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1. Examples

Example 1.1. The field extension Q(
√

2,
√

3)/Q is Galois of degree 4, so its Galois group
has order 4. The elements of the Galois group are determined by their values on

√
2 and√

3. The Q-conjugates of
√

2 and
√

3 are ±
√

2 and ±
√

3, so we get at most four possible
automorphisms in the Galois group. See Table 1. Since the Galois group has order 4, these
4 possible assignments of values to σ(

√
2) and σ(

√
3) all really exist.

σ(
√

2) σ(
√

3)√
2

√
3√

2 −
√

3

−
√

2
√

3

−
√

2 −
√

3
Table 1

Each nonidentity automorphism in Table 1 has order 2. Since Gal(Q(
√

2,
√

3)/Q) con-
tains 3 elements of order 2, Q(

√
2,
√

3) has 3 subfields Ki such that [Q(
√

2,
√

3) : Ki] = 2,
or equivalently [Ki : Q] = 4/2 = 2. Two such fields are Q(

√
2) and Q(

√
3). A third is

Q(
√

6) and that completes the list. Here is a diagram of all the subfields.

Q(
√

2,
√

3)

Q(
√

2) Q(
√

3) Q(
√

6)

Q

In Table 1, the subgroup fixing Q(
√

2) is the first and second row, the subgroup fixing
Q(
√

3) is the first and third row, and the subgroup fixing Q(
√

6) is the first and fourth row
(since (−

√
2)(−

√
3) =

√
2
√

3).
The effect of Gal(Q(

√
2,
√

3)/Q) on
√

2 +
√

3 is given in Table 2. The 4 values are
all different, since

√
2 and

√
3 are linearly independent over Q. Therefore Q(

√
2,
√

3) =
Q(
√

2 +
√

3). The minimal polynomial of
√

2 +
√

3 over Q must be

(X − (
√

2 +
√

3))(X − (−
√

2 +
√

3))(X − (
√

2−
√

3))(X − (−
√

2−
√

3)) = X4 − 10X2 + 1.

In particular, X4− 10X2 + 1 is irreducible in Q[X] since it’s a minimal polynomial over Q.
1
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σ(
√

2) σ(
√

3) σ(
√

2 +
√

3)√
2

√
3

√
2 +
√

3√
2 −

√
3

√
2−
√

3

−
√

2
√

3 −
√

2 +
√

3

−
√

2 −
√

3 −
√

2−
√

3
Table 2

By similar reasoning if a field F does not have characteristic 2 and a and b are nonsquares
in F such that ab is not a square either, then [F (

√
a,
√
b) : F ] = 4 and all the fields between

F and F (
√
a,
√
b) are as in the following diagram.

F (
√
a,
√
b)

F (
√
a) F (

√
b) F (

√
ab)

F

Furthermore, F (
√
a,
√
b) = F (

√
a +
√
b). The argument is identical to the special case

above.

Example 1.2. The extension Q( 4
√

2)/Q is not Galois, but Q( 4
√

2) lies in Q( 4
√

2, i), which
is Galois over Q. We will use Galois theory for Q( 4

√
2, i)/Q to find the intermediate fields

in Q( 4
√

2)/Q.
The Galois group of Q( 4

√
2, i)/Q equals 〈r, s〉, where

r(
4
√

2) = i
4
√

2, r(i) = i and s(
4
√

2) =
4
√

2, s(i) = −i.

(Viewing elements of Q( 4
√

2, i) as complex numbers, s acts on them like complex conjuga-
tion.) The group 〈r, s〉 is isomorphic to D4, where r corresponds to a 90 degree rotation of
the square and s corresponds to a reflection across a diagonal. What is the subgroup H of
Gal(Q( 4

√
2, i)/Q) corresponding to Q( 4

√
2)?

(1.1)

Q( 4
√

2, i) {1}∣∣∣2 ∣∣∣2
Q( 4
√

2) H∣∣∣4 ∣∣∣4
Q D4

Since s is a nontrivial element of the Galois group that fixes Q( 4
√

2), s ∈ H. The size
of H is [Q( 4

√
2, i) : Q( 4

√
2)] = 2, so H = {1, s} = 〈s〉. By the Galois correspondence for

Q( 4
√

2, i)/Q, fields strictly between Q( 4
√

2) and Q correspond to subgroups of the Galois
group strictly between 〈s〉 and 〈r, s〉. From the known subgroup structure of D4, the only
subgroup lying strictly between 〈s〉 and 〈r, s〉 is 〈r2, s〉. Therefore only one field lies strictly
between Q( 4

√
2) and Q. Since Q(

√
2) is such a field it is the only one.
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Remark 1.3. While Galois theory provides the most systematic method to find intermedi-
ate fields, it may be possible to argue in other ways. For example, suppose Q ⊂ F ⊂ Q( 4

√
2)

with [F : Q] = 2. Then 4
√

2 has degree 2 over F . Since 4
√

2 is a root of X4 − 2, its minimal
polynomial over F has to be a quadratic factor of X4− 2. There are three monic quadratic
factors with 4

√
2 as a root, but only one of them, X2 −

√
2, has coefficients in Q( 4

√
2) (let

alone in R). Therefore X2−
√

2 must be the minimal polynomial of 4
√

2 over F , so
√

2 ∈ F .
Since [F : Q] = 2, F = Q(

√
2) by counting degrees.

Example 1.4. Let’s explore Q( 4
√

2, ζ8), where ζ8 = e2πi/8 is a root of unity of order 8,
whose minimal polynomial over Q is X4 + 1. Both Q( 4

√
2) and Q(ζ8) have degree 4 over

Q. Since ζ28 = i, Q( 4
√

2, ζ8) is a splitting field over Q of (X4 − 2)(X4 + 1) and therefore is
Galois over Q. What is its Galois group? We have the following field diagram.

Q( 4
√

2, ζ8)

≤4≤4

Q( 4
√

2)

4

Q(ζ8)

4

Q

Thus [Q( 4
√

2, ζ8) : Q] is at most 16. We will see the degree is not 16: there are some hidden
algebraic relations between 4

√
2 and ζ8.

Any σ ∈ Gal(Q( 4
√

2, ζ8)/Q) is determined by its values

(1.2) σ(ζ8) = ζa8 (a ∈ (Z/8Z)×) and σ(
4
√

2) = ib
4
√

2 (b ∈ Z/4Z).

There are 4 choices each for a and b. Taking independent choices of a and b, there are at
most 16 automorphisms in the Galois group. But the choices of a and b can not be made
independently because ζ8 and 4

√
2 are linked to each other:

(1.3) ζ8 + ζ−18 = e2πi/8 + e−2πi/8 = 2 cos
(π

4

)
=
√

2 =
4
√

2
2
.

This says
√

2 belongs to both Q(ζ8) and Q( 4
√

2). Here is a field diagram that emphasizes
the common subfield Q(

√
2) in Q( 4

√
2) and Q(ζ8). This subfield is the source of (1.3).

Q( 4
√

2, ζ8)

≤4≤4

Q( 4
√

2)

2

Q(ζ8)

2

2

Q(
√

2)

2

Q(i)

2

Q
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Rewriting ζ8 + ζ−18 =
√

2 as ζ28 −
√

2ζ8 + 1 = 0, ζ8 has degree at most 2 over Q( 4
√

2).

Since ζ8 is not real, it isn’t inside Q( 4
√

2), so it has degree 2 over Q( 4
√

2). Therefore
[Q( 4
√

2, ζ8) : Q] = 2 · 4 = 8 and the degrees marked as “≤ 4” in the diagram both equal 2.
Returning to the Galois group, (1.3) tells us the effect of σ ∈ Gal(Q( 4

√
2, ζ8)/Q) on 4

√
2

partially determines it on ζ8, and conversely: (σ( 4
√

2))2 = σ(ζ8) + σ(ζ8)
−1, which in the

notation of (1.2) is the same as

(1.4) (−1)b =
ζa8 + ζ−a8√

2
.

This tells us that if a ≡ 1, 7 mod 8 then (−1)b = 1, so b ≡ 0, 2 mod 4, while if a ≡ 3, 5 mod 8
then (−1)b = −1, so b ≡ 1, 3 mod 4. For example, σ can’t both fix 4

√
2 (b = 0) and send ζ8

to ζ38 (a = 3) because (1.4) would not hold.

The simplest way to understand Q( 4
√

2, ζ8) is to use a different set of generators. Since

ζ8 = e2πi/8 = eπi/4 = (1 + i)/
√

2,

Q(
4
√

2, ζ8) = Q(
4
√

2, i),

and from the second representation we know its Galois group over Q is isomorphic to D4

with independent choices of where to send 4
√

2 (to any fourth root of 2) and i (to any
square root of −1) rather than 4

√
2 and ζ8. A different choice of field generators can make

it easier to see what the Galois group looks like. We also see immediately from the second
representation that [Q( 4

√
2, ζ8) : Q] = 8.

A Galois extension is said to have a given group-theoretic property (being abelian, non-
abelian, cyclic, etc.) when its Galois group has that property.

Example 1.5. Any quadratic extension of Q is an abelian extension since its Galois group
has order 2. It is also a cyclic extension.

Example 1.6. The extension Q( 3
√

2, ω)/Q is called non-abelian since its Galois group is
isomorphic to S3, which is a non-abelian group. The term “non-abelian” has nothing to do
with the field operations, which of course are always commutative.

Theorem 1.7. If L/K is a finite abelian extension then every intermediate field is an
abelian extension of K. If L/K is cyclic then every intermediate field is cyclic over K.

Proof. Every subgroup of an abelian group is a normal subgroup, so every field F between
L and K is Galois over K and Gal(F/K) ∼= Gal(L/K)/Gal(L/F ). The quotient of an
abelian group by any subgroup is abelian, so Gal(F/K) is abelian.

Since the quotient of a cyclic group by any subgroup is cyclic, if L/K is cyclic then F/K
is cyclic too. �

Theorem 1.8. Let L1 and L2 be Galois over K. There is an injective homomorphism

Gal(L1L2/K) ↪→ Gal(L1/K)×Gal(L2/K)

given by σ 7→ (σ|L1 , σ|L2). In particular, if L1/K and L2/K are finite abelian extensions
then L1L2 is a finite abelian extension of K.
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Proof. A composite of Galois extensions is Galois, so L1L2/K is Galois.

L1L2

L1 L2

K

Any σ ∈ Gal(L1L2/K) restricted to L1 or L2 is an automorphism since L1 and L2 are
both Galois over K. So we get a function R : Gal(L1L2/K)→ Gal(L1/K)×Gal(L2/K) by
R(σ) = (σ|L1 , σ|L2). We will show R is an injective homomorphism.

To show R is a homomorphism, it suffices to check the separate restriction maps σ 7→ σ|L1

and σ 7→ σ|L2 are each homomorphisms from Gal(L1L2/K) to Gal(L1/K) and Gal(L2/K).
For σ and τ in Gal(L1L2/K) and any α ∈ L1,

(στ)|L1(α) = (στ)(α) = σ(τ(α)),

and τ(α) ∈ L1 since L1/K is Galois, so σ(τ(α)) = σ|L1(τ |L1(α)) = (σ|L1 ◦ τ |L1)(α). Thus
(στ)|L1(α) = (σ|L1 ◦ τ |L1)(α) for all α ∈ L1, so (στ)|L1 = σ|L1 ◦ τ |L1 . The proof that
(στ)|L2 = σ|L2 ◦ τ |L2 is the same.

The kernel of R is trivial, since if σ is the identity on L1 and L2 then it is the identity
on L1L2. Thus R embeds Gal(L1L2/K) into the direct product of the Galois groups of L1

and L2 over K.
If the groups Gal(L1/K) and Gal(L2/K) are abelian, their direct product is abelian.

Therefore the embedded subgroup Gal(L1L2/K) is abelian. �

The analogue of the end of Theorem 1.8 for finite cyclic extensions is false: a compositum
of two cyclic Galois extensions need not be a cyclic extension. For instance, Q(

√
2)/Q and

Q(
√

3)/Q are cyclic extensions but Q(
√

2,
√

3)/Q is not a cyclic extension: its Galois group
is isomorphic to Z/2Z× Z/2Z.

2. Applications to Field Theory

We will prove the complex numbers are algebraically closed (the “Fundamental Theorem
of Algebra”) using Galois theory and a small amount of analysis. We need one property of
the real numbers, one property of the complex numbers, and two properties of finite groups:

(1) Every odd degree polynomial in R[X] has a real root. In particular, no polynomial
of odd degree greater than 1 in R[X] is irreducible.

(2) Every number in C has square roots in C.
(3) The first Sylow theorem (existence of Sylow subgroups).
(4) A nontrivial finite p-group has a subgroup of index p.

The first property is a consequence of the intermediate value theorem. The second
property can be explained by writing a nonzero complex number as reiθ and then its square
roots are ±

√
reiθ/2. (For example, i = eiπ/2 and a square root of i is eiπ/4 = 1√

2
+ i√

2
.) It

is a nice exercise to find a square root of a complex number a+ bi in terms of a and b. The
third property is proved as part of the Sylow theorems. The fourth property is proved in
the context of showing finite p-groups are solvable.

Theorem 2.1. The complex numbers are algebraically closed.
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Proof. We need to show any irreducible in C[X] has degree 1. If π(X) ∈ C[X] is irreducible
and α is a root, then [C(α) : C] = deg π, so our task is the same as showing the only finite
extension of C is C itself.

Let E/C be a finite extension. Since E is a finite extension of R, and we’re in character-
istic 0, we can enlarge E/R to a finite Galois extension K/R. Since R ⊂ C ⊂ K, [K : R]
is even.

Let 2m ≥ 2 be the highest power of 2 dividing the size of G = Gal(K/R). There is a
subgroup H of G with order 2m (Property 3). Let F be the corresponding fixed field, so
[F : R] is odd.

K

2m

{1}

2m

F

odd

H

oddC

2

R G

Every α ∈ F has degree over R dividing [F : R], so [R(α) : R] is odd. That means the
minimal polynomial of α in R[X] has odd degree. Irreducible polynomials in R[X] of odd
degree have degree 1 (Property 1), so [R(α) : R] = 1. Thus α ∈ R, so F = R. Therefore
G = H is a 2-group.

K {1}

2m−1

C

2

Gal(K/C)

2

R G

The group Gal(K/C) has order 2m−1. If m ≥ 2 then Gal(K/C) has a subgroup of index
2 (Property 4), whose fixed field has degree 2 over C. Any quadratic extension of C has the

form C(
√
d) for some nonsquare d ∈ C×. But every nonzero complex number has square

roots in C (Property 2), so [C(
√
d) : C] is 1, not 2. We have a contradiction. Thus m = 1,

so K = C. Since C ⊂ E ⊂ K, we conclude that E = C. �

Theorem 2.2. If L/K be Galois with degree pm, where p is a prime, then there is a chain
of intermediate fields

K = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fm = K

where [Fi : Fi−1] = p for i ≥ 1 and Fi/K is Galois.

Proof. The group Gal(L/K) is a finite group of order pm. One of the consequences of
finite p-groups being solvable is the existence of a rising chain of subgroups from the trivial
subgroup to the whole group where each subgroup has index p in the next one and each
subgroup is normal in the whole group. Now apply the Galois correspondence. �

The next application, which is an amusing technicality, is taken from [8, p. 67].
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Theorem 2.3. Let p be a prime number. If K is a field of characteristic 0 such that every
proper finite extension of K has degree divisible by p then every finite extension of K has
p-power degree.

Aside from examples resembling K = R (where p = 2 works), fields that fit the conditions
of Theorem 2.3 are not easy to describe at an elementary level. But the technique of proof
is a pleasant use of elementary group theory.

Proof. Let L/K be a finite extension. We want to show [L : K] is a power of p. Since K
has characteristic 0, L/K is separable, so we can embed L in a finite Galois extension E/K.
Since [L : K]|[E : K], it suffices to show [E : K] is a power of p, i.e., show finite Galois
extensions of K have p-power degree.

By the first Sylow theorem, Gal(E/K) contains a p-Sylow subgroup, say H. Let F = EH ,
so [F : K] is the index of H in Gal(E/K). This index is prime to p by the definition of a
Sylow subgroup, so [F : K] is prime to p.

E {1}

power of p

F H

prime to p

K Gal(E/K)

Every proper finite extension of K has degree divisible by p, so [F : K] = 1. Thus F = K
and [E : K] = [E : F ] = #H is a power of p. �

Remark 2.4. Theorem 2.3 is true when K has positive characteristic, but then one has
to consider the possibility that K has inseparable extensions and additional reasoning is
needed. See [8, p. 67].

3. Applications to Minimal Polynomials

When L/K is a Galois extension and α ∈ L, the Galois group Gal(L/K) provides us with
a systematic way to describe all the roots of the minimal polynomial of α over K: they are
the different elements of the Galois orbit {σ(α) : σ ∈ Gal(L/K)}. If we let Gal(L/K) act
on L[X], and not just L, by acting on polynomial coefficients, then we can relate minimal
polynomials of the same number over different fields using a Galois group.

Theorem 3.1. Let L/K be a finite Galois extension and α lie in some extension of L with
minimal polynomial f(X) in L[X]. The minimal polynomial of α in K[X] is the product of
all the different values of (σf)(X) as σ runs over Gal(L/K).

When α ∈ L, so f(X) = X − α, we recover the construction of the minimal polynomial
of α in K[X] as

∏r
j=1(X −σj(α)), where σ1(α), . . . , σr(α) are the distinct values of σ(α) as

σ runs over Gal(L/K).

Proof. Let π(X) denote the minimal polynomial of α over K. Since π(α) = 0 and f(X)
is the minimal polynomial of α over L, f(X) | π(X) in L[X]. For any σ ∈ Gal(L/K),
f(X) | π(X)⇒ (σf)(X) | π(X) because (σπ)(X) = π(X).

Note (σf)(X) = (σif)(X) for some i. Each σif is monic irreducible in L[X] and there-
fore σif and σjf are relatively prime when i 6= j. Thus π(X) is divisible by F (X) :=
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i=1(σif)(X). For any σ ∈ Gal(L/K), the set of polynomials (σσif)(X) are the same as

all (σif)(X) except it may be in a different order, so

(σF )(X) =
r∏
i=1

(σσif)(X) =
r∏
i=1

(σif)(X) = F (X),

so the coefficients of F (X) are in K. Since F (X) | π(X) and F (α) = 0, the meaning of
minimal polynomial implies F (X) = π(X). �

Example 3.2. Consider X2−
√

2 in Q(
√

2)[X]. It is irreducible since
√

2 is not a square in
Q(
√

2): if (a+ b
√

2)2 =
√

2 with a, b ∈ Q then a2 + 2b2 = 0, so a = b = 0, a contradiction.
The different values of σ(X2−

√
2) = X2−σ(

√
2) as σ runs over Gal(Q(

√
2)/Q) are X2−

√
2

and X2 +
√

2, so the minimal polynomial over Q of the roots of X2 −
√

2 is

(X2 −
√

2)(X2 +
√

2) = X4 − 2.

Since a minimal polynomial over a field is just an irreducible polynomial over that field
(with a particular root), we can formulate Theorem 3.1 in terms of irreducible polynomials
without mentioning roots: if f(X) is monic irreducible in L[X] then the product of the
different (σf)(X), as σ runs over Gal(L/K), is irreducible in K[X]. Consider a potential
converse: if f(X) is monic in L[X] and the product of the different polynomials (σf)(X),
as σ runs over Gal(L/K), is irreducible in K[X], then f(X) is irreducible in L[X]. This is
false: use L/K = Q(

√
2)/Q and f(X) = X2 − 2. Here (σf)(X) = X2 − 2 for either σ, so

the product of different (σf)(X) is X2 − 2, which is irreducible in K[X] but reducible in
L[X]. Yet there is a kernel of truth in this false converse. We just have to make sure f(X)
doesn’t live over a proper subfield of L.

Theorem 3.3. Let L/K be a finite Galois extension. Suppose f(X) is monic in L[X] and
its coefficients generate L over K. If the product of the different polynomials (σf)(X), as
σ runs over Gal(L/K), is irreducible in K[X], then f(X) is irreducible in L[X].

This avoids the previous counterexample f(X) = X2 − 2 with L/K = Q(
√

2)/Q, since
the coefficients of f(X) do not generate Q(

√
2)/Q.

Proof. Since the coefficients of f(X) generate L/K any σ in Gal(L/K) that is not the
identity changes at least one off the coefficients of f(X). (Otherwise the coefficients lie in
the field fixed by σ, which is a nontrivial subgroup of Gal(L/K) and a nontrivial subgroup
has a fixed field smaller than L.) It follows that for any distinct σ and τ in Gal(L/K), the
polynomials (σf)(X) and (τf)(X) are different: if σf = τf then (τ−1σ)f = f , so τ−1σ
fixes the coefficients of f and therefore σ = τ . Thus the hypothesis of the theorem is that

F (X) :=
∏

σ∈Gal(L/K)

(σf)(X).

is irreducible in K[X], where the product runs over all of Gal(L/K), and we want to show
f(X) is irreducible in L[X]. We will prove the contrapositive. Suppose f(X) is reducible
in L[X], so f(X) = g(X)h(X) in L[X] where g(X) and h(X) are nonconstant. Then

F (X) =
∏

σ∈Gal(L/K)

(σf)(X) =
∏

σ∈Gal(L/K)

(σg)(X)
∏

σ∈Gal(L/K)

(σh)(X) = G(X)H(X),

where G(X) and H(X) are in K[X] (why?). Since g(X) and h(X) have positive degree, so
do G(X) and H(X), and therefore F (X) is reducible in K[X]. �



GALOIS THEORY AT WORK 9

Example 3.4. Consider Xn −
√

2 in Q(
√

2)[X]. Its coefficients generate Q(
√

2)/Q. Since

(Xn −
√

2)(Xn +
√

2) = X2n − 2

is irreducible over Q, Xn −
√

2 is irreducible in Q(
√

2)[X] for all n. The same kind of
argument shows Xn − (1 + 2

√
2) is irreducible over Q(

√
2)[X] for all n.

Corollary 3.5. Let L/K be a finite Galois extension. Suppose f(X) is monic in L[X], its
coefficients generate L/K, and F (X) :=

∏
σ∈Gal(L/K)(σf)(X) is separable and irreducible

in K[X]. Then each (σf)(X) is irreducible in L[X] and if α is a root of f(X) then the
Galois closure of L(α)/K is the splitting field of F (X) over K.

Proof. The irreducibility of f(X) in L[X] follows from Theorem 3.3. The polynomials
(σf)(X) satisfy the same hypotheses as f(X), so they are all irreducible over L as well.
The minimal polynomial of α over K is F (X) and K(α)/K is separable since F (X) is
separable over K. Therefore L(α)/K is separable, so L(α) has a Galois closure over K.

A Galois extension of K that contains L(α) must contain all the K-conjugates of α and
hence must contain the splitting field of F (X) over K. Conversely, the splitting field of
F (X) over K is a Galois extension of K that contains α as well as all the roots of f(X),
so the extension contains the coefficients of f(X). Those coefficients generate L/K, so the
splitting field of F (X) over K contains L(α). �

There is nothing deep going on in this corollary. The point is that since the coefficients
of f generate L, L is already inside the Galois closure of K(α)/K, so just by forming the
splitting field of F (X) over K we pick up L inside it.

Example 3.6. Consider the extension Q(γ)/Q, where γ is a root of X3 − 3X − 1. This
cubic extension is Galois and the Q-conjugates of γ are 2 − γ2 and γ2 − γ − 2. (We will
see a numerical criterion to check whether cubic extensions are Galois in Example 4.27.)
Let f(X) = X3 − γX − 1. The polynomials (σf)(X) as σ runs over the three elements of
Gal(Q(γ)/Q) are f(X), X3− (2− γ2)X − 1, and X3− (γ2− γ− 2)X − 1. Their product is

F (X) = X9 − 3X6 − 3X5 + 2X3 + 3X2 − 1,

which is irreducible mod 2 and thus is irreducible in Q[X]. Therefore the polynomials f(X),
X3 − (2− γ2)X − 1, and X3 − (γ2 − γ − 2)X − 1 are all irreducible over Q(γ)[X] and the
splitting field of F (X) over Q is the smallest Galois extension of Q containing Q(γ, α),
where α is a root of f(X). According to PARI, the splitting field of F (X) over Q has
degree 684 = 3 · 63.

4. Galois groups as permutation groups

For a separable polynomial f(X) ∈ K[X] of degree n, the Galois group of f(X) over K
is defined to be the Galois group of a splitting field for f(X) over K. We do not require
f(X) to be irreducible over K.

Example 4.1. The polynomial X4− 2 has splitting field Q( 4
√

2, i) over Q, so the Galois of
X4− 2 over Q is isomorphic to D4. The splitting field of X4− 2 over R is C, so the Galois
group of X4 − 2 over R is cyclic of order 2.

Example 4.2. The Galois group of X3 − 2 over Q is S3.

Example 4.3. The Galois group of (X2 − 2)(X2 − 3) over Q is Z/2Z× Z/2Z. Its Galois
group over R is trivial.
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We will develop a method, using permutations, to study Galois groups of polynomials.
It is particularly effective when the Galois group turns out to be a symmetric or alternating
group.

Writing f(X) = (X− r1) · · · (X− rn), the splitting field of f(X) over K is K(r1, . . . , rn).
Each σ in the Galois group of f(X) over K permutes the ri’s and σ is completely determined
by this permutation since the ri’s generate the splitting field over K. A permutation of the
ri’s can be viewed as a permutation of the subscripts 1, 2, . . . , n.

Example 4.4. Consider the Galois group of X4 − 2 over Q. The polynomial has 4 roots:
4
√

2, i 4
√

2,− 4
√

2,−i 4
√

2. Take as generators of Gal(Q( 4
√

2, i)/Q) the automorphisms r and s
from Example 1.2. The effect of the Galois group on 4

√
2 and i is in Table 3.

Automorphism 1 r r2 r3 s rs r2s r3s

Value on 4
√

2 4
√

2 i 4
√

2 − 4
√

2 −i 4
√

2 4
√

2 i 4
√

2 − 4
√

2 −i 4
√

2
Value on i i i i i −i −i −i −i

Table 3

Passing from 4
√

2 and i to the four roots of X4 − 2, the effect of r on the roots of X4 − 2
is

r(
4
√

2) = i
4
√

2, r(i
4
√

2) = − 4
√

2, r(− 4
√

2) = −i 4
√

2, r(−i 4
√

2) =
4
√

2,

which is a 4-cycle, while the effect of s on the roots of X4 − 2 is

s(
4
√

2) =
4
√

2, s(i
4
√

2) = −i 4
√

2, s(−i 4
√

2) = i
4
√

2, s(− 4
√

2) = − 4
√

2,

which swaps i 4
√

2 and −i 4
√

2 while fixing 4
√

2 and − 4
√

2. So s is a 2-cycle on the roots.
Indexing the roots of X4 − 2 as

(4.1) α1 =
4
√

2, α2 = i
4
√

2, α3 = − 4
√

2, α4 = −i 4
√

2,

the automorphism r acts on the roots like (1234) and the automorphism s acts on the roots
like (24). With this indexing of the roots, the Galois group of X4 − 2 over Q becomes the
group of permutations in S4 in Table 4.

Automorphism 1 r r2 r3 s rs r2s r3s

Permutation (1) (1234) (13)(24) (1432) (24) (12)(34) (13) (14)(23)
Table 4

Example 4.5. If we label the roots of (X2 − 2)(X2 − 3) as

r1 =
√

2, r2 = −
√

2, r3 =
√

3, r4 = −
√

3,

then the Galois group of (X2 − 2)(X2 − 3) over Q becomes the following subgroup of S4:

(4.2) (1), (12), (34), (12)(34).

Numbering the roots of f(X) in different ways can identify the Galois group with different
subgroups of Sn.

Example 4.6. Labeling 4
√

2, i 4
√

2,− 4
√

2,−i 4
√

2 in this order as α2, α4, α3, α1 identifies the
Galois group of X4−2 over Q with the subgroup of S4 in Table 5, which is not the subgroup
of S4 in Table 4.
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Automorphism 1 r r2 r3 s rs r2s r3s

Permutation (1) (1243) (14)(23) (1342) (14) (13)(24) (23) (12)(34)
Table 5

Example 4.7. If we label
√

2,−
√

2,
√

3,−
√

3 in this order as r2, r4, r1, r3 then the Galois
group of (X2 − 2)(X2 − 3) over Q turns into the following subgroup of S4:

(4.3) (1), (13), (24), (13)(24).

This is not the same subgroup as (4.2).

In general, associating to each σ in the Galois group of f(X) over K its permutation
on the roots of f(X), viewed as a permutation of the subscripts of the roots when we list
them as r1, . . . , rn, is a homomorphism from the Galois group to Sn. This homomorphism
is injective since an element of the Galois group that fixes each ri is the identity on the
splitting field. Thinking about the Galois group of a polynomial with degree n as a subgroup
of Sn is the original viewpoint of Galois. (The description of Galois theory in terms of field
automorphisms is due to Dedekind and, with more abstraction, Artin.)

Two different choices for indexing the roots of f(X) can lead to different subgroups of
Sn, but they will be conjugate subgroups. For instance, the subgroups in Tables 4 and
5 are conjugate by the permutation

(
1234
2431

)
= (124), which is the permutation turning one

indexing of the roots into the other, and the subgroups (4.2) and (4.3) are conjugate by(
1234
2413

)
= (1243). Although the Galois group of f(X) over K does not have a canonical

embedding into Sn in general, its image in Sn is well-defined up to an overall conjugation.
For example, without fixing an indexing of the roots, it doesn’t make sense to ask if a
particular permutation like (132) is in the Galois group as a subgroup of Sn, but it does
make sense to ask if the Galois group contains a permutation with a particular cycle type
(like a 3-cycle).

We can speak about Galois groups of irreducible or reducible polynomials, like X4− 2 or
(X2 − 2)(X3 − 2) over Q. Only for an irreducible polynomial does the Galois group have
a special property, called transitivity, when we turn the Galois group into a subgroup of
Sn. A subgroup G ⊂ Sn is called transitive when, for any i 6= j in {1, 2, . . . , n}, there is a
permutation in G sending i to j.

Example 4.8. The subgroups of S4 in Tables 4 and 5 are transitive. This corresponds to
the fact that for any two roots of X4 − 2 there is an element of its Galois group over Q
taking the first root to the second.

Example 4.9. The subgroup of S4 in (4.2) is not transitive since no element of the subgroup
takes 1 to 3. This corresponds to the fact that an element of Gal(Q(

√
2,
√

3)/Q) can’t send√
2 to

√
3.

Being transitive is not a property of an abstract group. It is a property of subgroups of
Sn.1 A conjugate subgroup of a transitive subgroup of Sn is also transitive since conjugation
on Sn amounts to listing the numbers from 1 to n in a different order.

Theorem 4.10. Let f(X) ∈ K[X] be a separable polynomial of degree n.

1More generally, it is a property of groups equipped with a specific action on a set. Subgroups of Sn have
a natural action on the set {1, 2, . . . , n}.
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(a) If f(X) is irreducible in K[X] then its Galois group over K has order divisible by
n.

(b) The polynomial f(X) is irreducible in K[X] if and only if its Galois group over K
is a transitive subgroup of Sn.

Proof. (a) For a root r of f(X) in K, [K(r) : K] = n is a factor of the degree of the splitting
field over K, which is the size of the Galois group over K.

(b) First suppose f(X) is irreducible. For two roots ri and rj of f(X), we can write
rj = σ(ri) for some σ in the Galois group of f(X) over K. Therefore the Galois group, as a
subgroup of Sn, sends i to j, so it is a transitive subgroup. Now suppose f(X) is reducible
(so n ≥ 2). It is a product of distinct irreducibles since it is separable. Let ri and rj be
roots of different irreducible factors of f(X). These irreducible factors are the minimal
polynomials of ri and rj over K. For any σ in the Galois group of f(X) over K, σ(ri) has
the same minimal polynomial over K as ri, so we can’t have σ(ri) = rj . Therefore, as a
subgroup of Sn, the Galois group of f(X) does not send i to j, so it is not a transitive
subgroup of Sn. �

Here is our first application of these ideas to computing Galois groups.

Theorem 4.11. Let f(X) ∈ Q[X] be an irreducible polynomial of prime degree p with all
but two roots in R. The Galois group of f(X) over Q is isomorphic to Sp.

Proof. Let L = Q(r1, . . . , rp) be the splitting field of f(X) over Q. The permutations of
the ri’s by Gal(L/Q) provide an embedding Gal(L/Q) ↪→ Sp and # Gal(L/Q) is divisible
by p by Theorem 4.10, so Gal(L/Q) contains an element of order p by Cauchy’s theorem.
In Sp, the only permutations of order p are p-cycles (why?). So the image of Gal(L/Q) in
Sp contains a p-cycle.

We may take L to be a subfield of C, since C is algebraically closed. Complex conjugation
restricted to L is a member of Gal(L/Q). Since f(X) has only two non-real roots by
hypothesis, complex conjugation transposes two of the roots of f(X) and fixes the others.
Therefore Gal(L/Q) contains a transposition of the roots of f(X). (This is the reason for
the hypothesis about all but two roots being real.)

We now show the only subgroup of Sp containing a p-cycle and a transposition is Sp,
so Gal(L/Q) ∼= Sp. By suitable labeling of the numbers from 1 to p, we may let 1 be a
number moved by the transposition, so our subgroup contains a transposition τ = (1a).
Let σ be a p-cycle in the subgroup. As a p-cycle, σ acts on {1, 2, . . . , p} by a single orbit,
so some σi with 1 ≤ i ≤ p − 1 sends 1 to a: σi = (1a . . . ). This is also a p-cycle, because
σi has order p in Sp and all elements of order p in Sp are p-cycles, so writing σi as σ
and suitably reordering the numbers 2, . . . , p (which replaces our subgroup by a conjugate
subgroup), we may suppose our subgroup of Sp contains the particular transposition (12)
and the particular p-cycle (12 . . . p). For n ≥ 2, it is a theorem in group theory that the
particular transposition (12) and n-cycle (12 . . . n) generate Sn, so our subgroup is Sp. �

Remark 4.12. While Sp is generated by any transposition and p-cycle for p prime, it is
not true that Sn is generated by any transposition and n-cycle for general n. For example,
(13) and (1234) generate a proper subgroup of S4 (one of the subgroups of order 8).

Example 4.13. The polynomial X3 −X − 1 is irreducible in Q[X] since it is irreducible
mod 2 or since it is a cubic without any rational roots. It has one real root (approximately
1.3247), and one root of a cubic is all but two roots, so its Galois group over Q is isomorphic
to S3.
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Example 4.14. The polynomials X3 − 3X − 1 and X3 − 4X − 1 are both irreducible in
Q[X] since they are cubics without any rational roots. Each polynomial has three real roots
(check!), so we can’t use Theorem 4.11 to determine their Galois groups over Q.

Example 4.15. The quintic polynomial X5 − X − 1 is irreducible in Q[X] since it is
irreducible mod 3. It has one real root, so Theorem 4.11 does not tell us the Galois group.

Example 4.16. The quintic polynomial X5 − 4X − 1 is irreducible in Q[X] since it is
irreducible mod 3. It has three real roots, which is all but two roots, so its Galois group
over Q is isomorphic to S5.

The next thing we will do with Galois groups as subgroups of Sn is determine when they
lie in An. Without fixing a labeling of the roots of f(X), its Galois group is determined as
a subgroup of Sn only up to conjugation, but it is still meaningful to ask if the Galois group
is a subgroup of An since An�Sn. We will introduce a numerical invariant of polynomials,
called the discriminant, to determine when the Galois group is in An.

Definition 4.17. For a nonconstant f(X) ∈ K[X] of degree n that factors over a splitting
field as

f(X) = c(X − r1) · · · (X − rn),

the discriminant of f(X) is defined to be

disc f =
∏
i<j

(rj − ri)2.

Example 4.18. The polynomial (X−1)(X−3)(X−7) has discriminant 22 ·62 ·42 = 2304.

Example 4.19. The discriminant of X2 + aX + b = (X − r)(X − r′) is

(r − r′)2 = r2 − 2rr′ + r′2 = (r + r′)2 − 4rr′ = a2 − 4b,

which is the usual discriminant of a monic quadratic polynomial.

The number disc f is nonzero if f(X) is separable and is 0 if f(X) is not separable.
When f(X) is separable, disc f is a symmetric polynomial in the ri’s, so it is fixed by
Gal(K(r1, . . . , rn)/K) and therefore disc f ∈ K by Galois theory. We have disc f ∈ K if
f(X) is not separable too, since in that case disc f is 0.

Because disc f is a symmetric polynomial in the roots of f(X), when f(X) is monic
its discriminant is a polynomial in the coefficients of f(X) (which are, up to sign, the
elementary symmetric functions of the roots). In low-degree cases, explicit formulas for
discriminants of some trinomials are

disc(X2 + aX + b) = a2 − 4b,

disc(X3 + aX + b) = −4a3 − 27b2,

disc(X4 + aX + b) = −27a4 + 256b3,

disc(X5 + aX + b) = 256a5 + 3125b4.

Example 4.20. The discriminant of X3 −X − 1 is −23, the discriminant of X3 − 3X − 1
is 81, and the discriminant of X3 − 4X − 1 is 229.

More generally [12, p. 41],

disc(Xn + aX + b) = (−1)n(n−1)/2((−1)n−1(n− 1)n−1an + nnbn−1),
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and even more generally, for 0 < m < n and (m,n) = 1,

disc(Xn + aXm + b) = (−1)n(n−1)/2bm−1((−1)n−1mm(n−m)n−man + nnbn−m).

If (m,n) is not necessarily 1 then [14, Theorem 2]

disc(Xn+aXm+b) = (−1)n(n−1)/2bm−1((−1)n/d−1mm/d(n−m)(n−m)/dan/d+nn/db(n−m)/d)d,

where d = (m,n). We will not derive these formulas here.

Example 4.21. Taking m = 2 and n = 4,

disc(X4 + aX2 + b) = 16b(a2 − 4b)2.

Theorem 4.22. Let K not have characteristic 2 and let f(X) be a separable cubic in K[X]

with a root r and discriminant D. The splitting field of f(X) over K is K(r,
√
D).

Note we are not assuming f(X) is irreducible here.

Proof. The roots and the discriminant of f don’t change if we multiply f by a nonzero
constant, so we may assume f(X) is monic. Let f(X) have roots r, r′, and r′′, so the
splitting field of f(X) over K is K(r, r′, r′′).

K(r, r′, r′′)

K(r)

≤3 K(
√
D)

≤2

K

Over K(r), we can remove a linear factor and write f(X) = (X−r)g(X), where g(r) 6= 0.
Explicitly, g(X) = (X − r′)(X − r′′). (Since f is monic, so is g.) By the quadratic formula
on g(X), K(r, r′, r′′) = K(r,

√
disc g). It is simple to check, since f is monic, that disc f =

g(r)2 disc g, so K(r,
√

disc g) = K(r,
√

disc f) = K(r,
√
D). �

Theorem 4.23. Let f(X) ∈ K[X] be a separable polynomial of degree n. If K does not have
characteristic 2, the embedding of the Galois group of f(X) over K into Sn as permutations
of the roots of f(X) has image in An if and only if disc f is a square in K.

Proof. Set δ =
∏
i<j(rj − ri) 6= 0, so δ ∈ K(r1, . . . , rn) and δ2 = disc f ∈ K. Therefore

disc f is a square in K if and only if δ ∈ K.
For any σ ∈ Gal(K(r1, . . . , rn)/K), let εσ = ±1 be its sign as a permutation of the ri’s.

By one of the definitions of the sign of a permutation,

σ(δ) =
∏
i<j

(σ(rj)− σ(ri)) = εσ
∏
i<j

(rj − ri) = εσδ,

so σ(δ) = ±δ. Since δ 6= 0 and K doesn’t have characteristic 2, δ 6= −δ. We have σ ∈ An if
and only if εσ = 1, so σ ∈ An if and only if σ(δ) = δ. Therefore the Galois group of f(X)
over K is in An if and only if δ is fixed by the Galois group, which is the same as δ ∈ K. �
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Remark 4.24. Theorem 4.23 is completely false in characteristic 2: discriminants of poly-
nomials are always squares in characteristic 2 but Sn can occur as a Galois group. For
example, if F is any field of characteristic 2, then over F (T ) the polynomial X3 + TX + T
is separable and irreducible with discriminant T 2 (a square) and Galois group S3.

Theorem 4.23 lets us determine the Galois groups of irreducible cubic polynomials outside
of characteristic 2.

Theorem 4.25. Let K not have characteristic 2 and let f(X) be a separable irreducible
cubic in K[X].

(a) If disc f is a square in K then the Galois group of f(X) over K is isomorphic to
A3.

(b) If disc f is not a square in K then the Galois group of f(X) over K is isomorphic
to S3.

Proof. Since K(r) is inside the splitting field, the Galois group is divisible by [K(r) : K] = 3.
The permutations of the roots of f(X) by its Galois group over K gives an embedding of
the Galois group into S3, so the image is either A3 or S3 since these are the only subgroups
of S3 with size divisible by 3. Theorem 4.23 says the image is in A3 (and thus equal to A3)
if and only if disc f is a square in K.

This can also be proved using the formula for the splitting field of a cubic in Theorem
4.22. �

Example 4.26. In Example 4.13 we saw X3 − X − 1 has Galois group S3 over Q. We
can see again that X3 − X − 1 has Galois group S3 over Q since its discriminant is −23
(Example 4.20) and this is not a rational square.

Example 4.27. The Galois groups of X3 − 3X − 1 and X3 − 4X − 1 over Q were left
undetermined in Example 4.14 since all of their roots are real. Now we can compute the
Galois groups. From Example 4.20, X3 − 3X − 1 has discriminant 81 (a square) and
X3 − 4X − 1 has discriminant 229 (a prime). Therefore X3 − 3X − 1 has Galois group
A3 over Q and X3 − 4X − 1 has Galois group S3 over Q. So although X3 − 3X − 1 and
X3 − 4X − 1 both have all real roots, their Galois groups are not isomorphic. Any root
of X3 − 3X − 1 generates the splitting field over Q, but this is not true for any root of
X3 − 4X − 1.

Remark 4.28. The cubics X3 − 2X + 1 and X3 − 7X − 6 have respective discriminants
5 and 400 = 202, but this does not mean their Galois groups over Q are S3 and A3. Both
polynomials are reducible (factoring as (X − 1)(X2 +X − 1) and (X + 1)(X + 2)(X − 3)).
Do not forget to check that a cubic is irreducible before you use Theorem 4.25!

The following fantastic theorem of Dedekind uses factorization of a polynomial mod p to
tell us when a Galois group over Q contains permutations with particular cycle structure.

Theorem 4.29 (Dedekind). Let f(X) ∈ Z[X] be monic irreducible over Q of degree n.
For any prime p not dividing disc f , let the monic irreducible factorization of f(X) mod p
be

f(X) ≡ π1(X) · · ·πk(X) mod p

and set di = deg πi(X), so d1 + · · ·+ dk = n. The Galois group of f(X) over Q, viewed as
a subgroup of Sn, contains a permutation of type (d1, . . . , dk).
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The nicest proof of Theorem 4.29 uses algebraic number theory and is beyond the scope
of these notes. More elementary proofs are in [2, pp. 398–400] and [7, pp. 302–304].

Example 4.30. We compute the Galois group of X4 −X − 1 over Q using Theorem 4.29.
This polynomial is irreducible mod 2, so it is irreducible over Q. Let its roots be

r1, r2, r3, r4. The extension Q(r1)/Q has degree 4, so the Galois group of X4 − X − 1
over Q has order divisible by 4. Since the Galois group embeds into S4, its size is either 4,
8, 12, or 24. The discriminant of X4−X − 1 is −283, which is not a rational square, so the
Galois group is not a subgroup of A4. This eliminates the possibility of the Galois group
having order 12, because the only subgroup of S4 with order 12 is A4. (Quite generally, the
only subgroup of index 2 in Sn is An for n ≥ 2.) There are subgroups of S4 with orders 4,
8, and (of course) 24 outside of A4, so no other size but 12 is eliminated yet.

Using Theorem 4.29 with p = 7,

X4 −X − 1 ≡ (X + 4)(X3 + 3X2 + 2X + 5) mod 7.

This is an irreducible factorization, so Theorem 4.29 says that the Galois group of X4−X−1
over Q contains a permutation of the roots with cycle type (1, 3), which means the Galois
group has order divisible by 3, and that proves the Galois group is S4.

Example 4.31. We determine the Galois group of X4 + 8X + 12 over Q. This is reducible
mod p for all small p, so the reduction mod p test doesn’t help us prove the polynomial is
irreducible over Q. (In fact, the polynomial factors mod p for all p, so the reduction mod
p test really doesn’t apply. It’s not an artifact of only looking at small primes.) Let’s look
at how the polynomial factors into irreducibles modulo different primes:

X4 + 8X + 12 ≡ (X + 1)(X3 + 4X2 +X + 2) mod 5,

X4 + 8X + 12 ≡ (X2 + 4X + 7)(X2 + 13X + 9) mod 17.

These are only consistent with X4 + 8X + 12 being irreducible over Q (why?).
By the irreducibility of the polynomial, the Galois group of X4 +8X+12 over Q has size

divisible by 4. The discriminant of X4 +8X+12 is 331776 = 5762, a rational square, so the
Galois group is a subgroup of A4 and therefore has size 4 or 12. From the factorization of
the polynomial mod 5 above, the Galois group contains a permutation of the roots whose
cycle type is (1, 3), which is a 3-cycle, so the Galois group has order divisible by 3, and thus
its size is 12. So the Galois group of X4 + 8X + 12 over Q is isomorphic to A4: the even
permutations of the roots extend to automorphisms of the splitting field over Q, while the
odd permutations do not.

Let’s list all the subfields of the splitting field of X4 +8X+12 over Q. Here is the lattice
(upside down) of subgroups of A4.

{(1)}
2

3
3

3 3
〈(12)(34)〉

2

〈(13)(24)〉

2

〈(14)(23)〉
2

V

3

〈(123)〉
4

〈(124)〉 〈(134)〉 〈(234)〉

4

A4
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The corresponding subfield lattice of L = Q(r1, r2, r3, r4) is as follows.

L

2

3
3

3 3
Q(r1 + r2)

2

Q(r1 + r3)

2

Q(r1 + r4)

2

Q(r1r2 + r3r4)

3

Q(r4)

4

Q(r3) Q(r2) Q(r1)

4

Q

The normal subgroups of A4 are {1}, V , and A4, so the only subfield of L that is Galois
over Q other than L and Q is Q(r1r2+r3r4). Since [L : Q(r1)] = 3 is prime and r2 6∈ Q(r1),
we have L = Q(r1, r2), so [Q(r1, r2) : Q] = 12.

The sums r1+r2, r1+r3, and r1+r4 are roots of X6−48X2−64 (check!) and r1r2+r3r4
is a root of X3−48X−64. Roots of X3−48X−64 are squares of roots of X6−48X2−64.
It is left to the reader to check that r1r2 + r3r4 = (r1 + r2)

2 = (r3 + r4)
2.

Remark 4.32. This Galois group computation has an application to constructible numbers.
A necessary condition for a complex number to be constructible (using only an unmarked
straightedge and compass) is that the number has 2-power degree over Q. This necessary
condition is not sufficient: if r is a root of X4 + 8X + 12 then [Q(r) : Q] = 4 and there is
no quadratic field in Q(r): any such field would, by the Galois correspondence, lead to a
subgroup of index 2 in A4 and there is no such subgroup. More generally, for any k ≥ 2
there are complex numbers that have degree 2k over Q but are not constructible.

Example 4.33. Let’s determine the Galois group of X5 − X − 1 over Q, which was left
unresolved in Example 4.15. Its irreducible factorization mod 2 is

X5 −X − 1 = (X2 +X + 1)(X3 +X2 + 1) mod 2.

Because the polynomial is irreducible over Q, 5 divides the size of the Galois group. From
the mod 2 factorization, the Galois group contains a permutation of the roots with cycle
type (2, 3), which has order 6, so the Galois group has size divisible by 5 · 6 = 30. Since the
Galois group is a subgroup of S5, its size is either 30, 60, or 120.

It turns out that there is no subgroup of S5 with order 30 and the only subgroup of order
60 is A5. The discriminant of f(x) is 2869 = 19 · 151, which is not a rational square, so the
Galois group is not in A5 by Theorem 4.23. Therefore the Galois group is S5.

Theorem 4.11 gave us a sufficient condition for an irreducible in Q[X] of prime degree p to
have Galois group Sp: all but 2 roots are real. This condition does not apply to X3−4X−1
or X5 −X − 1, although by Examples 4.27 and 4.33 their Galois groups over Q are S3 and
S5. Using Theorem 4.29, there is a different “all but 2 roots” hypothesis that implies a
Galois group is Sp.

Corollary 4.34. Let f(X) ∈ Z[X] be monic irreducible over Q of prime degree p. If there
is a prime number ` not dividing disc f such that f(X) mod ` has all but two roots in F`,
then the Galois group of f(X) over Q is isomorphic to Sp.
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Proof. The proof of Theorem 4.11 can be used again except for the step explaining why
the Galois group of f(X) over Q contains a transposition. In Theorem 4.11 this came from
the use of complex conjugation to transpose two non-real roots, assuming there are only
two non-real roots. We aren’t assuming that anymore. By hypothesis the factorization
of f(X) mod ` has all linear factors except for one quadratic irreducible factor. Therefore
Theorem 4.29 says the Galois group contains a permutation of the roots with cycle type
(1, 1, . . . , 1, 2), which is a transposition in Sp. �

Example 4.35. From Examples 4.13 and 4.27, the polynomials X3 −X − 1 with discrim-
inant −23 and X3 − 4X − 1 with discriminant 229 each have Galois group S3 over Q.
We can check this again with Corollary 4.34: X3 − X − 1 mod 5 has one root in F5 and
X3 − 4X − 1 mod 2 has one root in F2.

Example 4.36. In Example 4.16 we saw X5− 4X − 1 has Galois group S5 over Q because
it has all but two real roots. We can also compute the Galois group with Corollary 4.34:
the discriminant is −259019 (a negative prime number) and X5 − 4X − 1 mod 19 has all
but two roots in F19.

Example 4.37. Returning to Example 4.33, we can show the Galois group over Q of
X5 −X − 1 is S5 in another way: X5 −X − 1 has discriminant 2869 = 19 · 151 and by a
computer search X5 −X − 1 mod 163 has all but two roots in F163.

Remark 4.38. We can’t use Corollary 4.34 to show X4 −X − 1 has Galois group S4 over
Q (Example 4.30) since 4 is not prime.

If we seek an analogue of Theorem 4.11 for a Galois group to be isomorphic to Ap, using
3-cycles in place of transpositions, there is no analogue since an irreducible polynomial over
Q can’t have all but three roots in R (the number of non-real roots is always even). But
f(X) mod ` could have all but three roots in F` for some `. This suggests the next result.

Corollary 4.39. Let f(X) ∈ Z[X] be monic irreducible over Q of prime degree p ≥ 3 with
disc f a perfect square. If there is a prime number ` not dividing disc f such that f(X) mod `
has all but three roots in F`, then the Galois group of f(X) over Q is isomorphic to Ap.

Proof. Let G be the Galois group, so G is a subgroup of Ap since disc f is a square. The
Galois group has order divisible by p, so it contains a p-cycle. From the factorization of
f(X) mod ` and Theorem 4.29, G contains a 3-cycle. It is a theorem of C. Jordan that for
any prime p ≥ 3, any p-cycle and any 3-cycle in Sp generate Ap, so G ∼= Ap. �

Example 4.40. The polynomial X5 + 20X + 16 has discriminant 21656. It is irreducible
mod 3, so it’s irreducible over Q. Modulo 7, its irreducible factorization is

X5 + 20X + 16 ≡ (X − 4)(X − 5)(X3 + 2X2 + 5X + 5) mod 7.

This has all but three roots in F7, so the Galois group of X5+20X+16 over Q is isomorphic
to A5.

In Table 6 are the trinomial polynomials whose Galois group over Q has been computed
by the methods of this section.

It is a hard theorem of Chebotarev that the sufficient conditions for f(X) to have Galois
group Sp in Corollary 4.34 and Ap in Corollary 4.39 are also necessary in a strong sense: if
f(X) ∈ Z[X] is monic irreducible of prime degree p with Galois group over Q isomorphic
to Sp (resp., Ap) then there are infinitely many primes ` not dividing disc f such that
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f(X) Galois group over Q
X3 −X − 1 S3
X3 − 3X − 1 A3

X3 − 4X − 1 S3
X4 −X − 1 S4
X4 + 8X + 12 A4

X5 −X − 1 S5
X5 − 4X − 1 S5
X5 + 20X + 16 A5

Table 6

f(X) mod ` has all but two roots (resp., all but three roots) in F`. For example, X5−X −
1 mod ` has all but two roots in F` when ` = 163, 193, 227, 307, 467, . . . (there is no simple
pattern to this list, but it continues indefinitely), X5 − 4X − 1 mod ` has all but two roots
in F` when ` = 19, 23, 83, 97, 149, . . . , and X5 + 20X + 16 has all but three roots in F`

when ` = 7, 11, 17, 23, 29, . . . . In practice, it is easy to prove when a monic irreducible in
Z[X] with prime degree p has Galois group Ap or Sp over Q by searching for a prime ` such
that Corollary 4.34 or 4.39 applies. There are extensions of these ideas to polynomials of
nonprime degree, so verifying an irreducible polynomial of degree n has Galois group over
Q that is isomorphic to Sn or An in practice is easy.

Proving a Galois group is small (not Sn or An) is a completely separate matter, which
we will not discuss here.

5. Trace and Norm

For any finite extension of fields L/K, the trace and norm functions are defined in terms
of the trace and determinant of multiplication maps on L. When L/K is Galois, the trace
and norm on L/K can be described using the Galois group.

Theorem 5.1. If L/K is a finite Galois extension with Galois group G, the characteristic
polynomial of α ∈ L is χα,L/K(X) =

∏
σ∈G(X − σ(α)). In particular,

TrL/K(α) =
∑
σ∈G

σ(α), NL/K(α) =
∏
σ∈G

σ(α).

Proof. Since L/K is Galois, the minimal polynomial of α in K[X] splits in L[X]. Call its
different roots α1, . . . , αd, so d = [K(α) : K] and by a general property of characteristic
polynomials,

χα,L/K(X) = ((X − α1) · · · (X − αd))n/d,
where n = [L : K].

For any σ ∈ G, σ(α) is some αi, and by Galois theory every αi is σ(α) for some σ. Since
σ(α) = σ′(α) if and only if σ = σ′τ for some τ ∈ Gal(L/K(α)), each αi has the form σ(α)
for [L : K(α)] = n/d values of σ in G. Therefore

χα,L/K(X) = ((X − α1) · · · (X − αd))n/d =
∏
σ∈G

(X − σ(α)).

The desired identities for the trace and norm fall out from this by looking at the coefficients
of the polynomial on the right. �
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Example 5.2. If K = Q and L = Q(
√
d) for a nonsquare d in Q×, the two elements of

Gal(L/K) are determined by σ1(
√
d) =

√
d and σ2(

√
d) = −

√
d, so

TrQ(
√
d)/Q(a+ b

√
d) = (a+ b

√
d) + (a− b

√
d) = 2a

and
NQ(

√
d)/Q(a+ b

√
d) = (a+ b

√
d)(a− b

√
d) = a2 − db2.

Also

χa+b
√
d,Q(

√
d)/Q(X) = (X − (a+ b

√
d))(X − (a− b

√
d)) = X2 − 2aX − (a2 − db2).

Example 5.3. For α ∈ Fpn ,

TrFpn/Fp
(α) = α+ αp + · · ·+ αp

n−1
and NFpn/Fp

(α) = ααp · · ·αpn−1
.

6. Relations among Galois groups

We already saw in Theorem 1.8 that if L1/K and L2/K are finite Galois extensions then
Gal(L1L2/K) embeds into the direct product Gal(L1/K)×Gal(L2/K) by

σ 7→ (σ|L1 , σ|L2).

When is this embedding an isomorphism? If it is not an isomorphism, what is its image?

Theorem 6.1. Let L1 and L2 be Galois over K.

a) The embedding

Gal(L1L2/K) ↪→ Gal(L1/K)×Gal(L2/K)

given by σ 7→ (σ|L1 , σ|L2) is an isomorphism if and only if L1 ∩ L2 = K. In
particular, [L1L2 : K] = [L1 : K][L2 : K] if and only if L1 ∩ L2 = K.

b) The image of the embedding in part a is the set of compatible pairs of automorphisms:
{(τ1, τ2) ∈ Gal(L1/K)×Gal(L2/K) : τ1 = τ2 on L1 ∩ L2}.

Proof. a) The embedding is an isomorphism if and only if [L1L2 : K] = [L1 : K][L2 : K],
or equivalently [L1L2 : L2] = [L1 : K]. We will show this equality occurs if and only if
L1 ∩ L2 = K.

L1L2

L1 L2

L1 ∩ L2

K

To compare [L1L2 : L2] and [L1 : K], we will compare Galois groups having these sizes.
Consider the restriction homomorphism

(6.1) Gal(L1L2/L2)→ Gal(L1/K), where σ 7→ σ|L1 .

Any automorphism in the kernel of (6.1) fixes L1 and L2, so also L1L2. Thus the kernel
is trivial. The image of (6.1) has the form Gal(L1/E) for some field E with K ⊂ E ⊂ L1.
The field E is the set of elements of L1 fixed by Gal(L1L2/L2) acting on L1. An element



GALOIS THEORY AT WORK 21

of L1L2 is fixed by Gal(L1L2/L2) if and only if it lies in L2, so the image of (6.1) is the
elements of L1 that lie in L2. This is L1 ∩ L2, so E = L1 ∩ L2. Thus the image of (6.1) is
Gal(L1/L1 ∩ L2), so

(6.2) Gal(L1L2/L2) ∼= Gal(L1/L1 ∩ L2) by σ 7→ σL1 .

In particular, [L1L2 : L2] = [L1 : L1 ∩ L2], and this is [L1 : K] if and only if L1 ∩ L2 = K.
b) Let H = {(τ1, τ2) ∈ Gal(L1/K)×Gal(L2/K) : τ1 = τ2 on L1 ∩L2}. The image of the

embedding Gal(L1L2/K)→ Gal(L1/K)×Gal(L2/K) lies in H (why?). We will check the
image has the same size as H, so the groups coincide.

To count #H, for each τ2 ∈ Gal(L2/K) count those τ1 ∈ Gal(L1/K) for which τ1|L1∩L2 =
τ2|L1∩L2 . The restriction map Gal(L1/K) → Gal(L1 ∩ L2/K), where τ1 7→ τ1|L1∩L2 , is
surjective with kernel Gal(L1/L1 ∩ L2), so each element of Gal(L1 ∩ L2/K) is τ1|L1∩L2 for
# Gal(L1/L1 ∩ L2) values of τ1 in Gal(L1/K). Thus

#H =
∑

τ2∈Gal(L2/K)

# {τ1 ∈ Gal(L1/K) : τ1|L1∩L2 = τ2|L1∩L2}

=
∑

τ2∈Gal(L2/K)

# Gal(L1/L1 ∩ L2)

= # Gal(L2/K) ·# Gal(L1/L1 ∩ L2)

= [L2 : K][L1 : L1 ∩ L2]

= [L2 : K][L1L2 : L2] by the end of the proof of part a

= [L1L2 : K]

= # Gal(L1L2/K).

�

Part b says that elements of Gal(L1/K) and Gal(L2/K) that are equal on L1 ∩ L2

extend together (uniquely) to an element of Gal(L1L2/K): there is one automorphism in
Gal(L1L2/K) that restricts on L1 and L2 to our original choices.

Example 6.2. Let L1 = Q(
√

2,
√

3) and L2 = Q( 4
√

2, i). Both are Galois over Q, we know
their Galois groups, and L1 ∩L2 = Q(

√
2). Define τ1 ∈ Gal(L1/Q) and τ2 ∈ Gal(L2/Q) by

the conditions

τ1(
√

2) = −
√

2, τ1(
√

3) =
√

3, τ2(
4
√

2) = i
4
√

2, τ2(i) = i.

These agree on
√

2 since τ2(
√

2) = τ2(
4
√

2)2 = −
√

2, so there is a unique σ ∈ Gal(L1L2/Q)
that restricts to τ1 on L1 and τ2 on L2.

Remark 6.3. Theorem 6.1a admits a converse. Suppose L/K is a finite Galois extension
and Gal(L/K) ∼= H1 ×H2 for groups H1 and H2.

{(1, 1)} L

H1 × {1} {1} ×H2 L2 L1

H1 ×H2 K
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Let L1 be the field fixed by {1}×H2 and L2 be the field fixed by H1×{1}. Since H1×{1} and
{1}×H2 are normal subgroups of H1×H2, L1 and L2 are Galois over K with Gal(L1/K) ∼=
(H1×H2)/({1}×H2) ∼= H1 and Gal(L2/K) ∼= H2. The subgroup corresponding to L1L2 is
({1} ×H2) ∩ (H1 × {1}) = {(1, 1)}, so L1L2 = L. The subgroup corresponding to L1 ∩ L2

is H1 ×H2 (why?), so L1 ∩ L2 = K.

That [L1L2 : K] = [L1 : K][L2 : K] if and only if L1 ∩L2 = K is not generally true if we
remove the Galois hypotheses on both L1/K and L2/K. Here are some counterexamples.
The first one is the easiest and should be understood and memorized.

Example 6.4. If K = Q, L1 = Q( 3
√

2), and L2 = Q(ω 3
√

2), then L1 ∩ L2 = K but
[L1L2 : K] = 6 6= [L1 : K][L2 : K]. See the field diagram below on the left.

Example 6.5. If K = Q, L1 = Q(r1), and L2 = Q(r2) where r1 and r2 are two roots of
X4 + 8X + 12 then L1 ∩L2 = K by Example 4.31, but [L1L2 : K] = 12 6= [L1 : K][L2 : K].
See the field diagram below on the right. If we change L2 to Q(r1 + r2) then we still have
L1 ∩ L2 = K and [L1L2 : K] = 12 6= [L1 : K][L2 : K].

Q(r1, r2)

Q( 3
√

2, ω 3
√

2)

22

Q(r1 + r2)

2

6
Q( 3
√

2) Q(ω 3
√

2)

3

Q(r1)

4

3

Q(r2)

4

3

Q

3

Q

In these counterexamples, neither L1/K nor L2/K is Galois. If one of them is Galois, it
turns out to be true that [L1L2 : K] = [L1 : K][L2 : K] if and only if L1 ∩ L2 = K. This
is part of the following very important theorem about the behavior of a Galois extension
under “translation” by a field extension.

Theorem 6.6. Let L/K and F/K be finite extensions with L/K a Galois extension.

a) The extension LF/F is finite Galois and Gal(LF/F ) ∼= Gal(L/L∩F ) by restriction.
In particular,

[LF : F ] = [L : L ∩ F ] and [LF : K] =
[L : K][F : K]

[L ∩ F : K]
,

so [LF : K] = [L : K][F : K] if and only if L ∩ F = K.
b) The sets of intermediate fields {M : F ⊂ M ⊂ LF} and {M ′ : L ∩ F ⊂ M ′ ⊂ L}

are in bijection by M 7→ L ∩M , with inverse M ′ 7→M ′F .
In particular, every field between F and LF has the form F (α) where α ∈ L, and

if M and M ′ correspond by the bijection then M/F is Galois if and only if M ′/L∩F
is Galois, in which case Gal(M/F ) ∼= Gal(M ′/L ∩ F ) by restriction.
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The field diagram for part a looks like the one on the left below, where parallel lines
emphasize the field extensions whose Galois groups we will identify. Think of LF/F as the
result of translating L/K by F (that is, taking the composite of both L and K with F ).

LF LF

L L M

F M ′
{{

;;

F

L ∩ F L ∩ F

K K

Proof. a) Since L/K is finite Galois, L is a splitting field over K of a separable polynomial
f(X) ∈ K[X]. Then LF is a splitting field over F of f(X), which is separable over L, so
LF/F is Galois. To show Gal(LF/F ) ∼= Gal(L/L∩F ) by restricting the domain from LF to
L, we essentially repeat the proof of Theorem 6.1a. Consider the restriction homomorphism

(6.3) Gal(LF/F )→ Gal(L/K), where σ 7→ σ|L.

This has a trivial kernel: an automorphism in Gal(LF/F ) that is trivial on L is trivial
on LF since it is automatically trivial on F . Therefore (6.3) is injective. The image
of (6.3) is a subgroup of Gal(L/K), so the image has the form Gal(L/E) for some field
E between K and L. By Galois theory E is the fixed field of the image of (6.3), so
E = {x ∈ L : σ(x) = x for all σ ∈ Gal(LF/F )}. An element of LF is fixed by Gal(LF/F )
precisely when it belongs to F , so E = L∩F . Therefore the image of (6.3) is Gal(L/L∩F ).

From the isomorphism of Galois groups, [LF : F ] = [L : L∩F ]. The formula for [LF : K]
follows by writing this degree as [LF : F ][F : K] and [L : L ∩ F ] as [L : K]/[L ∩ F : K].

b) In the diagram below of intermediate fields (on the top) and subgroups (on the bottom)

(6.4) {F ⊂M ⊂ LF} oo //
OO

��

{L ∩ F ⊂M ′ ⊂ L}
OO

��
subgps. of Gal(LF/F ) oo // subgps. of Gal(L/L ∩ F )

we have bijections along the left and right sides by the Galois correspondence and a bijection
on the bottom from the group isomorphism in part a. Specifically, the bijection from left
to right on the bottom is given by H 7→ H|L (restricting all elements of a subgroup H of
Gal(LF/F ) to the field L). Composition of the side and bottom maps in either direction
gives us bijections between the two sets of intermediate fields on the top of the diagram,
and these bijections are inverses of each other. Our task is to show the bijections are given
by the formulas M 7→ L ∩M and M ′ 7→M ′F .
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LF LF

L M

yy

L M ′F

L ∩M F M ′

;;

F

L ∩ F L ∩ F

K K

Start with a field M between F and LF . Let H be the subgroup it corresponds to in
Gal(LF/F ) by Galois theory, H ′ be the subgroup of Gal(L/L∩F ) corresponding to H under
the restriction isomorphism Gal(LF/F ) ∼= Gal(L/L∩F ), and M ′ be the field between L∩F
and L corresponding to H ′ by Galois theory. We will show M ′ = L∩M . By Galois theory

H = {σ ∈ Gal(LF/F ) : σ(m) = m for all m ∈M} = Gal(LF/M), H ′ = {σ|L : σ ∈ H},

and

M ′ = {x ∈ L : σ(x) = x for all σ ∈ H ′} = {x ∈ L : σ(x) = x for all σ ∈ Gal(LF/M)}.

Since LF = LM , we can write H = Gal(LM/M), so M ′ is the fixed field of the restriction
homomorphism Gal(LM/M)→ Gal(L/K). By part a with M in place of F , this fixed field
is L ∩M . Therefore M ′ = L ∩M .

Now pick M ′ between L ∩ F and L, and let M be the field it corresponds to between
F and LF when we use the bijections passing through the Galois groups in (6.4) from the
upper right to the upper left. We want to show M = M ′F . Running the correspondence
of (6.4) in reverse from the upper left to the upper right, we have M ′ = L ∩M by the
previous paragraph. Since our correspondence of intermediate fields is a bijection, to show
M = M ′F it suffices to show M ′ = L ∩M ′F . Obviously M ′ ⊂ L ∩M ′F , so to prove this
containment is an equality it suffices to show [L : M ′] = [L : L ∩M ′F ]. By part a with
M ′F in place of F , [L : L ∩M ′F ] = [LM ′F : M ′F ] = [LF : M ′F ], so we want to show
[LF : M ′F ] = [L : M ′]. The field M ′F is intermediate in the Galois extension LF/F and the
field M ′ is intermediate in the Galois extension L/L∩F . An automorphism σ ∈ Gal(LF/F )
is trivial on F , and thus is trivial on M ′F if and only if it is trivial on M ′, so under the
restriction isomorphism Gal(LF/F ) ∼= Gal(L/L∩F ) we have Gal(LF/M ′F )↔ Gal(L/M ′).
In particular, [LF : M ′F ] = [L : M ′].

The rest of part b is left to the reader. �

Example 6.7. The extension Q(i, 4
√

2)/Q is Galois, with Galois group D4. If we trans-
late this extension by Q(i, 3

√
2) (which is not Galois over Q), we get the Galois extension

Q(i, 3
√

2, 4
√

2)/Q(i, 3
√

2). What is its Galois group? We start by drawing the field diagram
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below.

Q(i, 3
√

2, 4
√

2)

Q(i, 4
√

2)

8
Q(i, 3

√
2)

6

Q

By Theorem 6.6, Gal(Q(i, 3
√

2, 4
√

2)/Q(i, 3
√

2) ∼= Gal(Q(i, 4
√

2)/F ), where F is the inter-
section of Q(i, 4

√
2) and Q(i, 3

√
2). Obviously Q(i) ⊂ F , and since [Q(i, 4

√
2) : Q(i)] = 4 and

[Q(i, 3
√

2) : Q(i)] = 3, we have F = Q(i). Here is a field diagram containing F explicitly.

Q(i, 3
√

2, 4
√

2)

Q(i, 4
√

2)

4
Q(i, 3

√
2)

3

Q(i)

2

Q

The Galois group Gal(Q(i, 4
√

2)/Q(i)) is the subgroup of Gal(Q(i, 4
√

2)/Q) fixing i. This
subgroup is cyclic of order 4, generated are the automorphism σ where σ(i) = i and σ( 4

√
2) =

i 4
√

2. Therefore Gal(Q(i, 3
√

2, 4
√

2)/Q(i, 3
√

2)) is cyclic of order 4, with generator sending 4
√

2
to i 4
√

2.

Example 6.8. If L/K is Galois with Galois group G and F/K is any finite extension with
L ∩ F = K, then LF/F is a Galois extension of F with Gal(LF/F ) ∼= Gal(L/L ∩ F ) =
Gal(L/K) = G. This provides a way to realize Galois groups over K as Galois groups over
finite extensions of K. We will return to this point at the end of Section 8.

LF
G

L F

K
G
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In the proof of Theorem 6.6, the assumption that F/K is finite was used only to compute
[LF : K]. The rest of the proof goes through if F/K is infinite, not necessarily even
algebraic, and here is a worthwhile application of that generality.

Theorem 6.9. Let L/K be a finite Galois extension and let K(T ) be the rational function
field over K in the indeterminate T . Then L(T )/K(T ) is a finite Galois extension whose
Galois group is Gal(L/K) acting on coefficients in L(T ).

L(T )

K(T )

L

K

Proof. The intersection L∩K(T ) is K because the only elements of K(T ) that are algebraic
over K are the elements of K themselves. (If some nonconstant f(T ) in K(T ) were alge-
braic over K then K(T )/K would be algebraic: in the tower K(T ) ⊃ K(f(T )) ⊃ K, the
top part K(T )/K(f(T )) is algebraic since T is a root of a(X) − f(T )b(X) ∈ K(f(T ))[X],
where a(T ) and b(T ) are the numerator and denominator of f(T ), and the bottom part
K(f(T ))/K is algebraic since we assume f(T ) is algebraic over K. This is a contradiction
since the indeterminate T is not algebraic over K.) Therefore Theorem 6.6 says the exten-
sion L(T )/K(T ) of rational function fields is Galois with Gal(L(T )/K(T )) ∼= Gal(L/K) by
σ 7→ σ|L. The inverse of this isomorphism makes any element of Gal(L/K) act on L(T ) by
acting on coefficients, keeping T fixed. �

Example 6.10. The field C(T ) = R(T )(i) is quadratic over R(T ) and Gal(C(T )/R(T ))
is the identity and complex conjugation acting on coefficients.

Example 6.11. As a substantial numerical application of Theorem 6.6, taking up the rest
of this section, we will prove the fields Q( 8

√
3) and Q(

√
2 8
√

3) are not isomorphic by placing
them in a common Galois extension of Q and showing the subgroups they correspond to in
the Galois group are not conjugate.

The minimal polynomial of 8
√

3 over Q is X8 − 3 and the minimal polynomial of
√

2 8
√

3
is X8 − 48 = X8 − 16 · 3. The splitting field of X8 − 3 over Q is Q( 8

√
3, ζ8). We have√

2 ∈ Q(ζ8) since

ζ8 = e2πi/8 =
1 + i√

2
=⇒ ζ8 + ζ−18 =

2√
2

=
√

2,

so Q( 8
√

3, ζ8) = Q(
√

2 8
√

3, ζ8). This Galois extension of Q contains both Q( 8
√

3) and
Q(
√

2 8
√

3).
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To compute Gal(Q( 8
√

3, ζ8)/Q), we will first determine [Q( 8
√

3, ζ8) : Q].

Q( 8
√

3, ζ8)

?

?

?

Q(
√

2 8
√

3)

8

Q( 8
√

3)

8
Q(ζ8)

4

Q

From the field diagram above, we guess [Q( 8
√

3, ζ8) : Q] = 32, but we should be cautious
about this from our experience with Q( 4

√
2, ζ8) in Example 1.4. By Theorem 6.6a with

K = Q, L = Q(ζ8), and F = Q( 8
√

3),

[Q(
8
√

3, ζ8) : Q] =
32

[Q( 8
√

3) ∩Q(ζ8) : Q]
.

The intersection Q( 8
√

3)∩Q(ζ8) is inside R since Q( 8
√

3) ⊂ R, and the only real subfields of
Q(ζ8) are Q and Q(

√
2), so if Q( 8

√
3)∩Q(ζ8) is not Q then it must be Q(

√
2). That would

put
√

2 inside of Q( 8
√

3), and there should be a strong feeling in you that
√

2 6∈ Q( 8
√

3).
How do we prove

√
2 6∈ Q( 8

√
3)? One way is to show the only quadratic subfield of

Q( 8
√

3) is Q(
√

3) and then recall that Q(
√

2) 6= Q(
√

3). That is left to you. What we will
do instead is look at quartic subfields of Q( 8

√
3). An obvious one is Q( 4

√
3). If

√
2 ∈ Q( 8

√
3)

then Q(
√

2,
√

3) ⊂ Q( 8
√

3), so Q( 8
√

3) would have two quartic subfields: Q(
√

2,
√

3) and
Q( 4
√

3). (These quartic fields are definitely not equal, since the first one is Galois over Q
and the second one is not.) We’re going to prove Q( 4

√
3) is the only quartic subfield of

Q( 8
√

3), giving a contradiction.2

We adopt the method of Remark 1.3. Let Q ⊂ F ⊂ Q( 8
√

3) with [F : Q] = 4, so
[Q( 8
√

3) : F ] = 2. Then 8
√

3 has two F -conjugates: itself and some other number. That
other number is another 8th root of 3, so it is some ζc8

8
√

3, where 1 ≤ c ≤ 7. Then the

minimal polynomial of 8
√

3 over F is

(X − 8
√

3)(X − ζc8
8
√

3) = X2 − (1 + ζc8)
8
√

3X + ζc8
4
√

3.

The coefficients on the right must be in F , and F ⊂ Q( 8
√

3) ⊂ R, so ζc8
4
√

3 is real. The only
real powers of ζ8 are ±1. Since 1 ≤ c ≤ 7, we must have ζc8 = −1. Therefore the constant

term ζc8
4
√

3 = − 4
√

3 is in F . Since [F : Q] = 4 and 4
√

3 has degree 4 over Q, F = Q( 4
√

3).

This completes the proof that [Q( 8
√

3, ζ8) : Q] = 32 and we fill in all the degrees in the field

2Methods from algebraic number theory provide another way to show that
√

2 6∈ Q( 8
√

3).
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diagram below.

Q( 8
√

3, ζ8)

4

8

4

Q(
√

2 8
√

3)

8

Q( 8
√

3)

8
Q(ζ8)

4

Q

Now we compute Gal(Q( 8
√

3, ζ8)/Q), which has size 32 from our field degree calculation.
Each σ in this Galois group is determined by its values on 8

√
3 and ζ8. Under the Galois

group, 8
√

3 goes to an 8th root of 3 and ζ8 goes to a primitive 8th root of unity, so σ(ζ8) = ζa8
and σ( 8

√
3) = ζb8

8
√

3, where a ∈ (Z/8Z)× and b ∈ Z/8Z. Thus each element of the Galois
group gives us two exponents mod 8, a and b, with a mod 8 being invertible. There are 4
choices for a and 8 choices for b, which allows for at most 4 · 8 = 32 possible σ’s. Since the
number of σ’s is 32, every pair of choices for a and b really works: for each a ∈ (Z/8Z)× and
b ∈ Z/8Z, there is a unique σ ∈ Gal(Q( 8

√
3, ζ8)/Q) such that σ(ζ8) = ζa8 and σ( 8

√
3) = ζb8

8
√

3.
Write this σ as σa,b, so

(6.5) σa,b(ζ8) = ζa8 , σa,b(
8
√

3) = ζb8
8
√

3.

To understand the Galois group in terms of the parameters a and b, check that

σa,b ◦ σa′,b′ = σaa′,b+ab′ .

The way the parameters combine on the right is exactly the way the matrices(
a b
0 1

)
multiply, so there is an isomorphism from

(6.6)

{(
a b
0 1

)
: a ∈ (Z/8Z)×, b ∈ Z/8Z

}
to Gal(Q( 8

√
3, ζ8)/Q) given by ( a b0 1 ) 7→ σa,b. The mod 8 matrix group (6.6) will be our

concrete model for Gal(Q( 8
√

3, ζ8)/Q).
Now that we computed the Galois group of a Galois extension of Q containing Q( 8

√
3)

and Q(
√

2 8
√

3), we are ready to show Q( 8
√

3) 6∼= Q(
√

2 8
√

3) by showing their corresponding
subgroups in Gal(Q( 8

√
3, ζ8)/Q) are not conjugate.

In the matrix model (6.6) of Gal(Q( 8
√

3, ζ8)/Q), the subgroup fixing Q( 8
√

3) is

(6.7)

{(
a 0
0 1

)
: a ∈ (Z/8Z)×

}
=

{(
1 0
0 1

)
,

(
3 0
0 1

)
,

(
5 0
0 1

)
,

(
7 0
0 1

)}
because every σa,0 fixes 8

√
3 (set b = 0 in (6.5)), there are 4 such automorphisms, and

[Q( 8
√

3, ζ8) : Q( 8
√

3)] = 32/8 = 4. To find the subgroup fixing Q(
√

2 8
√

3), we need to find
the (a, b)-solutions to σa,b(

√
2 8
√

3) =
√

2 8
√

3. In terms of 8
√

3 and ζ8,
√

2
8
√

3 = (ζ8 + ζ−18 )
8
√

3,
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so
σa,b(
√

2
8
√

3) = (ζa8 + ζ−a8 )ζb8
8
√

3.

Therefore

σa,b(
√

2
8
√

3) =
√

2
8
√

3⇐⇒ (ζa8 + ζ−a8 )ζb8
8
√

3 = (ζ8 + ζ−18 )
8
√

3⇐⇒ (ζa8 + ζ−a8 )ζb8 = ζ8 + ζ−18 .

The number of (a, b)-solutions is [Q( 8
√

3, ζ8) : Q(
√

2 8
√

3)] = 32/8 = 4, and by inspection 4
solutions are (a, b) = (±1, 0) and (±3, 4), so the matrices ( a b0 1 ) fixing

√
2 8
√

3 are

(6.8)

{(
±1 0
0 1

)
,

(
±3 4
0 1

)}
=

{(
1 0
0 1

)
,

(
7 0
0 1

)
,

(
3 4
0 1

)
,

(
5 4
0 1

)}
.

It remains to show that the mod 8 matrix groups (6.7) and (6.8) are not conjugate inside
of (6.6). These subgroups are abstractly isomorphic to each other since they are are each
isomorphic to Z/2Z × Z/2Z, so we can’t rule out them being conjugate from being non-
isomorphic as abstract groups. To rule out conjugacy, we really must look at conjugation
on these subgroups.

Suppose ( x y0 1 ) is a matrix in (6.6) that conjugates (6.7) to (6.8). For any a ∈ (Z/8Z)×,

(6.9)

(
x y
0 1

)(
a 0
0 1

)(
x y
0 1

)−1
=

(
a (1− a)y
0 1

)
.

(Since x cancels out on the right side, we could take x = 1 from now on.) In particular,(
x y
0 1

)(
3 0
0 1

)(
x y
0 1

)−1
=

(
3 −2y
0 1

)
.

Therefore the only conjugate of ( 3 0
0 1 ) in (6.8) is ( 3 4

0 1 ), so −2y ≡ 4 mod 8, so y ≡ 2 mod 4.
Since (

x y
0 1

)(
5 0
0 1

)(
x y
0 1

)−1
=

(
5 −4y
0 1

)
,

the only conjugate of ( 5 0
0 1 ) in (6.8) is ( 5 4

0 1 ), so −4y ≡ 4 mod 8, which implies y ≡ 1 mod 2.
We have incompatible congruences on y, so (6.7) and (6.8) are nonconjugate subgroups in
(6.6). (Each element of (6.7) can be conjugated within the group (6.6) to an element of
(6.8), but there is not one element of the group (6.6) that conjugates all of (6.7) to (6.8).)

7. Generating a Composite Field with a Sum

From the proof of the primitive element theorem, if α and β are separable over K then
K(α, β) = K(α + cβ) for all but finitely many c ∈ K. It is natural to ask if there is a
condition that assures us we can use c = 1, so α+ β generates K(α, β).

Theorem 7.1. If K has characteristic 0 and K(α, β)/K is a finite extension such that
K(α)/K and K(β)/K are both Galois and K(α) ∩K(β) = K, then K(α, β) = K(α+ β).

Proof. Our argument is taken from [15, p. 65]. Let H = Gal(K(α, β)/K(α + β)). We will
show this group is trivial.

Pick σ ∈ H, so σ(α+ β) = α+ β. Therefore

σ(α)− α = β − σ(β).

Since K(α) and K(β) are Galois over K, σ(α) ∈ K(α) and σ(β) ∈ K(β), so σ(α)−α ∈ K(α)
and β − σ(β) ∈ K(β). This common difference is therefore in K(α) ∩ K(β) = K. Write
σ(α)− α = t, so

σ(α) = α+ t, σ(β) = β − t.
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Applying σ repeatedly, σj(α) = α + jt for all integers j. Choose j ≥ 1 such that σj is the
identity (for instance, let j = [K(α, β) : K]). Then α = α + jt, so jt = 0. Since we are in
characteristic 0 and j is a positive integer, we must have t = 0, so σ(α) = α and σ(β) = β.
Therefore σ is the identity on K(α, β). �

Example 7.2. The fields Q(
√

2) and Q(
√

3) are both Galois over Q and their intersection
is Q, so Theroem 7.1 tells us Q(

√
2,
√

3) = Q(
√

2 +
√

3). We already saw that by Galois
theory in Example 1.1.

If we drop the Galois hypothesis in Theorem 7.1 completely, then the proof of Theorem
7.1 falls apart and the theorem need not be true anymore.

Example 7.3. Both Q( 3
√

2) and Q(ω 3
√

2) are not Galois over Q and Q( 3
√

2)∩Q(ω 3
√

2) = Q.
The field Q( 3

√
2, ω 3
√

2) = Q( 3
√

2, ω) has degree 6 over Q, but 3
√

2 +ω 3
√

2 = −ω2 3
√

2 (because
1 + ω+ ω2 = 0), which generates the field Q(ω2 3

√
2) of degree 3 over Q. So Q( 3

√
2, ω 3
√

2) 6=
Q( 3
√

2 + ω 3
√

2).

Example 7.4. Let r and r′ be two roots of X4 + 8X + 12. From Example 4.31, the
extensions Q(r) and Q(r′) have degree 4 over Q, Q(r)∩Q(r′) = Q, and [Q(r, r′) : Q] = 12.
The sum r+ r′ has degree 6 over Q (it is a root of X6−48X2−64), so Q(r, r′) 6= Q(r+ r′).

In the proof of Theorem 7.1 we used the condition that K has characteristic 0 in one
place: to know that if jt = 0 in K where j a positive integer then t = 0. The choice of j
comes from σj = id, so j can be chosen as [K(α, β) : K]. Therefore Theorem 7.1 is valid
in characteristic p as long as [K(α, β) : K] 6≡ 0 mod p. What if [K(α, β) : K] is divisible
by p? First of all, there are no problems when K is a finite field. That is, Theorem 7.1 is
true when K is any finite field. See Jyrki Lahtonen’s answer at [17]. But if K = Fp(T ), the
simplest infinite field of characteristic p, counterexamples to Theorem 7.1 occur.

Example 7.5. Consider K = F2(T ), α2 +α+ 1 = 0, and β2 +β+T = 0. The polynomials
X2 +X + 1 and X2 +X + T are separable and irreducible over K (check these quadratics
have no root in F2(T )), so α and β have degree 2 over K and generate Galois extensions
of K (their K-conjugates are α + 1 and β + 1). The field K(α) = F2(T, α) = F2(α)(T )
is a field of rational functions over F2(α) and X2 + X + T has no root in it (why?), so
[K(α, β) : K(α)] = 2. Therefore [K(α, β) : K] = 4 and K(α) ∩K(β) = K. We have the
following field diagram.

F2(T, α, β)

22

F2(T, α)

2

F2(T, β)

2

F2(T )

Unlike the conclusion of Theorem 7.1, K(α, β) 6= K(α+β) because α+β has degree 2 over
K: (α + β)2 + (α + β) = α2 + β2 + α + β = T + 1. An example of a primitive element of
K(α, β)/K is α + Tβ: its Galois orbit over F2(T ) has order 4. A similar example occurs
over Fp(T ) for any prime p, where αp − α+ 1 = 0 and βp − β + T = 0.

If K has characteristic 0 and just one of K(α) or K(β) in Theorem 7.1 is Galois, the
proof of the theorem no longer works but the theorem is still true! Isaacs [6] found that
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Theorem 7.1 is true when K has characteristic 0 with a weaker condition in place of the
Galois hypotheses.

Theorem 7.6. If K has characteristic 0 and K(α, β)/K is a finite extension such that
[K(α, β) : K] = [K(α) : K][K(β) : K] then K(α, β) = K(α+ β).

Proof. See [6] or [9, pp. 363–368]. The hypothesis on field degrees in those references is that
the degrees [K(α) : K] and [K(β) : K] are relatively prime, but the only use of this in the
proof is to guarantee that [K(α, β) : K] = [K(α) : K][K(β) : K] and this degree formula
can be true even without the two factors being relatively prime. �

The degree hypothesis in Theorem 7.6 is equivalent to K(α) ∩ K(β) = K when one of
K(α) or K(β) is Galois over K (Theorem 6.6), so Theorem 7.1 is true when only one of
K(α) or K(β) is Galois over K.

Example 7.7. Theorem 7.6 implies Q( 3
√

2, ω) = Q( 3
√

2 + ω) and Q( 4
√

2, i) = Q( 4
√

2 + i).

Example 7.8. We know Q( 3
√

2, ω 3
√

2) 6= Q( 3
√

2 + ω 3
√

2) and this example does not fit
Theorem 7.6 since [Q( 3

√
2, ω 3
√

2) : Q] = 6 while [Q( 3
√

2) : Q][Q(ω 3
√

2) : Q] = 9.

Example 7.9. Letting r and r′ be two roots of X4 + 8X + 12, we can’t decide if Q(r, r′)
equals Q(r+ r′) from Theorem 7.6 since [Q(r, r′) : Q] = 12 and [Q(r) : Q][Q(r′) : Q] = 16.
The two fields are not the same since Q(r + r′) has degree 6 over Q.

Example 7.10. Does Q( 4
√

2, ζ8) = Q( 4
√

2 + ζ8)? Since [Q( 4
√

2, ζ8) : Q] = 8 (by Example
1.4) and [Q( 4

√
2) : Q][Q(ζ8) : Q] = 16, we can’t answer this with Theorem 7.6. Since

Q( 4
√

2, ζ8) = Q( 4
√

2, i), you can check the Galois orbit of 4
√

2 + ζ8 has size 8, so in fact
Q( 4
√

2, ζ8) = Q( 4
√

2+ ζ8). (The minimal polynomial of 4
√

2+ ζ8 over Q is X8−8X5−2X4 +
16X3 + 32X2 + 24X + 9.) Thus the degree hypothesis of Theorem 7.6 is sufficient to imply
K(α, β) = K(α+ β) in characteristic 0, but it is not necessary.

In [6] and [9], a version of Theorem 7.6 is proved in characteristic p under extra technical
hypotheses. That some extra hypothesis is needed can be seen from Example 7.5; it has
the degree hypothesis of Theorem 7.6 but not the conclusion.

8. The inverse Galois problem

The inverse Galois problem asks which finite groups arise as Galois groups of a given
field. For instance, the only Galois groups over R are the trivial group and a group of order
2. The most important case of the inverse Galois problem is base field Q: it is conjectured
that every finite group is a Galois group over Q, but this is still not completely settled.
It is known that every finite group is a Galois group over C(T ), using complex analysis
(Riemann surfaces).

If we leave the base field arbitrary, then every finite group is the Galois group of some
field extension. This is a pretty use of Cayley’s theorem embedding every finite group in
some symmetric group.

Theorem 8.1. Every finite group is the Galois group of some finite Galois extension in
any characteristic.

Proof. Let F be a field. By the symmetric function theorem,

F (T1, . . . , Tn)Sn = F (s1, . . . , sn),
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where the si’s are the elementary symmetric functions of the Ti’s. Therefore the field
F (T1, . . . , Tn) is Galois over F (s1, . . . , sn) with Galois group Sn. Any finite group G embeds
into some symmetric group Sn, and thus can be interpreted as a Galois group. �

Theorem 8.1 leaves a lot to be desired: to realize G as a Galois group, the proof tells us
to embed G ↪→ Sn for some n and then G is the Galois group of the extension E/EG where
E = F (T1, . . . , Tn) and G acts on E by permuting the variables using the embedding of G
in Sn. The base field EG = F (T1, . . . , Tn)G of this Galois extension is rather mysterious!

Schur, in the 19th century, used number-theoretic techniques to realize every Sn and An
as Galois groups over Q using splitting fields of truncated power series (e.g., the truncated
exponential series

∑n
k=0X

k/k!, has splitting field over Q with Galois group Sn unless 4|n,
when the Galois group is An). Later Hilbert introduced geometric methods into the sub-
ject when he showed that if a finite group could be realized as a Galois group over Q(T )
then it could be realized as a Galois group over Q (in infinitely many ways) by suitable
specializations. The buzzword here is “Hilbert’s irreducibility theorem” [5]. For instance,
Xn −X − T is irreducible over Q(T ) and it turns out that its Galois group over Q(T ) is
Sn, so Hilbert’s work implies that for many rational numbers t the polynomial Xn −X − t
is irreducible over Q and the Galois group is Sn. With more work, the particular choice
t = 1 works: Xn −X − 1 is irreducible over Q and its Galois group is Sn [11].

Why does Schur’s realization of every Sn as a Galois group over Q not settle the inverse
Galois problem over Q, even though every finite group is a subgroup of some symmetric
group? The Galois correspondence reverses inclusions, so subgroups of Gal(L/K) have the
form Gal(L/F ) (same top field, changing base field). It is quotients of Gal(L/K) that have
the form Gal(F/K). Alas, the symmetric groups have very few quotient groups: when
n ≥ 5, the only normal subgroups of Sn are {(1)}, An, and Sn, so the only quotient groups
of Sn are trivial, of size 2, or Sn itself.

Another aspect to keep in mind is that the inverse Galois problem is about Galois ex-
tensions only. Every finite extension of fields E/F has an automorphism group Aut(E/F ),
but this might be smaller in size than [E : F ] and then is not considered to be a Galois
group (E/F is not a Galois extension). For instance, Q( 3

√
2)/Q and Q( 4

√
2)/Q have degree

3 and 4, while Aut(Q( 3
√

2)/Q) is trivial and Aut(Q( 4
√

2)/Q) has order 2. The “inverse
automorphism group problem” is in fact solved affirmatively over Q: for any finite group G
there is a finite extension K/Q – in fact, infinitely many – such that Aut(K/Q) ∼= G. But
from the way these fields are created in the proof, they are not Galois extensions [3], [4].

By number-theoretic methods, Shafarevich proved in the 1950s that any finite solvable
group is a Galois group over Q. (There was an error concerning the prime 2, which was
later repaired.) Most recent work on the inverse Galois problem uses a geometric approach
inspired by Hilbert’s ideas. As we said above, Hilbert showed that the inverse Galois
problem over Q would be settled (by “specialization”) if we can settle the inverse Galois
problem over Q(T ). See [16] (esp. Chapter 1) for a basic introduction to these ideas and
[13] for a general survey.

As an application of Theorem 6.6, the inverse Galois problem for Q lifts to finite exten-
sions.

Theorem 8.2. If every finite group can be realized as a Galois group over Q then every
finite group can be realized as a Galois group over any finite extension of Q.

Proof. Fix a finite group G and finite extension F/Q. Following Example 6.8, if we can
realize G as a Galois group of an extension L/Q where L ∩ F = Q, then LF/F is Galois
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and Gal(LF/F ) ∼= Gal(L/L ∩ F ) = Gal(L/Q) ∼= G. Thus G is realized over F . So the
problem is to find a finite Galois extension L/Q such that G ∼= Gal(L/Q) and L ∩ F = Q.

There are finitely many fields between Q and F (including Q and F ), say n such fields.
By hypothesis all finite groups are Galois groups over Q, so in particular the n-fold product
group Gn is a Galois group over Q. Let Gal(E/Q) ∼= Gn. Inside of Gn are the normal
subgroups

Ni = G×G× · · · × {1} × · · · ×G
for 1 ≤ i ≤ n, where the ith coordinate is trivial and there is no restriction in other
coordinates. So Ni

∼= Gn−1 and Gn/Ni
∼= G. Let Ei be the subfield of E corresponding to

Ni, so Ei/Q is Galois with Gal(Ei/Q) ∼= Gn/Ni
∼= G. Each of the fields E1, . . . , En realizes

G as a Galois group over Q. We are going to prove by counting that at least one of the
fields Ei intersects F in Q. Then the composite FEi realizes G as a Galois group over F .

For i 6= j, Ei∩Ej = Q. Indeed (see the diagram below), Ei∩Ej is the largest subfield of
E that lies in Ei and Ej , so by the Galois correspondence Gal(E/Ei ∩ Ej) is the smallest
subgroup of Gal(E/Q) containing Gal(E/Ei) = Ni and Gal(E/Ej) = Nj . That means
Gal(E/Ei ∩Ej) = 〈Ni, Nj〉. From the definition of Ni and Nj , the subgroup they generate
in Gn is Gn. Since 〈Ni, Nj〉 = Gn, Ei ∩ Ej = Q.

E {1}

Ei Ej Ni Nj

Ei ∩ Ej 〈Ni, Nj〉

Q Gn

Now associate to each Ei the subfield Ei ∩ F of F . There are n fields Ei and n subfields
of F . If the correspondence from the subfields Ei to the intersections Ei ∩ F is a bijection
then Ei ∩ F = Q for some i and we’re done. If the correspondence is not injective then
we have a repeated intersection Ei ∩ F = Ej ∩ F for some i 6= j. But any element in both
intersections is in Ei∩Ej = Q, which means Ei∩F = Ej∩F = Q and again we’re done. �

The only special feature about a finite extension of the rational numbers that was used
in the proof is that there are finitely many fields between it and Q. So if every finite group
arises as a Galois group over some field K and F/K is a finite extension with finitely many
intermediate fields (e.g., F/K is separable) then the proof of Theorem 8.2 shows every finite
group arises as a Galois group over F .

9. What Next?

There are two important aspects of field extensions that are missing by a study of Galois
theory of finite extensions, and we briefly address them:

(1) Galois theory for infinite extensions
(2) transcendental extensions
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A field extension L/K of infinite degree is called Galois when it is algebraic, separable,
and normal. That means each element of L is the root of a separable irreducible in K[X]
and that every irreducible in K[X] with a root in L splits completely over L. An example
of an infinite Galois extension of Q is Q(µp∞) =

⋃
n≥1 Q(µpn), the union of all p-th power

cyclotomic extensions of Q, where p is a fixed prime. Even if an algebraic extension L/K is
infinite, any particular element (or finite set of elements) in L lies in a finite subextension
of K, so knowledge of finite extensions helps us understand infinite algebraic extensions. In
fact, another way of describing an infinite Galois extension is that it is a composite of finite
Galois extensions.

For an infinite Galois extension L/K, its Galois group Gal(L/K) is still defined as the
group of K-automorphisms of L, and we can associate a subgroup of the Galois group
to each intermediate field and an intermediate field to each subgroup of the Galois group
just as in the finite case. However, this correspondence is no longer a bijection! This was
first discovered by Dedekind, who saw in particular examples that different subgroups of
an infinite Galois group could have the same fixed field. So it looks like Galois theory
for infinite extensions breaks down. But it isn’t really so. Krull realized that if you put a
suitable topology on the Galois group then a bijection can be given between all intermediate
fields and the closed subgroups in that topology. (See [1] and [10].) Every subgroup of the
Galois group is associated to the same field as its closure in the Krull topology, and this
explains Dedkind’s examples of two different subgroups with the same associated field: one
subgroup is the closure of the other. The Krull topology on Galois groups not only rescued
Galois theory for infinite extensions, but gave a new impetus to the study of topological
groups. To understand infinite Galois theory, first learn about the p-adic numbers and their
topological and algebraic structure, as they are used in the simplest examples of interesting
infinite Galois groups, such as Gal(Q(µp∞)/Q).

Turning away from Galois extensions, the next most important class of field extensions
are transcendental extensions. These are field extensions in which some element of the top
field is transcendental (that is, not algebraic) over the bottom field. The simplest example
of a transcendental extension of a field F is the field F (T ) of rational functions over F
in an indeterminate T , or more generally the field F (T1, . . . , Tn) of rational functions in n
independent variables over F . This is called a pure transcendental extension. A general
transcendental extension is a mixture of algebraic and transcendental parts, such as F (x, y)
where x is transcendental over F and y2 = x3 − 1.

Since transcendental extensions of F have infinite degree, the notion of field degree is no
longer important. In its place is the concept of transcendence degree, which is a nonlinear
analogue of a basis and measures how transcendental the extension is. The need to under-
stand transcendental field extensions is not driven for its own sake, but for other areas of
mathematics, such as algebraic geometry.
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