . , 1, 2),
which is a transposition in Sp. �

Example 4.19. From Examples 3.4 and 4.11, the polynomials T 3−T−1 with discriminant
−23 and T 3−4T−1 with discriminant 229 each have Galois group S3 over Q. We can check
this again with Corollary 4.18: T 3−T −1 mod 5 has one root in F5 and T 3−4T −1 mod 2
has one root in F2.

Example 4.20. In Example 3.7 we saw T 5 − 4T − 1 has Galois group S5 over Q because
it has all but two real roots. We can also compute the Galois group with Corollary 4.18:
the discriminant is −259019 (a negative prime number) and T 5−4T −1 mod 19 has all but
two roots in F19.
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Example 4.21. Returning to Example 4.17, we can show the Galois group over Q of
T 5 − T − 1 is S5 in another way: T 5 − T − 1 has discriminant 2869 = 19 · 151 and by a
computer search T 5 − T − 1 mod 163 has all but two roots in F163.

Remark 4.22. We can’t use Corollary 4.18 to show T 4 − T − 1 has Galois group S4 over
Q (Example 4.14) since 4 is not prime.

Example 4.23. For a prime p, the polynomial T p − T − 1 is irreducible mod p, so it is
irreducible over Q and its Galois group over Q is a subgroup of Sp that contains a p-cycle
by the first paragraph of the proof of Theorem 3.2. Using algebraic number theory,4 it can
be shown that this Galois group is generated by transpositions, so the Galois group is Sp.

If we seek an analogue of Theorem 3.2 for a Galois group to be isomorphic to Ap, using
3-cycles in place of transpositions, there is no analogue since an irreducible polynomial over
Q can’t have all but three roots in R (the number of non-real roots is always even). But
f(T ) mod ` could have all but three roots in F` for some `! This suggests the next result.

Corollary 4.24. Let f(T ) ∈ Z[T ] be monic irreducible over Q of prime degree p ≥ 3 with
disc f a perfect square. If there is a prime number ` not dividing disc f such that f(T ) mod `
has all but three roots in F`, then the Galois group of f(T ) over Q is isomorphic to Ap.

Proof. Let G be the Galois group, so G is a subgroup of Ap since disc f is a square. The
Galois group has order divisible by p, so it contains a p-cycle. From the factorization of
f(T ) mod ` and Theorem 4.13, G contains a 3-cycle. It is a theorem of C. Jordan that for
every prime p ≥ 3, each p-cycle and 3-cycle in Sp generate Ap, so G ∼= Ap. �

Example 4.25. The polynomial T 5 + 20T + 16 has discriminant 21656. It is irreducible
mod 3, so it’s irreducible over Q. Modulo 7, its irreducible factorization is

T 5 + 20T + 16 ≡ (T − 4)(T − 5)(T 3 + 2T 2 + 5T + 5) mod 7.

All but three roots are in F7, so T 5 + 20T + 16 has Galois group over Q isomorphic to A5.

In Table 4 are the trinomial polynomials whose Galois group over Q has been computed
by the methods of this section.

f(T ) Galois group over Q
T 3 − T − 1 S3
T 3 − 3T − 1 A3

T 3 − 4T − 1 S3
T 4 − T − 1 S4
T 4 + 8T + 12 A4

T 5 − T − 1 S5
T 5 − 4T − 1 S5
T 5 + 20T + 16 A5

Table 4.

The sufficient conditions for f(T ) to have Galois group Sp in Corollary 4.18 and Ap in
Corollary 4.24 are also necessary, by the following hard theorem of Chebotarev that serves
as a converse to Dedekind’s Theorem 4.13.

4See Step 2 of the proof of the theorem in https://kconrad.math.uconn.edu/blurbs/gradnumthy/galois

selmerpoly.pdf.

https://kconrad.math.uconn.edu/blurbs/gradnumthy/galoisselmerpoly.pdf
https://kconrad.math.uconn.edu/blurbs/gradnumthy/galoisselmerpoly.pdf
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Theorem 4.26 (Chebotarev). Let f(T ) ∈ Z[T ] be monic irreducible over Q of degree n. If
an automorphism in the Galois group of f(T ) over Q permutes the roots of f(T ) with cycle
type (d1, . . . , dk), then there are infinitely many primes ` not dividing disc f such that the
monic irreducible factorization of f(T ) mod ` is

f(T ) ≡ π1(T ) · · ·πk(T ) mod `,

where the πi(T )’s are distinct and di = deg πi(T ).

Chebotarev’s theorem actually says more (the set of such ` has a positive density related
to conjugacy classes in the Galois group), but the version above is enough for us here.

Corollary 4.27. If f(T ) ∈ Z[T ] is monic irreducible of prime degree p with Galois group
over Q isomorphic to Sp (resp., Ap) then there are infinitely many primes ` not dividing
disc f such that f(T ) mod ` has all but two roots (resp., all but three roots) in F`.

Proof. The group Sp has a 2-cycle and the group Ap for p > 2 has a 3-cycle. Therefore Theo-
rem 4.26 implies there are infinitely many primes ` not dividing disc f such that f(T ) mod `
is an irreducible quadratic times linear polynomials in the first case and is an irreducible
cubic times linear polynomials in the second case. �

For example, T 5−T −1 mod ` has all but two roots in F` when ` = 163, 193, 227, 307, . . .
(there is no simple pattern to this list, but it continues indefinitely), T 5− 4T − 1 mod ` has
all but two roots in F` when ` = 19, 23, 83, 97, . . . , and T 5 +20T +16 has all but three roots
in F` when ` = 7, 11, 17, 23, . . . . In practice, it is easy to prove when a monic irreducible in
Z[T ] with prime degree p has Galois group Ap or Sp over Q by searching for a prime ` such
that Corollary 4.18 or 4.24 applies. There are extensions of these ideas to polynomials of
nonprime degree, so verifying an irreducible polynomial of degree n has Galois group over
Q that is isomorphic to Sn or An in practice is easy.

Proving a Galois group is small (not Sn or An) is a completely separate matter, which
we will not discuss here.

Corollary 4.28. Let f(T ) ∈ Z[T ] be monic irreducible over Q. The Galois group of f(T )
over Q has an element of prime order p if and only if there is a prime ` not dividing disc f
such that the irreducible factors of f(T ) mod ` have degree 1 and p. If there is one such `
then there are infinitely many such `.

Proof. A permutation has prime order p if and only if its cycle type is (1, . . . , 1, p, . . . , p).
Theorem 4.13 says that if there is a prime ` not dividing disc f such that all irreducible
factors of f(T ) mod ` have degree 1 or p then there is a permutation in the Galois group
of f(T ) over Q whose cycles have length 1 and p, so it has order p. Conversely, if a
permutation of order p occurs in the Galois group of f(T ) over Q then Theorem 4.26 says
that there are infinitely many primes ` not dividing disc f such that all the irreducible
factors of f(T ) mod ` have degree 1 or p. �

Corollary 4.28 suggests a way to find prime factors of the order of the Galois group G
of f(T ) over Q: factor f(T ) mod ` for many primes ` and see which factorizations have
degrees 1, . . . , 1, p, . . . , p for a prime p. Such p divide |G|, and all prime factors of |G| arise
in this way. To find all prime factors of |G| in this way, we want an effective Chebotarev
theorem: a bound B such that all degree-types occur modulo the primes ` ≤ B. You can
find such results by googling “effective chebotarev,” but the versions I have seen describe B
in terms of the splitting field, e.g., using |G|, and this isn’t good if we don’t yet know |G|.
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