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If you now give me an equation that you have chosen at will, and you wish
to know whether or not it is solvable by radicals, I will have nothing to do
other than to indicate to you the way to respond to your question, without
wishing to charge either myself or anyone else with doing it. In a word,
the calculations are impractical. [...] But most of the time in applications
[...] one is led to equations all of whose properties one knows beforehand:
properties by means of which it will always be easy to answer the question
by the rules which we shall expound. E. Galois [2, pp. 227, 229].

1. Introduction

If f(X) ∈ K[X] is a separable irreducible polynomial of degree n and Gf is its Galois
group over K (the Galois group of the splitting field of f(X) over K), then the group Gf

can be embedded into Sn by writing the roots of f(X) as r1, . . . , rn and identifying each
automorphism in the Galois group with the permutation it makes on the ri’s.

Whether thinking about Gf as a subgroup of Sn in this way really helps us compute Gf

depends on how well we can conjure up elements of Gf as permutations of the roots.
When K = Q, there is a fantastic theorem of Dedekind that tells us about the Galois

group as a permutation group if we factor f(X) mod p for different prime numbers p. If

f(X) ≡ π1(X) · · ·πm(X) mod p

where the πi(X)’s are distinct monic irreducibles mod p, with di = deg πi, then Dedekind’s
theorem says there is an element in the Galois group of f(X) over Q that permutes the
roots with cycle type (d1, . . . , dm).1

Example 1.1. Let f(X) = X6 +X4 +X + 3. Here are the factorizations of f(X) modulo
the first few primes:

f(X) ≡ (X + 1)(X2 +X + 1)(X3 +X + 1) mod 2,

f(X) ≡ X(X + 2)(X4 +X3 + 2X2 + 2X + 2) mod 3,

f(X) ≡ (X + 3)2(X4 + 4X3 + 3X2 +X + 2) mod 5,

f(X) ≡ (X2 + 5X + 2)(X4 + 2X3 + 3X2 + 2X + 5) mod 7,

f(X) ≡ (X + 6)(X5 + 5X4 + 4X3 + 9X2 +X + 6) mod 11,

f(X) ≡ (X2 + 8X + 1)(X2 + 9X + 10)(X2 + 9X + 12) mod 13.

From the factorizations modulo 2 and 3, Dedekind’s theorem says Gf , as a subgroup of S6,
contains permutations of cycle type (1, 2, 3) and (1, 1, 4) (namely a 4-cycle). The factoriza-
tion mod 5 does not tell us anything by Dedekind’s theorem, because there is a multiple

1See https://kconrad.math.uconn.edu/blurbs/gradnumthy/galois-Q-factor-mod-p.pdf for a proof.
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factor. From the later primes, we see Gf contains permutations of the roots with cycle
types (2, 4), (1, 5) (a 5-cycle), and (2, 2, 2).

Actually, before using Dedekind’s theorem we have to know f(X) is irreducible over Q.
That irreducibility can be read off from the factorizations above, since a factorization over
Q can be scaled to a (monic) factorization over Z. If f(X) were reducible over Q then it
would have a factor in Z[X] of degree 1, 2, or 3. From p = 7 (or 13) we see there is no
linear factor. From p = 11 there is no quadratic factor. From p = 3 (or 5 or 7 or 11 or 13)
there is no cubic factor.

It is important to remember that Dedekind’s theorem does not correlate information
about the permutations coming from different primes. For instance, permutations in Gf

associated to the factorizations mod 2 and 11 each fix a root, but we can’t be sure if these
are the same root.

Example 1.2. Let f(X) = X6 + 15X2 + 18X − 20. Here are its irreducible factorizations
modulo small primes:

f(X) ≡ X2(X + 1)4 mod 2,

f(X) ≡ (X2 + 1)3 mod 3,

f(X) ≡ X(X + 3)5 mod 5,

f(X) ≡ (X + 5)(X + 6)(X2 + 5X + 5)2 mod 7,

f(X) ≡ (X + 1)(X5 + 10X4 +X3 + 10X2 + 5X + 2) mod 11,

f(X) ≡ (X3 + 2X2 + 4X + 10)(X3 + 11X2 + 11) mod 13.

It is left to the reader to explain from these why f(X) is irreducible over Q. We can’t
determine anything about Gf from the factorizations at the primes p ≤ 7 since there
f(X) mod p has repeated factors. From p = 11 and p = 13, we see Gf contains permutations
of the roots of f(X) with cycle types (1, 5) (a 5-cycle) and (3, 3).

Once we know some cycle types of permutations in Gf , as a subgroup of Sn, we can often
prove Gf has to be Sn or An because Gf is a transitive subgroup of Sn (each root of f(X)
can be carried to every other root by Gf , which is what being transitive means) and there
are several theorems in group theory saying a transitive subgroup of Sn containing certain
cycle types has to be An or Sn.

2. Statement of Theorems and Some Applications

Here are theorems giving conditions under which a transitive subgroup of Sn is An or Sn.

Theorem 2.1. For n ≥ 2, a transitive subgroup of Sn that contains a transposition and a
p-cycle for some prime p > n/2 is Sn.

Theorem 2.2. For n ≥ 3, a transitive subgroup of Sn that contains a 3-cycle and a p-cycle
for some prime p > n/2 is An or Sn.

By Bertrand’s postulate (proved by Chebyshev), for n ≥ 2 there is a prime p such that
n/2 < p ≤ n, so every Sn for n ≥ 2 contain a p-cycle for some prime p > n/2. Since a cycle
of odd length is even, every An for n ≥ 3 contains a p-cycle for some prime p > n/2. So the
hypotheses of Theorem 2.1 and 2.2 are satisfied by Sn for n ≥ 2 and An for n ≥ 3: they are
transitive subgroups of themselves and have a p-cycle for some prime p > n/2.

We will illustrate these theorems with examples in Q[X]. Whether or not the discriminant
of an irreducible polynomial in Q[X] is a square tells us when its Galois group is in An or
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not. So if we want to check whether the Galois group is big (An or Sn), first determine if
the discriminant is a square, which tells us which group (An or Sn) to aim for. Theorems
2.1 and 2.2 are directly applicable to Galois groups over Q using Dedekind’s theorem.

Example 2.3. Let f(X) = X6 + X4 + X + 3, as in Example 1.1. Its discriminant is
−13353595 < 0, which is not a square and we’ll show the Galois group over Q is S6. We
saw in Example 1.1 that the Galois group contains permutations of the roots with cycle
types (1,2,3), (1,1,4), (2,4), (1,5), and (2,2,2). In particular, there is a 5-cycle in the Galois
group. By Theorem 2.1 (with n = 6 and p = 5), Gf = S6 provided we show Gf contains a
transposition. None of the cycle types we found is a transposition, but the third power of
a permutation with cycle type (1, 2, 3) is a transposition (why?). Therefore Gf contains a
transposition.

The cycle types we used, (1, 2, 3) and (1, 5), came from the factorizations of f(X) mod 2
and f(X) mod 11. In principle the “right” way to show Gf contains a transposition is not
by the trick of cubing a permutation of type (1, 2, 3), but by finding a prime p at which
f(X) mod p has distinct irreducible factors of degree 2, 1, 1, 1, and 1. You’ll have to wait
a while for that. Such a factorization occurs for the first time when p = 311:

f(X) ≡ (X + 7)(X + 118)(X + 203)(X + 244)(X2 + 50X + 142) mod 311.

Example 2.4. Let f(X) = X7 −X − 1. The first few factorizations of f(X) mod p are as
follows:

f(X) ≡ X7 +X + 1 mod 2,

f(X) ≡ (X2 +X + 2)(X5 + 2X4 + 2X3 + 2X + 1) mod 3,

f(X) ≡ (X + 3)(X6 + 2X5 + 4X4 + 3X3 +X2 + 2) mod 5.

Since f(X) mod 2 is irreducible, f(X) is irreducible over Q. Its discriminant is −776887 <
0, so we’ll try to show Gf = S7. The mod 2 factorization says Gf contains a 7-cycle on
the roots. The factorization mod 3 gives us a permutation in Gf of cycle type (2, 5), whose
5th power is a transposition, so Gf = S7 by Theorem 2.1. (The first prime p such that
f(X) mod p has a factorization of “transposition type” (1, 1, 1, 1, 1, 2) is 191, so it’s faster
to use the power method on the (2,5)-permutation to show Gf contains a transposition.)

Example 2.5. Let f(X) = X7 − 7X + 10. Here are factorizations mod 2 and 3:

f(X) ≡ X(X + 1)2(X2 +X + 1)2 mod 2,

f(X) ≡ (X2 + 2X + 2)(X5 +X4 + 2X3 + 2X + 2) mod 3.

We can’t say anything from the mod 2 factorization since there’s a multiple factor. The
mod 3 factorization gives us a permutation in Gf of cycle type (2, 5), whose square is a
5-cycle and whose fifth power is a transposition. Since 5 > 7/2, this means Gf = S7 by
Theorem 2.1, right?

Wrong: we forgot to check f(X) is irreducible in Q[X], and in fact it isn’t:

f(X) = (X2 −X + 2)(X5 +X4 −X3 − 3X2 −X + 5).

So our arguments about Gf were bogus. You must always check first that your polynomial
is irreducible.

Example 2.6. Let f(X) = X6 + 15X2 + 18X − 20. From Example 1.2, we know f(X) is
irreducible over Q and its factorization mod 11 gives us a 5-cycle in the Galois group over
Q. Since disc f = 2893401000000 = 17010002, Gf ⊂ A6. To prove Gf = A6 using Theorem
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2.2, we just need to find a 3-cycle. The factorization mod 13 in Example 1.2 gives us an
element of order 3, but not a 3-cycle. We get a 3-cycle in Gf from factoring f(X) mod 17:

f(X) ≡ (X + 2)(X + 9)(X + 10)(X3 + 13X2 + 7X + 15) mod 17.

Example 2.7. Let f(X) = X7 − 56X + 48. It’s irreducible mod 5, so f(X) is irreducible
over Q and Gf contains a 7-cycle on the roots. The discriminant is 2655313922, so Gf ⊂ A7.
Theorem 2.2 tells us Gf = A7 once we know there is a 3-cycle in Gf . The factorization

f(X) ≡ (X2 + 9X + 5)(X2 + 17X + 17)(X3 + 20X2 + 18X + 3) mod 23

gives us a permutation in the Galois group of cycle type (2, 2, 3), whose square is a 3-cycle.

3. Proofs of Theorems

Proof. (of Theorem 2.1) This argument is adapted from [1]. Let G be a transitive subgroup
of Sn containing a transposition and a p-cycle for some prime p > n/2. For a and b in
{1, 2 . . . , n}, write a ∼ b if (ab) ∈ G (that is, either a = b so (ab) is the identity permutation,
or a 6= b and there is a 2-cycle in G exchanging a and b). Let’s check ∼ is an equivalence
relation on {1, 2, . . . , n}.

Reflexive: Clearly a ∼ a for all a.
Symmetric: This is clear.
Transitive: Suppose a ∼ b and b ∼ c. We want to show a ∼ c. We may assume a, b, and

c are distinct (otherwise the task is trivial). Then (ab) and (bc) are transpositions in G, so
(ab)(bc)(ab) = (ac) is in G.

Our goal is to show there is only one equivalence class: if all elements of {1, 2, . . . , n} are
equivalent to each other than every transposition (ab) lies in G, so G = Sn.

The group G preserves the equivalence relation: if a ∼ b then ga ∼ gb for all g in G.
(For g ∈ G and 1 ≤ i ≤ n, we write gi for g(i).) This is clear if a = b. If a 6= b then (ab)
is a transposition in G and its conjugate g(ab)g−1 is also in G. It’s a general fact that the
conjugate of a cyclic permutation is a cycle of the same length. More precisely, for every
cyclic permutation (a1 a2 . . . ak) in Sn and π in Sn,

π(a1 a2 . . . ak)π−1 = (πa1 πa2 . . . πak).

Therefore g(ab)g−1 = (ga gb), so the transposition (ga gb) is also in G.
Break up G into equivalence relations for ∼. Let [a] be the equivalence class of a. The

group G acts on equivalence classes by g[a] = [ga]; we already showed this is well-defined.
Since G acts transitively on {1, 2, . . . , n}, it acts transitively on the equivalence classes: for
all a and b, there is some g ∈ G such that ga = b, so g[a] = [b]. Moreover, the action of g
provides a function [a] → [b] given by x 7→ gx (if x ∼ a then gx ∼ ga = b) and the action
of g−1 provides a function [b] → [a] given by x 7→ g−1x that is inverse to the action of g
sending [a] to [b]. Therefore all equivalence classes have the same size.

Let M be the common size of the equivalence classes and let N be the number of equiv-
alence classes, so n = MN . Since G contains a transposition and the two numbers in a
transposition in G are equivalent, M ≥ 2. We want to show N = 1. By hypothesis there is
a p-cycle in G. Call it g. The group 〈g〉 has order p, so the orbits of 〈g〉 on the equivalence
classes each have size 1 or p. (When a finite group acts on a set, all orbits have order
dividing the order of the group, by the orbit–stabilizer formula.) If some orbit has size p,
say [a], [ga], . . . , [gp−1a], then N ≥ p so

n = MN ≥Mp ≥ 2p > 2
n

2
= n,
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a contradiction. Therefore all 〈g〉-orbits have size 1, so for every a ∈ {1, 2, . . . , n} we have
[ga] = [a], which means a ∼ ga for all a. Since g is a p-cycle, by relabeling (which amounts
to replacing G with a conjugate subgroup in Sn) we can assume g = (12 . . . p). That means
2 = g(1), 3 = g(2), . . . , p = g(p− 1), so because a ∼ ga for all a we have

1 ∼ 2 ∼ 3 ∼ · · · ∼ p,
so the equivalence class [1] has size at least p. Therefore M ≥ p so

n = MN ≥ pN >
n

2
N,

hence N < 2, so N = 1. �

Proof. (of Theorem 2.2) Let G be a transitive subgroup of Sn containing a 3-cycle and a
p-cycle for some prime p > n/2. Since a transitive subgroup of S3 has to be A3 or S3, we
can assume n ≥ 4. Then p > n/2 ≥ 2, so p is odd. A cycle with an odd number of terms
has even sign (think about 3-cycles, or the more simple 1-cycles!), so p-cycles are even. We
will show G contains a set of 3-cycles that generates An, so G is An or Sn.

For a and b in {1, 2, . . . , n}, set a ∼ b if a = b or if there is a 3-cycle (abc) in G. We will
check this is an equivalence relation on {1, 2, . . . , n}.

Reflexive: Clear.
Symmetric: If a 6= b and a ∼ b then some 3-cycle (abc) is in G, so its inverse (abc)−1 =

(bac) is in G, so b ∼ a.
Transitive: This will be trickier than the transitivity proof in Theorem 2.1 because we

will have 5 parameters to keep track of and need to worry about the possibility that some
of them may be equal.

Suppose a ∼ b and b ∼ c. We want to show a ∼ c. It is easy if two of these three numbers
are equal, so we may assume a, b, and c are distinct. Then (abd) and (bce) are in G for some
d and e with d 6= a or b and e 6= b or c. It might happen that d = e or d = c or e = a. To
show G contains a 3-cycle (ac∗), we need to take separate cases to deal with these possibile
equalities.

Case 1: a, b, c, d, e are distinct. The conjugate

(bce)(abd)(bce)−1 = (bce)(abd)(bec) = (acd)

is in G, so a ∼ c.
Case 2: d = e, so a, b, c, d are distinct. Here (abd) and (bcd) are in G, so G contains

(bcd)(abd)(bcd)−1 = (bcd)(abd)(bdc) = (acb).

Case 3: d = c and e 6= a, so a, b, c, e are distinct. Here (abc) and (bce) are in G, so G
contains

(bce)(abc)(bce)−1 = (bce)(abc)(bec) = (ace).

Case 4: d 6= c and e = a, so a, b, c, d are distinct. Here (abd) and (bca) are in G, so G
contains

(abd)(bca)−1 = (abd)(bac) = (acd).

Case 5: d = c and e = a, so we only have three numbers a, b, and c with (abc) and
(bca) in G. Of course (bca) = (abc), so all we have to work with here is (abc). Invert it: G
contains

(abc)−1 = (acb).

Thus a ∼ c, so ∼ is transitive.
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The equivalence relation ∼ is preserved by G: if g ∈ G and a ∼ b then ga ∼ gb. This is
obvious if a = b. If a 6= b then some 3-cycle (abc) is in G, so the conjugate

g(abc)g−1 = (ga gb gc)

is in G. Therefore ga ∼ gb.
For a ∈ {1, 2, . . . , n}, write [a] for the equivalence class of a. The group G acts on

equivalence classes by g[a] = [ga] and all equivalence classes have the same size. Let M be
the common size of the equivalence classes and N be the number of equivalence classes, so
n = MN . Since G contains a 3-cycle and the numbers in a 3-cycle in G are equivalent,
M ≥ 3.

Let g ∈ G be a p-cycle, so the orbits of 〈g〉 on the equivalence classes have size 1 or p.
We will show all the sizes are 1. If there is an orbit of size p then N ≥ p, so

n = MN ≥Mp ≥ 3p > 3
n

2
> n,

a contradiction. Thus 〈g〉 fixes all the equivalence classes, so a ∼ ga for all a ∈ {1, 2, . . . , n}.
Therefore, as in the proof of Theorem 2.1, M ≥ p so

n = MN ≥ pN >
n

2
N,

so N < 2, which means N = 1. That all a and b in {1, 2, . . . , n} are equivalent for the
relation ∼ means for all distinct a and b in {1, 2, . . . , n}, there is some 3-cycle (abc) in G.

We have not (yet) shown all 3-cycles are in G, but only that for all distinct a and b in
{1, 2, . . . , n} there is a 3-cycle (abc) ∈ G for some c 6= a or b. We will use this to show G
contains all 3-cycles of the form (12j), meaning

(1) (123), (124), . . . , (12n).

It turns out that the set of 3-cycles (12j) in (1) generates An: that’s clear when n = 3, so
we can take n ≥ 4. In that case,

• every 3-cycle (abc) not containing 1 is (1ab)(1bc),
• every 3-cycle of the form (1ij) that doesn’t contain 2 is (12j)(12j)(12i)(12j),
• every 3-cycle (1i2) is (12i)−1.

So if G contains the 3-cycles in (1) then it contains all 3-cycles, and it’s a standard theorem
in group theory that the set of all 3-cycles in Sn generates An. Thus G is An or Sn.

To show G contains the 3-cycles in (1), we can suppose n ≥ 4 since when n = 3, the
hypothesis that G contains a 3-cycle means G contains (123): the only other 3-cycle (132)
and that is (123)−1.

Since 1 ∼ 2 there is some 3-cycle (12c) in G where c is not 1 or 2. For every d 6= c, 1,
or 2 (there are such d since n ≥ 4), we want to show (12d) ∈ G. Since c ∼ d, some 3-cycle
(cde) is in G, where e is not c or d. The numbers 1, 2, c, and d are distinct by hypothesis,
as are c, d, and e, but e might equal 1 or 2. To show (12d) is in G we take cases.

Case 1: e 6= 1 or 2, so 1, 2, c, d, e are distinct. The conjugate

(cde)(12c)(cde)−1 = (cde)(12c)(ced) = (12d)

is in G.
Case 2: e = 1. Here (12c) and (cd1) are in G, so G contains

(cd1)(12c) = (12d).
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Case 3: e = 2. Here (12c) and (cd2) are in G, so G contains

(12c)(cd2)−1 = (12c)(c2d) = (12d). �

Here are some other theorems in group theory in the spirit of Theorem 2.1.

Theorem 3.1. For n ≥ 2, a transitive subgroup of Sn that contains a transposition and an
(n− 1)-cycle is Sn.

Proof. Let G be a transitive subgroup of Sn containing an (n−1)-cycle. By suitable labeling,
G contains the particular (n− 1)-cycle σ = (12 . . . n− 1). This cycle fixes n and moves all
the other numbers around. We can’t say for sure which transpositions are in G, only that
some transposition is in it. Say (ab) is a transposition in G. For each g ∈ G, G contains
the conjugate transposition g(ab)g−1 = (ga gb). Since G is a transitive subgroup, there is a
g ∈ G such that gb = n. Necessarily ga 6= gb, so G contains a transposition τ = (in) where
i = ga ∈ {1, 2, . . . , n− 1}.

For j = 1, 2, . . . , n, G contains the transposition

σjτσ−j = (σj(i) σj(n)) = (i+ j n).

Therefore G contains (1n), (2n), . . . , (n − 1 n). For distinct i and j in {1, . . . , n − 1}, G
contains

(in)(jn)(in) = (ij).

Therefore G contains all transpositions, so G = Sn. �

It’s left to the reader to return to Examples 2.3 and 2.4 and solve them using Theorem
3.1 in place of Theorem 2.1. For large n, Theorem 2.1 is more flexible than Theorem 3.1
since it only requires you find a p-cycle with some prime p > n/2 rather than specifically
an (n− 1)-cycle.

Theorem 3.2. For n ≥ 2, a transitive subgroup of Sn that contains a transposition and has
a generating set of cycles of prime order is Sn.

Proof. See [3, pp. 139–140]. �

Theorem 3.2 appears to be less simple to apply to specific examples than the other
theorems, because it requires knowing a generating set of cycles of prime order in the
Galois group. It’s one thing to know cycle types of a few elements of Gf , by Dedekind’s
theorem, but how could we know cycle types of generators of Gf before we know Gf? Using
a lot more mathematics, there really are situations where Theorem 3.2 can be applied to
compute Galois groups over Q. For instance, the Galois group of Xn−X−1 over Q can be
shown to equal Sn by using the special case of Theorem 3.2 for cycles of prime order 2: a
transitive subgroup of Sn generated by transpositions must be Sn. An account of this proof
is in https://kconrad.math.uconn.edu/blurbs/gradnumthy/galoisselmerpoly.pdf.
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