
APPLICATIONS OF GALOIS THEORY

KEITH CONRAD

We’ll examine here several types of applications of Galois theory: examples of the Galois
correspondence in Section 1, theorems about field extensions in Section 2, a description of
minimal polynomials in a Galois extension in Sections 3, and a brief indication of what lies
beyond Galois theory of finite extensions in Section 4.

1. Examples

Example 1.1. The field extension Q(
√

2,
√

3)/Q is Galois of degree 4, so its Galois group
has order 4. The elements of the Galois group are determined by their values on

√
2 and√

3. The Q-conjugates of
√

2 and
√

3 are ±
√

2 and ±
√

3, so we get at most four possible
automorphisms in the Galois group. See Table 1. Since the Galois group has order 4, these
4 possible assignments of values to σ(

√
2) and σ(

√
3) all really exist.

σ σ(
√

2) σ(
√

3)

id.
√

2
√

3

σ1
√

2 −
√

3

σ2 −
√

2
√

3

σ3 −
√

2 −
√

3
Table 1.

The automorphisms σ1, σ2, and σ3 in Table 1 have order 2. Since Gal(Q(
√

2,
√

3)/Q)
contains 3 elements of order 2, Q(

√
2,
√

3) has 3 subfields Ki such that [Q(
√

2,
√

3) : Ki] = 2,
or equivalently [Ki : Q] = 4/2 = 2. Two such fields are Q(

√
2) and Q(

√
3). A third is

Q(
√

6) and that completes the list. Here is a diagram of all the subfields.

Q(
√

2,
√

3)

Q(
√

2) Q(
√

3) Q(
√

6)

Q

In Table 1, the subgroup fixing Q(
√

2) is 〈σ1〉, the subgroup fixing Q(
√

3) is 〈σ2〉, and the
subgroup fixing Q(

√
6) is 〈σ3〉 (since (−

√
2)(−

√
3) =

√
2
√

3).
The effect of Gal(Q(

√
2,
√

3)/Q) on
√

2 +
√

3 is given in Table 2. The 4 values are
all different, since

√
2 and

√
3 are linearly independent over Q. Therefore Q(

√
2,
√

3) =
Q(
√

2 +
√

3). The minimal polynomial of
√

2 +
√

3 over Q must be

(X − (
√

2 +
√

3))(X − (−
√

2 +
√

3))(X − (
√

2−
√

3))(X − (−
√

2−
√

3)) = X4 − 10X2 + 1.
1
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σ σ(
√

2) σ(
√

3) σ(
√

2 +
√

3)

id.
√

2
√

3
√

2 +
√

3

σ1
√

2 −
√

3
√

2−
√

3

σ2 −
√

2
√

3 −
√

2 +
√

3

σ3 −
√

2 −
√

3 −
√

2−
√

3
Table 2.

In particular, X4− 10X2 + 1 is irreducible in Q[X] since it’s a minimal polynomial over Q.
By similar reasoning, if a field F does not have characteristic 2 and a and b are nonsquares

in F such that ab is not a square in F either, then [F (
√
a,
√
b) : F ] = 4 and all the fields

between F and F (
√
a,
√
b) are as in the following diagram.

F (
√
a,
√
b)

F (
√
a) F (

√
b) F (

√
ab)

F

Furthermore, F (
√
a,
√
b) = F (

√
a+
√
b). The argument is as in the special case above.

Example 1.2. While Q( 4
√

2)/Q is not Galois, Q( 4
√

2) lies in Q( 4
√

2, i), which is Galois over
Q. We will use Galois theory for Q( 4

√
2, i)/Q to find the intermediate fields in Q( 4

√
2)/Q.

The Galois group of Q( 4
√

2, i)/Q equals 〈r, s〉, where

r(
4
√

2) = i
4
√

2, r(i) = i and s(
4
√

2) =
4
√

2, s(i) = −i.

(Viewing elements of Q( 4
√

2, i) as complex numbers, s acts on them like complex conjuga-
tion.) The group 〈r, s〉 is isomorphic to D4, where r corresponds to a 90 degree rotation of
the square and s corresponds to a reflection across a diagonal. What is the subgroup H of
Gal(Q( 4

√
2, i)/Q) corresponding to Q( 4

√
2)?

(1.1)

Q( 4
√

2, i) {1}∣∣∣2 ∣∣∣2
Q( 4
√

2) H∣∣∣4 ∣∣∣4
Q D4

Since s is a nontrivial element of the Galois group that fixes Q( 4
√

2), s ∈ H. The size
of H is [Q( 4

√
2, i) : Q( 4

√
2)] = 2, so H = {1, s} = 〈s〉. By the Galois correspondence for

Q( 4
√

2, i)/Q, fields strictly between Q( 4
√

2) and Q correspond to subgroups of the Galois
group strictly between 〈s〉 and 〈r, s〉. From the known subgroup structure of D4, the only
subgroup lying strictly between 〈s〉 and 〈r, s〉 is 〈r2, s〉. Therefore only one field lies strictly
between Q( 4

√
2) and Q. Since Q(

√
2) is such a field it is the only one.
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Remark 1.3. While Galois theory provides the most systematic method to find intermedi-
ate fields, it may be possible to argue in other ways. For example, suppose Q ⊂ F ⊂ Q( 4

√
2)

with [F : Q] = 2. Then 4
√

2 has degree 2 over F . Since 4
√

2 is a root of X4 − 2, its minimal
polynomial over F has to be a quadratic factor of X4− 2. There are three monic quadratic
factors with 4

√
2 as a root, but only one of them, X2 −

√
2, has coefficients in Q( 4

√
2) (let

alone in R). Therefore X2−
√

2 must be the minimal polynomial of 4
√

2 over F , so
√

2 ∈ F .
Since [F : Q] = 2, F = Q(

√
2) by counting degrees.

Example 1.4. Let’s explore Q( 4
√

2, ζ8), where ζ8 = e2πi/8 is a root of unity of order 8,
whose minimal polynomial over Q is X4 + 1. Both Q( 4

√
2) and Q(ζ8) have degree 4 over

Q. Since ζ28 = i, Q( 4
√

2, ζ8) is a splitting field over Q of (X4 − 2)(X4 + 1) and therefore is
Galois over Q. What is its Galois group? We have the following field diagram.

Q( 4
√

2, ζ8)

≤4≤4

Q( 4
√

2)

4

Q(ζ8)

4

Q

Thus [Q( 4
√

2, ζ8) : Q] is at most 16. We will see the degree is not 16: there are some hidden
algebraic relations between 4

√
2 and ζ8.

Any σ ∈ Gal(Q( 4
√

2, ζ8)/Q) is determined by its values

(1.2) σ(ζ8) = ζa8 (a ∈ (Z/8Z)×) and σ(
4
√

2) = ib
4
√

2 (b ∈ Z/4Z).

There are 4 choices each for a and b. Taking independent choices of a and b, there are at
most 16 automorphisms in the Galois group. But the choices of a and b can not be made
independently because ζ8 and 4

√
2 are linked to each other:

(1.3) ζ8 + ζ−18 = e2πi/8 + e−2πi/8 = 2 cos
(π

4

)
=
√

2 =
4
√

2
2
.

This says
√

2 belongs to both Q(ζ8) and Q( 4
√

2). Here is a field diagram that emphasizes
the common subfield Q(

√
2) in Q( 4

√
2) and Q(ζ8). This subfield is the source of (1.3).

Q( 4
√

2, ζ8)

≤4≤4

Q( 4
√

2)

2

Q(ζ8)

2

2

Q(
√

2)

2

Q(i)

2

Q

Rewriting ζ8 + ζ−18 =
√

2 as ζ28 −
√

2ζ8 + 1 = 0, ζ8 has degree at most 2 over Q( 4
√

2).

Since ζ8 is not real, it isn’t inside Q( 4
√

2), so it has degree 2 over Q( 4
√

2). Therefore
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[Q( 4
√

2, ζ8) : Q] = 2 · 4 = 8 and the degrees marked as “≤ 4” in the diagram both equal 2.
We rewrite the field diagram below.

Q( 4
√

2, ζ8)

22

Q( 4
√

2)

2

Q(ζ8)

2

2

Q(
√

2)

2

Q(i)

2

Q

Returning to the Galois group, (1.3) tells us the effect of σ ∈ Gal(Q( 4
√

2, ζ8)/Q) on 4
√

2
partially determines it on ζ8, and conversely: (σ( 4

√
2))2 = σ(ζ8) + σ(ζ8)

−1, which in the
notation of (1.2) is the same as

(1.4) (−1)b =
ζa8 + ζ−a8√

2
.

Since ζ8 = e2πi/8 = (1 + i)/
√

2, a calculation shows ζa8 + ζ−a8 =
√

2 if a ≡ 1, 7 mod 8 and

ζa8 + ζ−a8 = −
√

2 if a ≡ 3, 5 mod 8 (note ζ78 = ζ−18 and ζ58 = ζ−38 ). Thus if a ≡ 1, 7 mod 8
we have (−1)b = 1, so b ≡ 0, 2 mod 4, while if a ≡ 3, 5 mod 8 we have (−1)b = −1, so
b ≡ 1, 3 mod 4. For example, σ can’t both fix 4

√
2 (b = 0) and send ζ8 to ζ38 (a = 3) because

(1.4) would not hold.
The simplest way to understand Q( 4

√
2, ζ8) is to use a different set of generators. Since

ζ8 = e2πi/8 = eπi/4 = (1 + i)/
√

2,

Q(
4
√

2, ζ8) = Q(
4
√

2, i),

and from the second representation we know its Galois group over Q is isomorphic to D4

with independent choices of where to send 4
√

2 (to any fourth root of 2) and i (to any
square root of −1) rather than 4

√
2 and ζ8. A different choice of field generators can make

it easier to see what the Galois group looks like. We also see immediately from the second
representation that [Q( 4

√
2, ζ8) : Q] = 8.

Example 1.5. Let’s consider the splitting field of X8 − 2 over Q, which is Q( 8
√

2, ζ8),

where ζ8 = e2πi/8 = (1 + i)/
√

2. While [Q( 8
√

2) : Q] = 8 and [Q(ζ8) : Q] = 4, we’ll see that
[Q( 8
√

2, ζ8) : Q] is 16, not 32, and determine Gal(Q( 8
√

2, ζ8)/Q). It is a group of order 16,
but is not isomorphic to the dihedral group of order 16.

What we do will build on the previous example, where [Q( 4
√

2, ζ8) : Q] is 8, not 16 (the
product of [Q( 4

√
2) : Q] and [Q(ζ8) : Q]), since Q( 4

√
2) and Q(ζ8) are not “independent”

over Q: the fields both contain
√

2
Since ζ8 6∈ Q( 8

√
2) but ζ28 −

√
2ζ8 + 1 = 0 by the algebraic relation (1.3), the degree of ζ8

over Q( 8
√

2) is 2. Thus [Q( 8
√

2, ζ8) : Q] = [Q( 8
√

2, ζ8) : Q( 8
√

2)][Q( 8
√

2) : Q] = 2 · 8 = 16, so
|Gal(Q( 8

√
2, ζ8)/Q)| = 16.

Each σ ∈ Gal(Q( 4
√

2, ζ8)/Q) is determined by the values

(1.5) σ(ζ8) = ζa8 (a ∈ (Z/8Z)×) and σ(
8
√

2) = ζb8
8
√

2 (b ∈ Z/8Z).
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There is a condition linking a and b, from (1.3):

(1.6) ζa8 + ζ−a8 = σ(ζ8 + ζ−18 ) = σ(
√

2) = σ(
8
√

2
4
) = σ(

8
√

2)4 = (−1)b
√

2.

(This is essentially the same as (1.4), excepts now b comes from Z/8Z instead of Z/4Z.) It
follows from (1.6), by reasoning like that in the previous example, that if a ≡ 1, 7 mod 8
then b is even and if a ≡ 3, 5 mod 8 then b is odd. Therefore, since b is in Z/8Z, there are
at most 4 values of b allowed for each value of a. That means Gal(Q( 8

√
2, ζ8)/Q) has order

at most 16. Since we earlier showed the Galois group has order 16, the parity condition
on b for each a is the only constraint: Gal(Q( 8

√
2, ζ8)/Q) consists of the automorphisms

described by (1.3) where (i) b is even if a ≡ 1, 7 mod 8 and (ii) b is odd if a ≡ 3, 5 mod 8.1

Here is a field diagram, which is very far from showing all intermediate fields.

Q( 8
√

2, ζ8)

42

Q( 8
√

2)

4

Q(ζ8)

2

2

Q(
√

2)

2

Q(i)

2

Q

Each automorphism in Gal(Q( 8
√

2, ζ8)/Q) can be written by (1.3) as σa,b where σa,b(ζ8) =

ζa8 and σa,b(
8
√

2) = ζb8
8
√

2. Two automorphisms σa,b and σc,d compose as follows:

σa,b(σc,d(ζ8)) = σa,b(ζ
c
8) = ζac8 ,

σa,b(σc,d(
8
√

2)) = σa,b(ζ
d
8

8
√

2) = σa,b(ζ8)
dσa,b(

8
√

2) = ζad+b8
8
√

2.

This is how matrices ( a b0 1 ) multiply: ( a b0 1 )( c d0 1 ) = ( ac ad+b0 1 ). Therefore Gal(Q( 8
√

2, ζ8)/Q)
can be viewed as 2× 2 mod 8 matrices by

σa,b 7→
(
a b
0 1

)
where a ∈ (Z/8Z)× and b ∈ Z/8Z subject to the conditions

• b is even if a ≡ 1, 7 mod 8,
• b is odd if a ≡ 3, 5 mod 8.

This constraint on b given a, or on a given b, is important to remember, e.g., the matrix
( 1 1
0 1 ) is not in the Galois group: no σ has the effect σ(ζ8) = ζ8 and σ( 8

√
2) = ζ8

8
√

2!
What group of order 16 is the Galois group? It is not isomorphic to the dihedral group

of order 16 since that dihedral group has 9 elements of order 2 (all 8 reflections and the
rotation r4) while the Galois group has 5 elements of order 2: ( 1 4

0 1 ), ( 7 0
0 1 ), ( 7 2

0 1 ), ( 7 4
0 1 ), and

( 7 6
0 1 ). (The mod 8 matrices ( 3 0

0 1 ) and ( 5 0
0 1 ) have order 2, but they are not in the Galois

group since a matrix of the form ( a 0
0 1 ) in the Galois group has a ≡ 1, 7 mod 8.)

The Galois group contains σ := ( 5 1
0 1 ), which has order 8. Its successive powers are in

the table below. An element of the Galois group with order 2 that is not a power of σ is

1A concise way of describing the two parity constraints on b mod 8 given a mod 8 is b ≡ a2−1
8

mod 2.
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τ := ( 7 0
0 1 ). Since the Galois group has order 16, it is 〈σ, τ〉. By an explicit mod 8 matrix

calculation, τστ−1 = τστ = ( 5 7
0 1 ) = σ3.

k 1 2 3 4 5 6 7 8

σk ( 5 1
0 1 ) ( 1 6

0 1 ) ( 5 7
0 1 ) ( 1 4

0 1 ) ( 5 5
0 1 ) ( 1 2

0 1 ) ( 5 3
0 1 ) ( 1 0

0 1 )

The group with two generators x and y where x has order 8, y has order 2, and yxy−1 = x3

is called the semidihedral group of order 16. You can look up information about it on the
page https://groupprops.subwiki.org/wiki/Semidihedral group:SD16. For example,
that webpage says this group has 3 subgroups of order 8, so by Galois theory Q( 8

√
2, ζ8) has

3 quadratic fields. There are 3 quadratic fields in Q(ζ8): Q(
√

2), Q(i), and Q(i
√

2). Thus
these are all the quadratic fields of Q( 8

√
2, ζ8).

2 The webpage also says the 3 subgroups of
order 8 are isomorphic to Z/8Z, D4,

3 and Q8, so the Galois group has a subgroup isomorphic
to each of these groups. For example, check σ fixes i = ζ48 , and since σ has order 8 we have

Gal(Q(
8
√

2, ζ8)/Q(i)) = 〈σ〉 ∼= Z/8Z.

By determining which elements of the Galois group fix
√

2 = 8
√

2
4

and i
√

2, it is left as an
exercise to the reader to show

Gal(Q(
8
√

2, ζ8)/Q(
√

2)) ∼= D4, Gal(Q(
8
√

2, ζ8)/Q(i
√

2)) ∼= Q8.

This concludes our look at Q( 8
√

2, ζ8) and its Galois group over Q.

A Galois extension is said to have a given group-theoretic property (being abelian, non-
abelian, cyclic, etc.) when its Galois group has that property.

Example 1.6. Any quadratic extension of Q is an abelian extension since its Galois group
has order 2. It is also a cyclic extension.

Example 1.7. The extension Q( 3
√

2, ω)/Q is called non-abelian since its Galois group is
isomorphic to S3, which is a non-abelian group. The term “non-abelian” has nothing to do
with the field operations, which of course are always commutative.

Theorem 1.8. If L/K is a finite abelian extension then every intermediate field is an
abelian extension of K. If L/K is cyclic then every intermediate field is cyclic over K.

Proof. Every subgroup of an abelian group is a normal subgroup, so every field F between
L and K is Galois over K and Gal(F/K) ∼= Gal(L/K)/Gal(L/F ). The quotient of an
abelian group by any subgroup is abelian, so Gal(F/K) is abelian.

Since the quotient of a cyclic group by any subgroup is cyclic, if L/K is cyclic then F/K
is cyclic too. �

2. Applications to Field Theory

We will prove the complex numbers are algebraically closed (the “Fundamental Theorem
of Algebra”) using Galois theory and a small amount of analysis. We need one property of
the real numbers, one property of the complex numbers, and two properties of finite groups:

(1) Every odd degree polynomial in R[X] has a real root. In particular, no polynomial
of odd degree greater than 1 in R[X] is irreducible.

2In fact those 3 quadratic fields are the only quadratic fields in Q( 2k
√

2, ζ2k ) for k ≥ 2. This can be shown
by methods of algebraic number theory without having to compute Galois groups.

3That webpage follows the group theorist’s convention of writing the dihedral group of order 2n as D2n

instead of Dn, so it writes D8 instead of D4.

https://groupprops.subwiki.org/wiki/Semidihedral_group:SD16
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(2) Every number in C has square roots in C.
(3) The first Sylow theorem (existence of Sylow subgroups).
(4) A nontrivial finite p-group has a subgroup of index p.

The first property is a consequence of the intermediate value theorem. The second
property follows from writing a nonzero complex number as reiθ and then its square roots
are ±

√
reiθ/2. (For example, i = eiπ/2 and a square root of i is eiπ/4 = 1√

2
+ i√

2
.) It is a nice

exercise to find a square root of a+ bi in terms of a and b. The third property is proved as
part of the Sylow theorems. The fourth property is often proved in the context of showing
finite p-groups are solvable; this can be found in most group theory textbooks.

Theorem 2.1. The complex numbers are algebraically closed.

Proof. We need to show any irreducible in C[X] has degree 1. If π(X) ∈ C[X] is irreducible
and α is a root, then [C(α) : C] = deg π, so our task is the same as showing the only finite
extension of C is C itself.

Let E/C be a finite extension. Since E is a finite extension of R, and we’re in character-
istic 0, we can enlarge E/R to a finite Galois extension K/R. Since R ⊂ C ⊂ K, [K : R]
is even.

Let 2m ≥ 2 be the highest power of 2 dividing the size of G = Gal(K/R). There is a
subgroup H of G with order 2m (Property 3). Let F be the corresponding fixed field, so
[F : R] is odd.

K

2m

{1}

2m

F

odd

H

oddC

2

R G

Every α ∈ F has degree over R dividing [F : R], so [R(α) : R] is odd. That means the
minimal polynomial of α in R[X] has odd degree. Irreducible polynomials in R[X] of odd
degree have degree 1 (Property 1), so [R(α) : R] = 1. Thus α ∈ R, so F = R. Therefore
G = H is a 2-group.

K {1}

2m−1

C

2

Gal(K/C)

2

R G

The group Gal(K/C) has order 2m−1. If m ≥ 2 then Gal(K/C) has a subgroup of index
2 (Property 4), whose fixed field has degree 2 over C. Any quadratic extension of C has the

form C(
√
d) for some nonsquare d ∈ C×. But every nonzero complex number has square
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roots in C (Property 2), so [C(
√
d) : C] is 1, not 2. We have a contradiction. Thus m = 1,

so K = C. Since C ⊂ E ⊂ K, we conclude that E = C. �

Theorem 2.2. If L/K be Galois with degree pm, where p is a prime, then there is a chain
of intermediate fields

K = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fm = K

where [Fi : Fi−1] = p for i ≥ 1 and Fi/K is Galois.

Proof. The group Gal(L/K) is a finite group of order pm. One of the consequences of
finite p-groups being solvable is the existence of a rising chain of subgroups from the trivial
subgroup to the whole group where each subgroup has index p in the next one and each
subgroup is normal in the whole group. Now apply the Galois correspondence. �

The next application, which is an amusing technicality, is taken from [2, p. 67].

Theorem 2.3. Let p be a prime number. If K is a field of characteristic 0 such that every
proper finite extension of K has degree divisible by p then every finite extension of K has
p-power degree.

Aside from examples resembling K = R (where p = 2 works), fields that fit the conditions
of Theorem 2.3 are not easy to describe at an elementary level. But the technique of proof
is a pleasant use of elementary group theory.

Proof. Let L/K be a finite extension. We want to show [L : K] is a power of p. Since K
has characteristic 0, L/K is separable, so we can embed L in a finite Galois extension E/K.
Since [L : K] | [E : K], it suffices to show [E : K] is a power of p, i.e., show finite Galois
extensions of K have p-power degree.

By the first Sylow theorem, Gal(E/K) contains a p-Sylow subgroup, say H. Let F = EH ,
so [F : K] is the index of H in Gal(E/K). This index is prime to p by the definition of a
Sylow subgroup, so [F : K] is prime to p.

E {1}

power of p

F H

prime to p

K Gal(E/K)

Every proper finite extension of K has degree divisible by p, so [F : K] = 1. Thus F = K
and [E : K] = [E : F ] = |H| is a power of p. �

Remark 2.4. Theorem 2.3 is true when K has positive characteristic, but then one has
to consider the possibility that K has inseparable extensions and additional reasoning is
needed. See [2, p. 67].

3. Applications to Minimal Polynomials

When L/K is a Galois extension and α ∈ L, the Galois group Gal(L/K) provides us with
a systematic way to describe all the roots of the minimal polynomial of α over K: they are
the different elements of the Galois orbit {σ(α) : σ ∈ Gal(L/K)}. If we let Gal(L/K) act
on L[X], and not just L, by acting on polynomial coefficients, then we can relate minimal
polynomials of the same number over different fields using a Galois group.
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Theorem 3.1. Let L/K be a finite Galois extension and α lie in some extension of L with
minimal polynomial f(X) in L[X]. The minimal polynomial of α in K[X] is the product of
all the different values of (σf)(X) as σ runs over Gal(L/K).

When α ∈ L, so f(X) = X − α, we recover the construction of the minimal polynomial
of α in K[X] as

∏r
j=1(X −σj(α)), where σ1(α), . . . , σr(α) are the distinct values of σ(α) as

σ runs over Gal(L/K).

Proof. Let π(X) denote the minimal polynomial of α over K. Since π(α) = 0 and f(X)
is the minimal polynomial of α over L, f(X) | π(X) in L[X]. For any σ ∈ Gal(L/K),
f(X) | π(X)⇒ (σf)(X) | π(X) because (σπ)(X) = π(X).

Note (σf)(X) = (σif)(X) for some i. Each σif is monic irreducible in L[X] and there-
fore σif and σjf are relatively prime when i 6= j. Thus π(X) is divisible by F (X) :=∏r
i=1(σif)(X). For any σ ∈ Gal(L/K), the set of polynomials (σσif)(X) are the same as

all (σif)(X) except it may be in a different order, so

(σF )(X) =
r∏
i=1

(σσif)(X) =
r∏
i=1

(σif)(X) = F (X),

so the coefficients of F (X) are in K. Since F (X) | π(X) and F (α) = 0, the meaning of
minimal polynomial implies F (X) = π(X). �

Example 3.2. Consider X2−
√

2 in Q(
√

2)[X]. It is irreducible since
√

2 is not a square in
Q(
√

2): if (a+ b
√

2)2 =
√

2 with a, b ∈ Q then a2 + 2b2 = 0, so a = b = 0, a contradiction.
The different values of σ(X2−

√
2) = X2−σ(

√
2) as σ runs over Gal(Q(

√
2)/Q) are X2−

√
2

and X2 +
√

2, so the minimal polynomial over Q of the roots of X2 −
√

2 is

(X2 −
√

2)(X2 +
√

2) = X4 − 2.

Since a minimal polynomial over a field is just an irreducible polynomial over that field
(with a particular root), we can formulate Theorem 3.1 in terms of irreducible polynomials
without mentioning roots: if f(X) is monic irreducible in L[X] then the product of the
different (σf)(X), as σ runs over Gal(L/K), is irreducible in K[X]. Consider a potential
converse: if f(X) is monic in L[X] and the product of the different polynomials (σf)(X),
as σ runs over Gal(L/K), is irreducible in K[X], then f(X) is irreducible in L[X]. This is
false: use L/K = Q(

√
2)/Q and f(X) = X2 − 2. Here (σf)(X) = X2 − 2 for either σ, so

the product of different (σf)(X) is X2 − 2, which is irreducible in K[X] but reducible in
L[X]. Yet there is a kernel of truth in this false converse. We just have to make sure the
coefficients of f(X) don’t all lie in an extension of K that is smaller than L.

Theorem 3.3. Let L/K be a finite Galois extension. Suppose f(X) is monic in L[X] and
its coefficients generate L over K. If the product of the different polynomials (σf)(X), as
σ runs over Gal(L/K), is irreducible in K[X], then f(X) is irreducible in L[X].

This avoids the previous counterexample f(X) = X2 − 2 with L/K = Q(
√

2)/Q, since
the coefficients of f(X) do not generate Q(

√
2)/Q.

Proof. Since the coefficients of f(X) generate L/K any σ in Gal(L/K) that is not the
identity changes at least one off the coefficients of f(X). (Otherwise the coefficients lie in
the field fixed by σ, which is a nontrivial subgroup of Gal(L/K) and a nontrivial subgroup
has a fixed field smaller than L.) It follows that for any distinct σ and τ in Gal(L/K), the
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polynomials (σf)(X) and (τf)(X) are different: if σf = τf then (τ−1σ)f = f , so τ−1σ
fixes the coefficients of f and therefore σ = τ . Thus the hypothesis of the theorem is that

F (X) :=
∏

σ∈Gal(L/K)

(σf)(X).

is irreducible in K[X], where the product runs over all of Gal(L/K), and we want to show
f(X) is irreducible in L[X]. We will prove the contrapositive. Suppose f(X) is reducible
in L[X], so f(X) = g(X)h(X) in L[X] where g(X) and h(X) are nonconstant. Then

F (X) =
∏

σ∈Gal(L/K)

(σf)(X) =
∏

σ∈Gal(L/K)

(σg)(X)
∏

σ∈Gal(L/K)

(σh)(X) = G(X)H(X),

where G(X) and H(X) are in K[X] (why?). Since g(X) and h(X) have positive degree, so
do G(X) and H(X), and therefore F (X) is reducible in K[X]. �

Example 3.4. Consider Xn −
√

2 in Q(
√

2)[X]. Its coefficients generate Q(
√

2)/Q. Since

(Xn −
√

2)(Xn +
√

2) = X2n − 2

is irreducible over Q, Xn −
√

2 is irreducible in Q(
√

2)[X] for all n. The same kind of
argument shows Xn − (1 + 2

√
2) is irreducible over Q(

√
2)[X] for all n.

Corollary 3.5. Let L/K be a finite Galois extension. Suppose f(X) is monic in L[X], its
coefficients generate L/K, and F (X) :=

∏
σ∈Gal(L/K)(σf)(X) is separable and irreducible

in K[X]. Then each (σf)(X) is irreducible in L[X] and if α is a root of f(X) then the
Galois closure of L(α)/K is the splitting field of F (X) over K.

Proof. The irreducibility of f(X) in L[X] follows from Theorem 3.3. The polynomials
(σf)(X) satisfy the same hypotheses as f(X), so they are all irreducible over L as well.
The minimal polynomial of α over K is F (X) and K(α)/K is separable since F (X) is
separable over K. Therefore L(α)/K is separable, so L(α) has a Galois closure over K.

A Galois extension of K that contains L(α) must contain all the K-conjugates of α and
hence must contain the splitting field of F (X) over K. Conversely, the splitting field of
F (X) over K is a Galois extension of K that contains α as well as all the roots of f(X),
so the extension contains the coefficients of f(X). Those coefficients generate L/K, so the
splitting field of F (X) over K contains L(α). �

There is nothing deep going on in this corollary. The point is that since the coefficients
of f generate L, L is already inside the Galois closure of K(α)/K, so just by forming the
splitting field of F (X) over K we pick up L inside it.

Example 3.6. Consider the extension Q(γ)/Q, where γ is a root of X3 − 3X − 1. This
cubic extension is Galois and the Q-conjugates of γ are 2− γ2 and γ2 − γ − 2. Let f(X) =
X3− γX − 1. The polynomials (σf)(X) as σ runs over the three elements of Gal(Q(γ)/Q)
are f(X), X3 − (2− γ2)X − 1, and X3 − (γ2 − γ − 2)X − 1. Their product is

F (X) = X9 − 3X6 − 3X5 + 2X3 + 3X2 − 1,

which is irreducible mod 2 and thus is irreducible in Q[X]. Therefore the polynomials f(X),
X3 − (2− γ2)X − 1, and X3 − (γ2 − γ − 2)X − 1 are all irreducible over Q(γ)[X] and the
splitting field of F (X) over Q is the smallest Galois extension of Q containing Q(γ, α),
where α is a root of f(X). According to PARI, the splitting field of F (X) over Q has
degree 684 = 3 · 63.
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4. What Next?

There are two important aspects of field extensions that are missing in a study of Galois
theory of finite extensions, and we briefly address them: Galois theory for infinite algebraic
extensions and transcendental extensions.

An algebraic extension L/K of infinite degree is called Galois when it is separable and
normal. This means each element of L is the root of a separable irreducible in K[X]
and each rreducible in K[X] with a root in L splits completely over L. One infinite Galois
extension of Q is Q(µp∞) =

⋃
n≥1Q(µpn), the union of all p-th power cyclotomic extensions

of Q, where p is a prime. Even if an algebraic extension L/K is infinite, any particular
element (or finite set of elements) in L is in a finite subextension of K, so knowledge of
finite extensions helps us understand infinite algebraic extensions. In fact, another way of
describing an infinite Galois extension is that it is a composite of finite Galois extensions.

For an infinite Galois extension L/K, its Galois group Gal(L/K) is still defined as the
group of K-automorphisms of L, and we can associate a subgroup of the Galois group
to each intermediate field and an intermediate field to each subgroup of the Galois group
just as in the finite case. However, this correspondence is no longer a bijection! This was
first discovered by Dedekind, who saw in examples that different subgroups of an infinite
Galois group could have the same fixed field. So it looks like Galois theory for infinite
extensions breaks down. But it isn’t really so. Krull realized that if you put a suitable
topology on the Galois group then a bijection can be given between all intermediate fields
and the closed subgroups in that topology. (See [1] and [3].) Every subgroup of the Galois
group is associated to the same field as the closure of the subgroup in the Krull topology,
which explains Dedekind’s examples of different subgroups with the same fixed field: one
subgroup is the closure of the other. The Krull topology on Galois groups not only rescued
Galois theory for infinite extensions, but it gave a new impetus to the study of topological
groups. To understand infinite Galois theory, first learn about the p-adic numbers and their
topological and algebraic structure, as they are used in the simplest examples of interesting
infinite Galois groups, such as Gal(Q(µp∞)/Q). Lectures on infinite Galois theory are here.

Turning away from Galois extensions, the next most important class of field extensions
are transcendental extensions. These are field extensions in which some element of the top
field is transcendental (that is, not algebraic) over the bottom field. The simplest example
of a transcendental extension of a field F is the field F (T ) of rational functions over F
in an indeterminate T , or more generally the field F (T1, . . . , Tn) of rational functions in n
independent variables over F . This is called a pure transcendental extension. A general
transcendental extension is a mixture of algebraic and transcendental parts, such as F (x, y)
where x is transcendental over F and y2 = x3 − 1.

Since transcendental extensions of F have infinite degree, the notion of field degree is no
longer important. In its place is the concept of transcendence degree, which is a nonlinear
analogue of a basis and measures how transcendental the extension is. The need to under-
stand transcendental field extensions is not driven for its own sake, but for other areas of
mathematics, such as algebraic geometry.
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