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1. Introduction

We want to describe Galois groups of separable irreducible cubic and quartic polynomials
in characteristic 2. For instance, if F is a field of characteristic 2 and u is transcendental
over F , the polynomials X3 + uX + u and X4 + uX + u are irreducible in F (u)[X] by
Eisenstein’s criterion at u. What are their Galois groups over F (u)?

For perspective, we begin by recalling without proof two classical results outside of char-
acteristic 2.1

Theorem 1.1. Let K not have characteristic 2 and f(X) be a separable2 irreducible cubic
in K[X]. If disc f = 2 in K then the Galois group of f(X) over K is A3. If disc f 6= 2 in
K then the Galois group of f(X) over K is S3.

Theorem 1.2. Let K not have characteristic 2 and f(X) = X4 + aX3 + bX2 + cX + d be
irreducible3 in K[X]. The Galois group Gf of f(X) over K can be described in terms of
whether or not its discriminant is a square in K and whether or not its cubic resolvent

R3(X) = X3 − bX2 + (ac− 4d)X − (a2d+ c2 − 4bd)

factors in K[X], according to Table 1.

disc f R3(X) in K[X] Gf

6= 2 in K irreducible S4
= 2 in K irreducible A4

6= 2 in K reducible D4 or Z/4Z
= 2 in K reducible V

Table 1.

The cubic resolvent R3(X) in Theorem 1.2 has roots r1r2 + r3r4, r1r3 + r2r4, and r1r4 +
r2r3, and discR3 = disc f , so when f(X) is separable so is R3(X). (There is another cubic
resolvent for f(X), having roots (r1 + r2)(r3 + r4), (r1 + r3)(r2 + r4), and (r1 + r4)(r2 + r3),
whose discriminant is also disc f . We do not use this but it can be found in many treatments
of Galois groups of quartics, e.g., [3, p. 614], [4, p. 336] and [6, p. 103].)

Theorem 1.2 does not distinguish between Gf
∼= D4 and Gf

∼= Z/4Z. That can be done
with the following theorem of Kappe and Warren [5].

1For proofs, see Theorem 4.9 in https://kconrad.math.uconn.edu/blurbs/galoistheory/galoisaspermgp.

pdf and Theorem 3.6 in https://kconrad.math.uconn.edu/blurbs/galoistheory/cubicquartic.pdf.
2This hypothesis is only necessary if K has characteristic 3. Outside of characteristic 3, an irreducible cubic
is automatically separable.
3Outside of characteristic 2, an irreducible quartic is automatically separable.
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Theorem 1.3. Let K not have characteristic 2 and f(X) be a separable irreducible quartic
in K[X] whose discriminant is not a square in K and whose cubic resolvent R3(X) has a
root r′ in K. Then Gf = Z/4Z if X2 + aX + b− r′ and X2 − r′X + d split completely over
K(
√

disc f). Otherwise Gf = D4.

These theorems are all false when K has characteristic 2. How do the proofs break down?
The proof of each theorem uses the discriminant to detect when a Galois group contains
only even permutations of the roots: this happens if and only if the discriminant is a square.
The proof of that relies on the condition −1 6= 1, which is not true in characteristic 2.

There are two roles for the discriminant outside of characteristic 2:

(1) its nonvanishing tells us when a polynomial is separable,
(2) whether or not it is a square in K× is related to a Galois group over K being in An.

In characteristic 2, (1) is still true while (2) is not. We will use a replacement for the
discriminant of a cubic and quartic polynomial to get a version of (2) (that is, a way of
deciding when a Galois group is in An) that works in characteristic 2, or rather that works
in all characteristics by a uniform method.

2. Galois Groups of Cubics in All Characteristics

A separable irreducible cubic polynomial in K[X] has Galois group S3 or A3, since these
are the only transitive subgroups of S3. Outside characteristic 2, we can tell these Galois
groups apart with the discriminant. Let’s review how that works.

The discriminant of a cubic is a construction which, outside of characteristic 2, is A3-
invariant but not S3-invariant. If we start with x1 − x2 and apply A3 to it, we get x2 − x3
and x1 − x3. The product of these gives us

(2.1) (x1 − x2)(x1 − x3)(x2 − x3),
which is A3-invariant. (We could have added the three differences also to get an A3-invariant
expression, but the sum is 0, which is also S3-invariant and not useful!) Each transposition
in S3 turns (2.1) into

(2.2) − (x1 − x2)(x1 − x3)(x2 − x3).
Outside of characteristic 2, when −1 6= 1, (2.1) is A3-invariant but not S3-invariant while
the square of (2.1) is S3-invariant. The square is the discriminant, and this accounts for the
relevance of the discriminant being a square or not in K as the test which distinguishes A3

and S3 as the Galois group of a cubic outside of characteristic 2.
In characteristic 2, (2.1) is S3-invariant. In fact, in characteristic 2 we can write (2.1) as

(x1 + x2)(x1 + x3)(x2 + x3), which is visibly symmetric in the xi’s. Substituting the roots
of a cubic in characteristic 2 into this product, it will be a polynomial in the coefficients
of the cubic and therefore when we square it we see the discriminant of every cubic in
characteristic 2 is a square.

To find a uniform test for the Galois group of a cubic to be A3 in all characteristics, we
want an A3-invariant polynomial in x1, x2, x3 which is not S3-invariant in all characteristics.
We begin with a different expression than x1 − x2. Starting with x21x2 and acting A3 on it,
we get x22x3 and x23x1. Let’s add these together:

(2.3) x21x2 + x22x3 + x23x1.

This is A3-invariant, but under every transposition in S3 it changes into

(2.4) x22x1 + x21x3 + x23x2,
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which is a different polynomial in the xi’s. (If we had multiplied instead of adding, we’d get
x31x

3
2x

3
3, which is S3-invariant and thus useless for distinguishing A3 and S3.) The sums (2.3)

and (2.4) are naturally paired together and will be roots of a common quadratic polynomial
in K[X] when we specialize the xi’s to roots ri of a cubic in K[X].

Theorem 2.1. Let K be a field and f(X) = X3 + aX2 + bX + c ∈ K[X] have roots r1, r2,
and r3 in a splitting field. The numbers

(2.5) r21r2 + r22r3 + r23r1 and r22r1 + r21r3 + r23r2

are roots of
X2 + (ab− 3c)X + (a3c+ b3 + 9c2 − 6abc),

which has the same discriminant as f(X).

Proof. Comparing coefficients on both sides of f(X) = (X − r1)(X − r2)(X − r3), we have
the relations

r1 + r2 + r3 = −a, r1r2 + r1r3 + r2r3 = b, r1r2r3 = −c.
Every symmetric polynomial in the ri’s is a polynomial in a, b, and c.

The quadratic polynomial

(2.6) R2(X) := (X − (r21r2 + r22r3 + r23r1))(X − (r22r1 + r21r3 + r23r2))

has linear coefficient

(2.7) − (r21r2 + r22r3 + r23r1 + r22r1 + r21r3 + r23r2)

and constant term

(2.8) r41r2r3 + r1r
4
2r3 + r1r2r

4
3 + r31r

3
2 + r32r

3
3 + r31r

3
3 + 3r21r

2
2r

2
3,

which are both S3-invariant and thus are polynomials in a, b, and c. We want to find those
polynomials.

In (2.7), drop the overall sign and collect monomials involving the same ri’s together:

(2.9) r1r2(r1 + r2) + r2r3(r2 + r3) + r1r3(r1 + r3).

Since r1 + r2 + r3 = −a, (2.9) is

r1r2(−a− r3) + r2r3(−a− r1) + r1r3(−a− r2) = −a(r1r2 + r1r3 + r2r3)− 3r1r2r3

= −ab+ 3c.

Now put the overall sign back and we get the desired formula for the X-coefficient of R2(X).
Rewrite (2.8) as

r1r2r3(r
3
1 + r32 + r33) + (r31r

3
2 + r32r

3
3 + r31r

3
3) + 3(r1r2r3)

2.

This simplifies to

(2.10) − c(r31 + r32 + r33) + (r31r
3
2 + r32r

3
3 + r31r

3
3) + 3c2.

Since

r31 + r32 + r33 = (r1 + r2 + r3)
3 + 3r1r2r3 − 3(r1 + r2 + r3)(r1r2 + r1r3 + r2r3)

= −a3 − 3c+ 3ab

and similarly
r31r

3
2 + r32r

3
3 + r31r

3
3 = b3 + 3c2 − 3abc,

feeding these into (2.10) gives us the constant term for R2(X).
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The discriminant of R2(X) is the square of the difference of its roots. The difference is

(r21r2 + r22r3 + r23r1)− (r22r1 + r21r3 + r23r2).

You can check that this equals (r1 − r2)(r1 − r3)(r2 − r3), so its square is disc f . �

Definition 2.2. When f(X) ∈ K[X] is a cubic polynomial with roots r1, r2, r3, its quadratic
resolvent is the polynomial R2(X) in (2.6).

Theorem 2.1 gives us a formula for for the quadratic resolvent of a cubic polynomial in
terms of its coefficients when the cubic is monic.

Since discR2 = disc f , outside of characteristic 2

disc f = 2 in K ⇐⇒ R2(X) splits completely over K,

disc f 6= 2 in K ⇐⇒ R2(X) is irreducible K.

In characteristic 2, these equivalences are no longer valid and it is the right side, rather
than the left side, which provides the extension of Theorem 1.1 into characteristic 2.

Theorem 2.3. Let K be a field. A separable irreducible cubic f(X) in K[X] has Galois
group over K equal to A3 if its quadratic resolvent R2(X) is reducible over K and equal to
S3 if R2(X) is irreducible over K.

Proof. Let f(X) have roots r1, r2, r3. Since discR2 = disc f 6= 0, R2(X) has distinct roots.
By construction, the two roots of R2(X) are fixed by A3, so if the Galois group of f(X)

over K is A3 then the roots of R2(X) lie in K.
Conversely, if R2(X) has its roots in K, all elements of the Galois group of f(X) over

K are even permutations of the ri’s: an odd permutation of the ri’s that belongs to the
Galois group would send one root of R2(X) to the other root but these roots are in K and
are distinct, so the Galois group must fix both roots. �

Example 2.4. In Table 2 are some irreducible cubics in Q[X] and their Galois groups over
Q. The Galois groups can be found by Theorem 2.3 or more traditionally by Theorem 1.1.

f(X) disc f R2(X) Gf

X3 −X − 1 −23 X2 + 3X + 8 S3

X3 − 3X − 1 92 (X − 3)(X + 6) A3

X3 − 4X − 1 229 X2 + 3X − 55 S3

X3 − 7X + 7 72 (X − 14)(X + 21) A3

Table 2. Cubic Galois groups over Q

Let’s look at examples of Theorem 2.3 in characteristic 2, where Theorem 1.1 doesn’t
apply. By a linear change of variables, each cubic in characteristic 2 (or, in fact, in all
characteristics but 3) can have its quadratic term removed. In that case

(2.11) f(X) = X3 + bX + c =⇒ R2(X) = X2 + cX + (b3 + c2).

If R2(X) is reducible in K[X] then Gf = A3; otherwise Gf = S3. (This description of Gf

for cubics in characteristic 2 is in [2, p. 53].)
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Example 2.5. We will use K = F (u), where F is a field of characteristic 2 and u is
transcendental over F .

The quadratic resolvent of X3 + uX + u is X2 + uX + u3 + u2, which has no root in
F (u): a rational function root would be a factor of u2, but for degree reasons none work.
Therefore the Galois group of X3 + uX + u over F (u) is S3.

The polynomial X3 + (u2 + u+ 1)X + u2 + u+ 1 is irreducible over F (u) by Eisenstein’s
criterion at u2 + u + 1 or at one of its linear factors (if u2 + u + 1 has roots in F ). Its
quadratic resolvent is reducible in F (u)[X]: see Table 3. If r is one root of this cubic then
its full set of roots is

r, r2 + ur, r2 + (u+ 1)r.

f(X) R2(X) Gf

X3 + uX + u X2 + uX + u3 + u2 S3

X3 + (u2 + u+ 1)X + u2 + u+ 1 (X + (u2 + u+ 1)u)(X + (u2 + u+ 1)(u+ 1)) A3

Table 3. Cubic Galois groups over F (u)

Outside characteristic 2, the splitting field over K of a separable cubic f(X) in K[X] is
K(r,

√
disc f), where r is a root of f(X). Here is an analogous result in all characteristics.

The key idea is to replace
√

disc f with a root of the quadratic resolvent of f(X).

Theorem 2.6. Let f(X) ∈ K[X] be a separable cubic. The splitting field of f(X) over K
is K(r, δ), where r is a root of f(X) and δ is a root of the quadratic resolvent of f(X).

Proof. Let f(X) have roots r, r′, r′′. Since δ is a polynomial in r, r′, and r′′, given by one of
the expressions in (2.5), K(r, r′, r′′) ⊃ K(r, δ), so

[K(r, r′, r′′) : K] ≥ [K(r, δ) : K].

Taking cases based on how f(X) and R2(X) factor over K, we will show these degrees are
equal all the time, so the containment of fields implies their equality.
f(X) irreducible and R2(X) irreducible: Here [K(r) : K] = 3 and [K(δ) : K] = 2, so

[K(r, δ) : K] = 6. Since [K(r, r′, r′′) : K] ≤ 6, we get equality.
f(X) irreducible and R2(X) reducible: Here [K(r) : K] = 3 and δ ∈ K, so K(r, δ) =

K(r) has degree 3 over K. By Theorem 2.3, [K(r, r′, r′′) : K] = 3.
f(X) reducible and R2(X) irreducible: A root of f(X) is in K and [K(δ) : K] = 2. Since

the roots of R2(X) are not in K, the roots of f(X) are not all in K. Therefore f(X) has a
linear factor and a quadratic irreducible factor in K[X], so [K(r, r′, r′′) : K] = 2. Since

K(δ) ⊂ K(r, δ) ⊂ K(r, r′, r′′)

and the first and last fields have degree 2 over K, K(r, δ) = K(r, r′, r′′).
f(X) reducible and R2(X) reducible: We will show f(X) has all its roots in K, in which

case K(r, r′, r′′) = K and K(r, δ) = K. At least one root of f(X) is in K by hypothesis. If
f(X) did not have all of its roots in K then it would have a linear and quadratic irreducible
factor in K[X], so its splitting field over K would have degree 2 and its Galois group over
K would include a transposition on two roots of f(X). If we apply that automorphism to
the roots of R2(X), they are exchanged since each transposition in S3 sends (2.3) to (2.4)
and conversely. However, the roots of R2(X) are in K by hypothesis and are distinct, so
they can’t be exchanged by the Galois group of f(X) over K. �
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Remark 2.7. Outside of characteristic 2, the quadratic formula says the splitting field of
R2(X) over K is K(

√
discR2) = K(

√
disc f). Therefore Theorem 2.6 says the splitting

field of f(X) over K is K(r,
√

disc f), where r is a root of f(X), which recovers the known
formula for the splitting field of a cubic outside characteristic 2.

Example 2.8. When F has characteristic 2, the splitting field of X3 + uX + u over F (u)
is F (u, r, δ), where r3 + ur + u = 0 and δ2 + uδ + u3 + u2 = 0. By Example 2.5, the field
degrees are as in the following diagram.

F (u, r, δ)

3

F (u, r)

3

F (u, δ)

2

F (u)

The extension F (u, r, δ)/F (u, δ) is Galois with Galois group A3. The fields in this A3-
extension can be put into a simpler form. Dividing through the equation δ2+uδ+u3+u2 = 0
by u2, we get (δ/u)2 + δ/u + u + 1 = 0, so u = (δ/u)2 + δ/u + 1. Therefore F (u, δ) =
F (u, δ/u) = F (δ/u) and F (u, r, δ) = F (δ/u, r). Let v = δ/u, so u = v2+v+1, F (v, r)/F (v)
is an A3-extension, and

0 = r3 + ur + u = r3 + (v2 + v + 1)r + v2 + v + 1.

This is a natural way to discover the A3-cubic from the S3-cubic in Table 3.
Since F (u, δ) = F (v) is a rational function field over F , we get an A3-extension of F (u)

if we replace v by u: the polynomial f(X) = X3 + (u2 + u+ 1)X + u2 + u+ 1 is irreducible
over F (u) and its Galois group over F (u) is A3. The quadratic resolvent of f(X) is

R2(X) = (X + (u2 + u+ 1)u)(X + (u2 + u+ 1)(u+ 1)),

which is reducible, and if r is one root of f(X) then the full set of roots of f(X) is

r, r2 + ur, r2 + (u+ 1)r.

3. Galois Groups of Quartics in All Characteristics

To compute the Galois group of a separable irreducible quartic in all characteristics
(including characteristic 2), we build on ideas developed in the previous section, only now
we’re dealing with 4 roots instead of 3 so we’re going to meet some longer expressions.

We first recall the list of transitive subgroups of S4. They are S4, A4, 3 conjugate
subgroups isomorphic to D4:

(3.1) 〈(1234), (13)〉, 〈(1324), (12)〉, 〈(1243), (14)〉,
3 conjugate subgroups isomorphic to Z/4Z:

(3.2) 〈(1234)〉, 〈(1243)〉, 〈(1324)〉,
and one subgroup of S4 isomorphic to V : {(1), (12)(34), (13)(24), (14)(23)}. (There are
other subgroups of S4 that are isomorphic to V , but they are not transitive and so would
not occur as a Galois group.)

We will refer to D4 and Z/4Z as subgroups of S4, but they are only determined up to
conjugation.
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Some properties of the transitive subgroups of S4 are:

• those with order divisible by 3 are A4 and S4,
• those inside A4 are V and A4,
• those containing a 3-cycle are A4 and S4,
• those containing a 4-cycle are Z/4Z, D4, and S4.

To determine when a Galois group is in A4 or not, we are going to use a quadratic
resolvent. It won’t be the quadratic resolvent that was used in the cubic case, since our
polynomials now have degree 4 and 4 roots. We seek a polynomial in 4 variables x1, x2, x3, x4
which is A4-invariant but not S4-invariant in all characteristics.

Taking our cue from the construction of the quadratic resolvent of a cubic polynomial
in Section 2, we start with the asymmetric monomial x31x

2
2x3 and sum its A4-orbit as an

analogue of (2.3):

α(x1, x2, x3, x4) = x31x
2
2x3 + x32x

2
3x1 + x32x

2
4x3 + x33x

2
2x4 + x31x

2
3x4 + x33x

2
1x2 + x34x

2
1x3

+x34x
2
2x1 + x31x

2
4x2 + x32x

2
1x4 + x33x

2
4x1 + x34x

2
3x2.

This polynomial is A4-invariant and each transposition of two xi’s turns it into

β(x1, x2, x3, x4) = x32x
2
1x3 + x31x

2
3x2 + x31x

2
4x3 + x33x

2
1x4 + x32x

2
3x4 + x33x

2
2x1 + x34x

2
2x3

+x34x
2
1x2 + x32x

2
4x1 + x31x

2
2x4 + x33x

2
4x2 + x34x

2
3x1.

All transpositions swap α(x1, x2, x3, x4) and β(x1, x2, x3, x4), so odd permutations in S4
exchange α(x1, x2, x3, x4) and β(x1, x2, x3, x4) while even permutations fix α(x1, x2, x3, x4)
and β(x1, x2, x3, x4).

Theorem 3.1. Let K be a field and f(X) = X4 + aX3 + bX2 + cX + d ∈ K[X] have roots
r1, r2, r3, r4 in a splitting field. The quadratic polynomial

(3.3) R2(X) = (X − α(r1, r2, r3, r4))(X − β(r1, r2, r3, r4))

equals X2 +AX +B, where

A = 3a2d− abc+ 3c2 − 4bd

and

B = 9a4d2 + a3c3 − 6a3bcd+ a2b3d+ 6a2c2d− 42a2bd2 + 22ab2cd− 6abc3 + 48acd2

−4b4d+ b3c2 + 36b2d2 − 42bc2d+ 9c4 − 64d3.

Moreover, discR2 = disc f .

Proof. We abbreviate α(r1, r2, r3, r4) as α and β(r1, r2, r3, r4) as β. The polynomial

(X − α)(X − β) = X2 − (α+ β)X + αβ

has coefficients which are S4-invariant, so −(α+β) and αβ are polynomials in the elementary
symmetric functions s1, s2, s3, and s4 of the ri’s. These polynomials can be determined
explicitly using an algorithmic proof of the symmetric function theorem. In the case of
−(α + β), it equals 3s21s4 − s1s2s3 + 3s23 − 4s2s4. Setting s1 = −a, s2 = b, s3 = −c, and
s4 = d, we obtain the formula for A in the theorem. The expression for αβ as a polynomial
in the si’s is quite long. When it is worked out and we set s1 = −a, s2 = b, s3 = −c, and
s4 = d, we get the long formula for B in the theorem.
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The discriminant of R2(X) is (α − β)2. A tedious computation by hand or an easy
computation on the computer shows

α(x1, x2, x3, x4)− β(x1, x2, x3, x4) =
∏
i<j

(xj − xi),

so when we set xi = ri and square both sides, we get discR2 = disc f . �

Definition 3.2. When f(X) ∈ K[X] is a quartic polynomial with roots r1, r2, r3, r4, its
quadratic resolvent is the polynomial R2(X) in (3.3).

Theorem 3.1 gives us a formula for R2(X) in terms of the coefficients of f(X) if f(X) is
monic. If f(X) is separable, so is R2(X) since discR2 = disc f 6= 0.

When f(X) = X4 + bX2 + cX + d has no cubic term, the long formula for R2(X)
“simplifies”:

R2(X) = X2 + 3c2X − 4b4d+ b3c2 + 36b2d2 − 42bc2d+ 9c4 − 64d3.

In characteristic 2, there is a more substantial simplification:

(3.4) R2(X) = X2 + c2X + (b3 + c2)c2.

Lemma 3.3. For a field K, the Galois group over K of a separable irreducible quartic in
K[X] lies inside of A4 if and only if its quadratic resolvent splits completely over K.

Proof. This is the same as the proof of Theorem 2.3, except we replace “Galois group is
A3” with “Galois group is in A4.” �

Along with this quadratic resolvent R2(X), f(X) also has a cubic resolvent R3(X), which
is the cubic with roots r1r2 + r3r4, r1r3 + r2r4, and r1r4 + r2r3. It appears in Theorem 1.2,
but for convenience we recall its formula here, in terms of the coefficients of f(X) when
f(X) is monic:

R3(X) = X3 − bX2 + (ac− 4d)X − (a2d+ c2 − 4bd).

This simplifies in characteristic 2 to

R3(X) = X3 + bX2 + acX + a2d+ c2,

and if a = 0 it simplifies even further to

(3.5) R3(X) = X3 + bX2 + c2.

The quartic f(X) and its cubic resolvent R3(X) each have a quadratic resolvent, and we
are going to need both quadratic resolvents in our proofs describing Gf . This could lead to
a notational conflict: we write R2(X) for the quadratic resolvent of f(X) in this section,
but is R2(X) also the quadratic resolvent of R3(X)? Not quite, but it will be close enough.
From the way the quadratic resolvent of a cubic is constructed in terms of its roots, one
root of the quadratic resolvent of R3(X) is

(r1r2 + r3r4)
2(r1r3 + r2r4) + (r1r3 + r2r4)

2(r1r4 + r2r3) + (r1r4 + r2r3)
2(r1r2 + r3r4).

Expanding this and assuming without loss of generality that f(X) is monic, this root equals

α(r1, r2, r3, r4) + 2r1r2r3r4(r1r3 + r2r4 + r1r4 + r2r3 + r1r2 + r3r4) = α(r1, r2, r3, r4) + 2bd.

The other root is β(r1, r2, r3, r4) + 2bd, so R3(X) has quadratic resolvent R2(X − 2bd).
This is generally not R2(X), although they are equal when K has characteristic 2. The
polynomials R2(X) and R2(X − 2bd) have the same splitting field over K, and it
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is the splitting field of quadratic resolvents that really matter, rather than the quadratic
resolvents themselves. (For instance, we will see this in the proof of Corollary 3.5.) So for
practical purposes we don’t have to sweat too much trying to remember if R2(X) means
the quadratic resolvent of f(X) (it does) or R3(X) (it doesn’t).

Here is a version of Theorem 1.2 that is valid in all characteristics.

Theorem 3.4. Let f(X) ∈ K[X] be a separable irreducible quartic. The Galois group Gf of
f(X) over K can be described in terms of whether or not its quadratic and cubic resolvents
factor in K[X], according to Table 4.

R2(X) in K[X] R3(X) in K[X] Gf

irreducible irreducible S4
reducible irreducible A4

irreducible reducible D4 or Z/4Z
reducible reducible V

Table 4.

Since discR2 = disc f , outside characteristic 2 Theorem 3.4 becomes Theorem 1.2.

Proof. We will check each row of the table in order.
R2(X) and R3(X) are irreducible over K: Since R2(X) is irreducible over K, Gf 6⊂ A4

by Lemma 3.3. Since R3(X) is irreducible over K and its roots are in the splitting field of
f(X) over K, adjoining a root of R3(X) to K gives us a cubic extension of K inside the
splitting field of f(X), so |Gf | is divisible by 3. Therefore Gf = S4 or A4, so Gf = S4.
R2(X) is reducible and R3(X) is irreducible over K: We have Gf ⊂ A4 by Lemma 3.3

and |Gf | is divisible by 3, so Gf = A4.
R2(X) is irreducible and R3(X) is reducible over K: Lemma 3.3 tells us Gf is not in A4,

so Gf is S4, D4, or Z/4Z. We will show Gf 6= S4.
What distinguishes S4 from the other two choices for Gf is that S4 contains 3-cycles. If

Gf = S4 then (123) ∈ Gf . Applying this hypothetical automorphism in the Galois group
to the roots of R3(X) carries them through a single orbit:

r1r2 + r3r4 7→ r2r3 + r1r4 7→ r3r1 + r2r4 7→ r1r2 + r3r4.

These numbers are distinct since R3(X) is separable. At least one root of R3(X) lies in K,
but the Gf -orbit of that root is just itself, not three numbers. We have a contradiction.
R2(X) and R3(X) are reducible over K: The group Gf lies in A4, so Gf = V or Gf =

A4. We want to eliminate the second choice. As in the previous case, we can distinguish V
from A4 using 3-cycles. There are 3-cycles in A4 but not in V . If there were a 3-cycle on the
roots of f(X) in Gf then applying it to a root of R3(X) shows all the roots of R3(X) are in
a single Gf -orbit, which is a contradiction since a root of R3(X) in K is its own Gf -orbit.
Thus Gf contains no 3-cycles. �

Corollary 3.5. With notation as in Theorem 3.4, Gf = V if and only if R3(X) splits
completely over K and Gf = D4 or Z/4Z if and only if R3(X) has a unique root in K.

Proof. The condition for Gf to be V is that R2(X) and R3(X) are reducible in K[X]. The
condition for Gf to be D4 or Z/4Z is that R2(X) is irreducible in K[X] and R3(X) is
reducible in K[X]. Since the quadratic resolvent of R3(X) has the same splitting field over
K as R2(X), the formula for the splitting field of a cubic in Theorem 2.6 ends the proof. �
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Example 3.6. Let K be a field and assume f(X) = X4+aX3+bX2+aX+1 is irreducible
in K[X]. It is separable if K doesnt have characteristic 2, or if K has characteristic 2 and a
and b are nonzero since the discriminant of f(X) in characteristic 2 is a4b2. (Alternatively,
in characteristic 2 we have f ′(X) = aX2 + a = a(X + 1)2 and f(1) = b, so f(X) and f ′(X)
have no common factor if and only if a and b are nonzero.) Assuming f(X) is separable,
what is its Galois group over K?

The polynomial is reciprocal: X4f(1/X) = f(X). So the roots of f(X) come in reciprocal
pairs (a root is not its own reciprocal since ±1 are not roots by irreducibility), which implies
the splitting field of f(X) over K has degree 4 or 8. Therefore Gf is V , Z/4Z, or D4.

The possible Galois groups can also be found from the cubic resolvent of f(X), which is

(3.6) R3(X) = X3 − bX2 + (a2 − 4)X − (2a2 − 4b) = (X − 2)(X2 − (b− 2)X + a2 − 2b).

Since this is reducible, the last two rows of Table 4 tell us the possible Galois groups.
By Corollary 3.5, the Galois group is V if and only if R3(X) splits completely over K.

To illustrate Theorem 3.4, we will use base field K = F (u), where F has characteristic
2 and u is transcendental over F . In characteristic 2, if f(X) = X4 + bX2 + cX + d (no
cubic term), it is separable if and only if c 6= 0, its quadratic resolvent is in (3.4), and
its cubic resolvent is in (3.5). Since R2(X) and R3(X) have degree 2 and 3, to prove
their irreducibility over a field it is enough to show they have no root in the field. Table
5 summarizes all the Galois group computations we will make in characteristic 2 (ω is a
nontrivial cube root of unity).

Example f(X) Condition on F Gf

3.7 X4 + uX + u ω ∈ F A4

3.7 X4 + uX + u ω 6∈ F S4

3.8 X4 + uX2 + uX + u none S4

3.9 X4 + (u2 + u+ 1)X2 +X + 1 none A4

3.10, 3.15 X4 + (u+ 1)X2 + uX + 1 none D4

3.11, 3.16 X4 + (u2 + u)X2 + u2X + u none Z/4Z

3.12 X4 + (u2 + u+ 1)X2 + (u2 + u)X + 1 none V

Table 5. Galois groups over F (u), charF = 2

Example 3.7. Let f(X) = X4 + uX + u, which is irreducible over F (u) by Eisenstein’s
criterion. You might anticipate, by analogy to Example 2.5, that Gf = S4, but we’ll see
that is not always true.

The quadratic and cubic resolvents of f(X) are

R2(X) = X2 + u2X + u4 and R3(X) = X3 + u2.

The cubic resolvent is irreducible over F (u). We can write R2(X) = u4(Y 2 +Y + 1), where
Y = X/u2. Roots of Y 2+Y +1 are nontrivial cube roots of unity, and if there is one in F (u)
then it must be in F . If F contains a nontrivial cube root of unity, then R2(X) is reducible
and Gf = A4. Otherwise Gf = S4. So Gf = S4 if F = F2 and Gf = A4 if F = F4.

More generally, if π(u) is irreducible in F [u] then the Galois group of X4 +π(u)X+π(u)
over F (u) is S4 if F has no nontrivial cube roots of unity and is A4 otherwise. By contrast
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[5, p. 136], if p is a prime number then the Galois group of X4 + pX + p over Q is S4 unless
p = 3 or 5, in which case the Galois group is D4 or Z/4Z, respectively.

Example 3.8. If f(X) = X4+uX2+uX+u, which is irreducible over F (u) by Eisenstein’s
criterion, its quadratic and cubic resolvents are

R2(X) = X2 + u2X + u4 + u5 and R3(X) = X3 + uX2 + u2.

By degree considerations there is no root for R2(X) or R3(X) in F (u), except R3(X) might
have a linear root of the form au for some a ∈ F . Since

R3(au) = a2(a+ 1)u3 + u2,

which is not 0, R3(X) is irreducible in F (u)[X]. Therefore the Galois group of f(X) over
F (u) is S4.

Example 3.9. Let f(X) = X4 + (u2 + u+ 1)X2 +X + 1. It is left to the reader to check
this is irreducible over F (u). Its quadratic and cubic resolvents are

R2(X) = X2 +X + u2 + u = (X + u)(X + u+ 1)

and
R3(X) = X3 + (u2 + u+ 1)X2 + 1.

The cubic resolvent is irreducible over F (u), so Gf = A4.

Example 3.10. Let f(X) = X4 + (u + 1)X2 + uX + 1. It is left to the reader to check
f(X) is irreducible over F (u). Its quadratic and cubic resolvents are

R2(X) = X2 + u2X + u5 + u3 + u2

and
R3(X) = X3 + (u+ 1)X2 + u2 = (X + u)(X2 +X + u).

From the linear change of variables

R2(X) = (X + u)2 + u2(X + u) + u5 = u4(Y 2 + Y + u),

where Y = (X+u)/u2, we see R2(X) is irreducible over F (u). Therefore Gf = D4 or Z/4Z.

Example 3.11. Let
f(X) = X4 + (u2 + u)X2 + u2X + u.

This is irreducible over F (u) by Eisenstein’s criterion. Its quadratic resolvent is

R2(X) = X2 + u4X + u10 + u9 + u7.

It is left to the reader to check this has no root in F (u), so it is irreducible over F (u), and
the cubic resolvent of f(X) is

R3(X) = X3 + (u2 + u)X2 + u4 = (X + u)(X2 + u2X + u3),

so the Galois group of f(X) over F (u) is D4 or Z/4Z.

Example 3.12. Let

f(X) = X4 + (u2 + u+ 1)X2 + (u2 + u)X + 1.

It is left to the reader to check f(X) is irreducible over F (u). Its quadratic and cubic
resolvents are

R2(X) = X2 + (u2 + u)2X + u10 + u9 + u3 + u2

= (X + u5 + u4 + u3 + u)(X + u5 + u3 + u2 + u)
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and

(3.7) R3(X) = X3 + (u2 + u+ 1)X2 + (u2 + u)2 = (X + u)(X + u+ 1)(X + u2 + u).

Both are reducible, so Gf = V .
Since the Galois group has order 4, the splitting field of f(X) over F (u) is F (u, r1). We

will show the lattice of intermediate fields is as in the diagram below.

F (u, r1)

F (u, r1r2) F (u, r1r3) F (u, r1r4)

F (u)

The products r1r2 and r3r4 are roots of

(3.8) (X − r1r2)(X − r3r4) = X2 − (r1r2 + r3r4)X + r1r2r3r4 = X2 + (r1r2 + r3r4)X + 1.

We recognize the coefficient of X as a root of R3(X). The roots are listed in (3.7). By
suitable labeling of the roots, we may assume r1r2 + r3r4 = u, r1r3 + r2r4 = u + 1, and
r1r4 + r2r3 = u2 + u. Then (3.8) is X2 + uX + 1, which is irreducible over F (u), so
[F (u, r1r2) : F (u)] = 2. It is left to the reader to check that r1r3 is a root of X2+(u+1)X+1
and r1r4 is a root of X2 +(u2 +u)X+1, which are all irreducible over F (u). The subgroups
of the Galois group fixing r1r2, r1r3, and r1r4 are different, so these products generate
different intermediate fields.

Is one of the quadratic intermediate fields F (u, r1 + r2)? No, because r1 + r2 is in F (u).
Indeed, the sum of all roots of f(X) is 0, so r1 + r2 = r3 + r4, which implies

(r1 + r2)
2 = (r1 + r2)(r3 + r4)

= r1r3 + r2r4 + r1r4 + r2r3

= u+ 1 + u2 + u

= u2 + 1

= (u+ 1)2,

so r1 + r2 = u+ 1. Similarly, r1 + r3 = u and r1 + r4 = 1.

Remark 3.13. Examples 3.10 and 3.12 are special cases of the following general consid-
erations. Let K be a field of characteristic 2 and f(X) = X4 + (c + 1)X2 + cX + d be
irreducible in K[X], with c 6= 0 (so f(X) is separable). Its cubic resolvent is

R3(X) = X3 + (c+ 1)X2 + c2 = (X + c)(X2 +X + c),

which is reducible, so Gf is D4, Z/4Z, or V . Example 3.10 uses c = u and d = 1, while
Example 3.12 uses c = u2 + u and d = 1.

Examples 3.10 and 3.11 are incomplete: when D4 or Z/4Z is the Galois group which one
is it? This will be rectified with the following version of Theorem 1.3 that is valid in all
characteristics, where K(

√
disc f) is replaced with the splitting field of R2(X) over K.

Theorem 3.14. Let f(X) = X4 + aX3 + bX2 + cX + d be separable and irreducible in
K[X]. Assume its quadratic resolvent R2(X) is irreducible over K and its cubic resolvent
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R3(X) has a root r′ in K. Let K2 be the splitting field of R2(X) over K. Then Gf = Z/4Z
if X2 + aX + b− r′ and X2 − r′X + d split completely over K2, and otherwise Gf = D4.

Theorem 1.3, which is Theorem 3.14 with the characteristic explicitly not 2, was proved
by Kappe and Warren [5, p. 134] using an average to pass from a sum and difference of two
roots of f(X) to the roots themselves. There is no average of two numbers in characteristic
2. Our proof of Theorem 3.14 will avoid averaging by using Galois theory more fully.

Proof. By Corollary 3.5, r′ is the unique root of R3(X) in K. Index the roots r1, r2, r3, r4
of f(X) so that r′ = r1r2 + r3r4. In S4, D4 and Z/4Z contain a 4-cycle. (Elements of order
4 in S4 are 4-cycles.) In Table 6 the effect of each 4-cycle in S4 on r1r2 + r3r4 is given if
the 4-cycle were in the Galois group. Each root of R3(X) is in the second column twice.

(abcd) (abcd)(r1r2 + r3r4)
(1234) r2r3 + r4r1
(1432) r4r1 + r2r3
(1243) r2r4 + r1r3
(1342) r3r1 + r4r2
(1324) r3r4 + r2r1
(1423) r4r3 + r1r2

Table 6.

Since r1r2 + r3r4 is fixed by Gf , the 4-cycles in Gf are (1324) and (1423). (Both are in
Gf since at least one is and they are inverses.)

Let σ = (1324). If Gf = Z/4Z then Gf = 〈σ〉. If Gf = D4 then (3.1) tells us
Gf = 〈(1324), (12)〉 = {(1), (1324), (12)(34), (1423), (12), (34), (13)(24), (14)(23)} and the
elements of Gf fixing r1 are (1) and (34). Set τ = (34). Products of σ and τ as disjoint
cycles are in Table 7.

1 σ σ2 σ3 τ στ σ2τ σ3τ
(1) (1324) (12)(34) (1423) (34) (13)(24) (12) (14)(23)

Table 7.

The lattices of subgroups of 〈σ〉 and 〈σ, τ〉 look very different. See the diagrams below,
where the lattice of subgroups of 〈σ〉 and 〈σ, τ〉 are listed upside down.

{id}

{id} 〈τ〉 〈σ2τ〉 〈σ2〉 〈στ〉 〈σ3τ〉

〈σ2〉 〈σ2, τ〉 〈σ〉 〈σ2, στ〉

〈σ〉 〈σ, τ〉
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Corresponding to the above lattice of subgroups, we have the following subfield lattice
of the splitting field of f(X) over K, where L in both cases denotes the unique quadratic
extension of K inside K(r1) and K2 is the splitting field of R2(X) over K.

K(r1, r2, r3, r4)

K(r1) K(r1) K(r3) ? ? ?

L L ? K2

K K

In the Z/4Z case, L = K2 since there is only one quadratic extension of K in the splitting
field.

In the D4 case, let’s explain how we know K(r1) corresponds to 〈τ〉, K(r3) corresponds
to 〈σ2τ〉, and K2 corresponds to 〈σ2, στ〉. The degree [K(r1) : K] is 4, so its corresponding
subgroup in D4 = 〈σ, τ〉 has order 8/4 = 2 and τ = (34) fixes r1 and has order 2. Similarly,
[K(r3) : K] = 4 and σ2τ = (12) fixes r3. From the construction of R2(X) through its roots,
the subgroup of Gf corresponding to K2 is the even permutations of the roots of f(X), and
that is {(1), (12)(34), (13)(24), (14)(23)} = 〈σ2, στ〉.

Although the two cases are different, we are going to develop some common ideas for
both of them concerning the quadratic extensions K(r1)/L and L/K.

If Gf = Z/4Z, Gal(K(r1)/L) = {1, σ2}. If Gf = D4, Gal(K(r1)/L) = 〈σ2, τ〉/〈τ〉 =
{1, σ2}. So in both cases, the L-conjugate of r1 is σ2(r1) = r2 and the minimal polynomial
of r1 over L must be

(X − r1)(X − r2) = X2 − (r1 + r2)X + r1r2.

Therefore r1 + r2 and r1r2 are in L. Since [K(r1) : K] = 4, this polynomial is not in K[X]:

(3.9) r1 + r2 6∈ K or r1r2 6∈ K.
In the Z/4Z case, Gal(L/K) = 〈σ〉/〈σ2〉 = {1, σ}, and in the D4 case Gal(L/K) =

〈σ, τ〉/〈σ2, τ〉 = {1, σ}. The coset of σ represents the nontrivial element both times, so the
K-conjugate of r1 +r2 is σ(r1 +r2) = r3 +r4 and the K-conjugate of r1r2 is r3r4. (If r1 +r2
or r1r2 is in K these K-conjugates equal the original number, but otherwise they have to
be different.) If r1 + r2 6∈ K then its minimal polynomial over K is

(3.10) (X − (r1 + r2))(X − (r3 + r4)) = X2 − (r1 + r2 + r3 + r4)X + (r1 + r2)(r3 + r4),

while if r1r2 6∈ K its minimal polynomial over K is

(3.11) (X − r1r2)(X − r3r4) = X2 − (r1r2 + r3r4)X + r1r2r3r4.

Even if r1 + r2 or r1r2 is in K, the coefficients of (3.10) and (3.11) are symmetric in the
ri’s and therefore lie in K. The linear coefficient in (3.10) is a and the constant term is

(r1 + r2)(r3 + r4) = r1r3 + r1r4 + r2r3 + r2r4 = b− (r1r2 + r3r4) = b− r′,
so (3.10) equals X2 + aX + (b − r′). The polynomial (3.11) is X2 − r′X + d. When
r1 + r2 6∈ K, (3.10) is irreducible in K[X], and if r1 + r2 ∈ K then (3.10) has a double
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root in K. Similarly, (3.11) is irreducible over K or has a double root in K. Therefore the
splitting field of (3.10) or (3.11) over K is either L or K and (3.9) tells us at least one of
(3.10) and (3.11) is irreducible over K (so has splitting field L).

Since r1 + r2 and r1r2 are in L and [L : K] = 2, each one generates L over K if it is not
in K. This happens for at least one of the two numbers, by (3.9).

First suppose Gf = Z/4Z. Then L = K2, so X2 + aX + (b− r′) and X2 − r′X + d both
split completely over K2, since their roots are in L.

Next suppose Gf = D4. Then L 6= K2. By (3.9) at least one of (3.10) or (3.11) is
irreducible over K, so its roots generate L over K and therefore are not in K2. Thus the
polynomial will be irreducible over K2.

Since the conclusions about the two quadratic polynomials over K2 are different depend-
ing on whether Gf is Z/4Z or D4, these conclusions tell us the Galois group. �

Example 3.15. Return to Example 3.10, where

f(X) = X4 + (u+ 1)X2 + uX + 1

over F (u) and F has characteristic 2. Its quadratic resolvent is

R2(X) = X2 + u2X + u5 + u3 + u2 = u4(Y 2 + Y + u),

where Y = (X + u)/u2, and its cubic resolvent is

R3(X) = X3 + (u+ 1)X2 + u2 = (X + u)(X2 +X + u).

Therefore r′ = u and the quadratic polynomials in Theorem 3.14 are

X2 + aX + b− r′ = X2 + 1 = (X + 1)2 and X2 − r′X + d = X2 + uX + 1.

The splitting field of R2(X) over F (u) is F (u, α), where α2+α+u = 0. Therefore F (u, α) =
F (α) and X2 + uX + 1 = X2 + (α2 +α)X + 1, which is irreducible over F (α), so Gf = D4.

Example 3.16. Return to Example 3.11, where

f(X) = X4 + (u2 + u)X2 + u2X + u

has irreducible quadratic resolvent

R2(X) = X2 + u4X + u10 + u9 + u7

and reducible cubic resolvent

R3(X) = X3 + (u2 + u)X2 + u4 = (X + u)(X2 + u2X + u3),

so the Galois group of f(X) over F (u) is D4 or Z/4Z. Here r′ = u, so the quadratics we
try to factor over the splitting field of R2(X) are

X2 + aX + b− r′ = X2 + u2 = (X + u)2

and
X2 − r′X + d = X2 + uX + u.

Letting α be a root of R2(X), so

α2 + u4α+ u10 + u9 + u7 = 0,

we look for a root of X2 + uX + u in the field F (u, α). Every element of this field has the
form A + Bα for some A and B in F (u). Substituting this in for X in X2 + uX + u, we
want to solve

(uB + u4B2)α+ (u+ uA+A2 + (u10 + u9 + u7)B2) = 0.
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Therefore uB + u4B2 = 0, so B = 1/u3. (Or B = 0, but this leads to a contradiction on
A.) Feeding this into the constant term, which also must be 0,

u+ uA+A2 + u4 + u3 + u = 0.

One solution is A = u2, so u2 + (1/u3)α is a root of R2(X). Therefore f(X) has Galois
group Z/4Z over F (u).

If r is one root of f(X), it turns out that all the roots of f(X) are

r, r + u, r2 + (u+ 1)r, r2 + (u+ 1)r + u.

A generator of the Galois group is r 7→ r2 + (u+ 1)r.

The distinction between Gf = D4 and Gf = Z/4Z in Theorem 3.14 depends on irre-
ducibility of X2 + aX + b − r′ and X2 − r′X + d over K2. This can be formulated as a
criterion entirely inside of K. On account of the different standard “normal forms” for
quadratic Galois extensions inside and outside characteristic 2, the criterion will depend on
whether or not charK = 2.

Theorem 3.17. Let the hypotheses and notation be as in Theorem 3.14. When charK 6= 2,
Gf = Z/4Z if (a2 − 4(b − r′)) disc f and (r′2 − 4d) disc f are squares in K. Otherwise
Gf = D4.

When charK = 2, write R2(X) = X2 +AX+B. Then Gf = Z/4Z if B/A2− (b+ r′)/a2

(when a 6= 0) and B/A2 − d/r′2 (when r′ 6= 0) are in ℘(K) = {x2 + x : x ∈ K}. Otherwise
Gf = D4.

Formulas for A and B are in Theorem 3.1. The case when K does not have characteristic
2 is essentially treated in [5, Theorem 3], but we include it here for completeness.

Proof. From the proof of Theorem 3.14, especially (3.9) and the paragraph following it,
the polynomials X2 + aX + b− r′ and X2 − r′X + d either have double roots in K or are
irreducible over K.

First assume charK 6= 2. Since discR2 = disc f , K2 = K(
√

disc f) by the quadratic
formula. The discriminants of X2 + aX + b− r′ and X2 − r′X + d are 0 or nonsquares in
K. When γ and γ′ are two nonsquares in K, K(

√
γ) = K(

√
γ′) if and only if γγ′ = 2 in

K, so X2 + aX + b − r′ splits over K(
√

disc f) if and only if (a2 − 4(b − r′)) disc f = 2 in
K and X2 − r′X + d splits over K(

√
disc f) if and only if (r′2 − 4d) disc f = 2 in K.

Now assume charK = 2. Since R2(X) is separable, A 6= 0. The splitting field of R2(X)
over K is the same as that of X2 +X +B/A2 (divide R2(X) by A2 and relabel X/A as X).
If a 6= 0 then X2 + aX + b− r′ is separable and therefore irreducible over K. Its splitting
field over K is the same as that of X2 + X + (b − r′)/a2. By Artin-Schreier theory, two
quadratics X2 + X + C and X2 + X + C ′ in K[X] have the same splitting field over K if
and only if C − C ′ ∈ ℘(K). �

Example 3.18. Let f(X) = X4 + (u + 1)X2 + uX + 1. From Example 3.10, R2(X) =
X2 + u2X + u5 + u3 + u2 and r′ = u. Since a = 0, to decide if Gf is D4 or Z/4Z, we need
to know if B/A2 − d/r′2 has the form g2 + g for some g ∈ F (u). Since

B

A2
− d

r′2
=
u5 + u3 + u2

u4
− 1

u2
= u+

1

u
,

we want to solve g2 +g = u+1/u. Multiplying through by u2, this becomes (ug)2 +u(ug)+
u3+u = 0, which has no solution in F (u) by Eisenstein’s criterion. (There is a conceptually
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simpler approach using valuation theory: a negative u-adic valuation of g2 + g is even, so
u + 1/u can’t have this form since its u-adic valuation is −1.) Thus Gf = D4, as we saw
already in Example 3.15.

Example 3.19. Let f(X) = X4 + (u2 + u)X2 + u2X + u. From Example 3.11, R2(X) =
X2 + u4X + u10 + u9 + u7 and r′ = u. Here

B

A2
− d

r′2
=
u10 + u9 + u7

u8
− u

u2
= u2 + u ∈ ℘(F (u)),

so Gf = Z/4Z.

Example 3.20. Return to Example 3.6: f(X) = X4 + aX3 + bX2 + aX + 1 is irreducible
in K[X] for a field K of characteristic 2, with a and b nonzero, so f(X) is separable. The
cubic resolvent of f(X) in (3.6) is

R3(X) = X(X2 + bX + a2),

so r′ = 0. By the coefficient formulas in Theorem 3.1, the quadratic resolvent of f(X) is

R2(X) = X2 + a2bX + a6 = a6(Y 2 + (b/a)Y + 1),

where Y = X/a3. If X2 + (b/a)X + 1 is reducible over K then R2(X) is reducible and
Gf = V . If X2 + (b/a)X + 1 is irreducible over K then R2(X) is irreducible over K and
Gf = D4 or Z/4Z.

If R2(X) is ireducible over K, when does Gf = D4 and when does Gf = Z/4Z? Since
r′ = 0, we need to check if a6/(a2b)2 − b/a2 = a2/b2 − b/a2 is in ℘(K). If it is then
Gf = Z/4Z. Otherwise Gf = D4. See Table 8.

X2 + (b/a)X + 1 a2/b2 − b/a2 Gf

reducible over K V
irreducible over K 6∈ ℘(K) D4

irreducible over K ∈ ℘(K) Z/4Z

Table 8. Galois group of sep. irred. X4 + aX3 + bX2 + aX + 1 in char. 2

For instance, takingK = F (u) with F of characteristic 2, f(X) = X4+uX3+uX2+uX+1
is irreducible over K since f(X+1) is Eisenstein at u. Since X2 +(b/a)X+1 = X2 +X+1
and a2/b2 − b/a2 = 1− 1/u 6∈ ℘(K), Gf = V if ω ∈ F and Gf = D4 if ω 6∈ F , where ω is a
nontrivial cube root of unity.

As another example, let f(X) = X4 +uX3 +u2X2 +uX + 1. This polynomial factors as

f(X) = (X2 + ωuX + 1)(X2 + ω2uX + 1),

so if ω ∈ F then f(X) is reducible over K. (Remember: before determining the Galois
group of a quartic you should first check if the polynomial is irreducible.) It is left as an
exercise to show that if f(X) is reducible over K then ω ∈ F . So if ω 6∈ F then f(X) is
irreducible over K. Here a = u and b = u2, so X2 + (b/a)X + 1 = X2 + uX + 1, which is
irreducible over K. And a2/b2 − b/a2 = 1/u2 − 1 ≡ 1/u − 1 6≡ 0 mod ℘(K), so Gf = D4

when ω 6∈ F .

Before Theorem 1.3 was known (from [5]), there was a more complicated procedure to
decide between D4 and Z/4Z as the Galois group of a quartic f(X) outside characteristic
2. Unlike Theorem 1.3, it involves testing irreducibility of f(X), instead of two quadratic
polynomials, over K(

√
disc f). Here is that criterion.
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Theorem 3.21. Let K not have characteristic 2 and f(X) ∈ K[X] be an irreducible quartic.
Suppose disc f is not a square in K and R3(X) is reducible in K[X], so Gf is D4 or Z/4Z.

(1) If f(X) is irreducible over K(
√

disc f) then Gf = D4.
(2) If f(X) is reducible over K(

√
disc f) then Gf = Z/4Z.

An extension of this theorem to all characteristics is easy to guess:

Theorem 3.22. Let f(X) ∈ K[X] be a separable irreducible quartic. Suppose R2(X) is
irreducible and R3(X) is reducible in K[X], so Gf is D4 or Z/4Z. Let K2 be the splitting
field of R2(X) over K.

(1) If f(X) is irreducible over K2 then Gf = D4.
(2) If f(X) is reducible over K2 then Gf = Z/4Z.

Proof. We will make reference to the field diagrams in the proof of Theorem 3.14.
When Gf = D4, the field diagram for this Galois group shows the splitting field of f(X)

over K is K2(r1). Since [K2(r1) : K] = 8, [K2(r1) : K2] = 4, so f(X) must be irreducible
over K2.

When Gf = Z/4Z, the splitting field of f(X) over K2 has degree 2, so f(X) is reducible
over K2.

Because the different Galois groups imply different behavior of f(X) overK2, the behavior
of f(X) over K2 tells us the Galois group. �

4. Quartic Fields with a Quadratic Subfield

If L/K is a separable quartic extension, it may or may not have a quadratic intermediate
field. For example, the extension Q( 4

√
2)/Q has the obvious quadratic intermediate field

Q(
√

2). But if α is a root of X4 − X − 1, then the quartic extension Q(α)/Q has no
quadratic intermediate field.

Outside of characteristic 2, there is a nice description of the quartic extensions L/K that
have a quadratic intermediate field.

Theorem 4.1. If K is a field not of characteristic 2 and [L : K] = 4, then there is a
quadratic extension of K inside L if and only if L = K(θ) where θ has minimal polynomial
X4 +AX2 +B in K[X]. When this happens X2 +AX+B is irreducible over K and K(θ2)
is such an intermediate field.

Proof. Suppose L/K is a quartic field and there is an intermediate quadratic extension
M/K. Since the fields do not have characteristic 2, we can describe the quadratic extensions
L/M and M/K by adjuncation of a square root: M = K(

√
a) where a ∈ K× and L =

M(
√
u+ v

√
a) where u, v ∈ K with v 6= 0. Let θ =

√
u+ v

√
a, so L = K(θ) and

θ =

√
u+ v

√
a =⇒ θ2 = u+ v

√
a =⇒ (θ2 − u)2 = av2 =⇒ θ4 − 2uθ2 + u2 − av2 = 0.

Conversely, if L = K(θ) where θ has minimal polynomial X4 + AX2 + B in K[X] then

θ2 = (−A±
√
A2 − 4B)/2 and A2 − 4B 6= 2 in K (otherwise X4 +AX2 +B would not be

irreducible over K), so K(
√
A2 − 4B) = K(θ2) is a quadratic extension of K lying in L. �

Here is an analogue in characteristic 2.

Theorem 4.2. If K has characteristic 2 then a separable quartic extension L/K has an
intermediate quadratic extension if and only if L = K(θ) where the minimal polynomial of θ
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over K is X4 +(A+1)X2 +AX+B in K[X] with A 6= 0. When this happens X2 +AX+B
is irreducible over K and K(θ2 + θ) is such an intermediate field.

Proof. First suppose L ⊃ M ⊃ K where [L : M ] = 2 and [M : K] = 2. Since L/K is
separable, L/M and M/K are separable. By Theorem A.1, M = K(t) where t2 + t ∈ K
and L = M(θ) where θ2 + θ ∈M . Write t2 + t = a and θ2 + θ = u+ vt where u, v ∈ K and
v 6= 0. Since t = (θ2 + θ − u)/v, we have L = K(t, θ) = K(θ)). Expanding the equation

a = t2 + t =

(
θ2 + θ − u

v

)2

+
θ2 + θ − u

v

in terms of θ and clearing the denominator, θ is a root of X4+(v+1)X2+vX+(u2+uv+av2).
Conversely, suppose L = K(θ) where θ has minimal polynomial X4+(A+1)X2+AX+B

in K[X] and A 6= 0. Since K has characteristic 2, the derivative of this polynomial is the
constant A, which is not 0, so the polynomial is separable and L/K is separable. To show
L/K has an intermediate quadratic extension, we rewrite the minimal equation for θ over
K:

θ4 + (A+ 1)θ2 +Aθ +B = 0 =⇒ (θ2 + θ)2 +A(θ2 + θ) +B = 0.

Therefore t := θ2 + θ has degree at most 2 over K and L = K(θ) ⊃ K(t) ⊃ K. Since θ has
degree at most 2 over K(t) and [L : K] = 4, t has degree 2 over K, so X2 + AX + B is
irreducible over K. �

The analogies between X4+AX2+B outside characteristic 2 and X4+(A+1)X2+AX+B
in characteristic 2 goes further. Outside characteristic 2, the roots of X4 +AX2 +B come
in pairs: ±α and ±β. Similarly, in characteristic 2 the roots of X4 + (A+ 1)X2 +AX +B
come in pairs α, α+ 1 and β, β + 1.

When K does not have characteristic 2 and f(X) = X4+AX2+B is irreducible in K[X],
its possible Galois groups over K are D4, Z/4Z, or V according to the following rules:

• B = 2 in K =⇒ Gf = V ,
• B 6= 2 and (A2 − 4B)B = 2 in K =⇒ Gf = Z/4Z,
• B 6= 2 and (A2 − 4B)B 6= 2 in K =⇒ Gf = D4.

This is a standard exercise in Galois theory (e.g., [1, p. 277] and [2, p. 53]). In [5, Theorem 3],
Kappe and Warren prove these rules using their criterion (Theorem 1.3) for distinguishing
Z/4Z and D4 as Galois groups outside characteristic 2. Here is the characteristic 2 analogue.

Theorem 4.3. Let f(X) = X4+(A+1)X2+AX+B be separable irreducible in K[X], where
K has characteristic 2. If A ∈ ℘(K) then Gf = V . If A 6∈ ℘(K) and B/A2 − A ∈ ℘(K)
then Gf = Z/4Z. If A 6∈ ℘(K) and B/A2 −A 6∈ ℘(K) then Gf = D4.

Proof. From separability of f(X), A and B are nonzero in K. We will explain in two
ways why the only choices for Gf are D4, Z/4Z, and V , and then distinguish among these
possibilities.

Since the field K(θ), where θ is a root of f(X), has a quadratic intermediate extension,
the subgroup of Gf corresponding to K(θ) lies in an index-2 subgroup of Gf . There is no
subgroup of index two in A4, so Gf 6= A4. If Gf = S4 then its only subgroup of index two
is A4. The subgroup of Gf corresponding to K(θ) is S3 (by a suitable labeling of the roots)
and S3 6⊂ A4. This is a contradiction, so Gf 6= S4 either.

For a second proof that Gf is D4, Z/4Z, or V , the cubic resolvent of f(X) is

R3(X) = X3 + (A+ 1)X2 +A2 = (X +A)(X2 +X +A),
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which is reducible, so Gf is D4, Z/4Z, or V by Theorem 3.4.
The quadratic resolvent of f(X) is

R2(X) = X2 +A2X + ((A+ 1)3 +A2)A2

= X2 +A2X + (A3 +A+ 1)A2

= A4

((
X

A2

)2

+
X

A2
+A+

1

A
+

1

A2

)

= A4

((
X

A2
+

1

A

)2

+

(
X

A2
+

1

A

)
+A

)
,

so K2, the splitting field of R2(X) over K, is the same as the splitting field of X2 +X +A
over K.

By Corollary 3.5, Gf = V if and only if R3(X) splits completely over K, which is
equivalent to A ∈ ℘(K). Suppose that A 6∈ ℘(K), so R2(X) is irreducible over K and A is
the unique root of R3(X) in K. By Theorem 3.14, Gf = Z/4Z if and only if the polynomials
X2 + (A+ 1− A) and X2 + AX + B both split completely over K2. The first polynomial
is (X + 1)2, so Gf = Z/4Z if and only if X2 + X + A and X2 + AX + B have the same
splitting field over K. Since X2 +AX +B = A2((X/A)2 + (X/A) +B/A2), X2 +AX +B
and X2 +X +A have the same splitting field over K if and only if B/A2 −A ∈ ℘(K). �

Example 4.4. In Example 3.10, K = F (u), A = u and B = 1. Since u 6∈ ℘(K), Theorem
4.3 says Gf is D4 or Z/4Z, and Gf = Z/4Z if and only if B/A2−A = 1/u2− u is in ℘(K).
Since 1/u2 ≡ 1/u mod ℘(K) and 1/u − u 6∈ ℘(K), Gf 6= Z/4Z. Thus Gf = D4, which we
already found in Example 3.15.

Example 4.5. In Example 3.12, K = F (u), A = u2 + u, and B = 1. Obviously A ∈ ℘(K),
so Gf = V .

Appendix A. Separable Quadratic Extensions in Characteristic 2

When K does not have characteristic 2, every quadratic extension of K has the form
K(
√
a) for some nonsquare a in K×, and for two nonsquares a and a′ in K we have K(

√
a) =

K(
√
a′) if and only if a/a′ is a square in K. When K has characteristic 2, quadratic

extensions of K usually don’t have the form K(
√
a): the polynomial X2− a is inseparable,

so a field extension K(
√
a)/K is inseparable. Moreover, we can have K(

√
a) = K(

√
a′) even

if a/a′ is not a square in K. For example, if K = F (u) where F has characteristic 2 and u
is transcendental over F then K(

√
u) = K(

√
u+ 1) since

√
u+ 1 =

√
u+1 in characteristic

2. Artin and Schreier found a clean description of the separable quadratic extensions in
characteristic 2 using roots of polynomials X2 + X − a in place of square roots (roots of
X2 − a).

Theorem A.1 (Artin–Schreier). If K has characteristic 2 then every separable quadratic
extension of K has the form K(α) where α is the root of an irreducible polynomial X2+X−a
in K[X]. Conversely, each root of an irreducible polynomial of the form X2 + X − a in
K[X] generates a separable quadratic extension of K. Finally, two polynomials X2 +X −a
and X2 +X − a′ in K[X] have the same splitting field over K if and only if a− a′ = c2 + c
for some c ∈ K.
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Proof. Let L/K be a separable quadratic extension. Pick t ∈ L −K, so L = K(t). Write
the minimal polynomial of t over K as X2 +AX +B. This polynomial is separable, so its
discriminant A2 − 4B = A2 is not zero. Since A 6= 0,

t2 +At+B = 0 =⇒
(
t

A

)2

+
t

A
+
B

A2
= 0.

Replacing t with α = t/A, L = K(α) where α is a root of X2+X+B/A2. Conversely, every
polynomial X2 + X − a in K[X] is separable (its discriminant is 1, which is not 0), so if
such a polynomial is irreducible then a root of it generates a separable quadratic extension
of K.

Suppose X2+X−a and X2+X−a′ have the same splitting field over K. K(α) = K(α′)
where α2 + α − a = 0 and α′2 + α′ − a′ = 0. If X2 + X − a is irreducible over K then
X2 +X − a′ must also be irreducible over K, so α′ = u+ vα where u and v are in K and
v 6= 0. Then

0 = (u+ vα)2 + (u+ vα)− a′

= (u2 + v2α2) + (u+ vα)− a′

= (u2 + v2(a− α)) + u− a′ + vα

= (−v2 + v)α+ u2 + u+ av2 − a′.
Therefore v2 = v and u2 + u+ av2 − a′ = 0. The first equation implies v is 0 or 1, so v = 1
since v 6= 0. The second equation becomes u2 +u+a−a′ = 0, so a−a′ = −u2−u = u2 +u
since −1 = 1 in K.

If X2 +X − a is reducible over K then X2 +X − a′ is also reducible over K, so α and α′

are both in K: Then a− a′ = (α2 + α)− (α′2 + α′) = (α − α′)2 + (α − α′) = c2 + c where
c = α− α′ ∈ K.

Conversely, if a− a′ = c2 + c for some c ∈ K then X2 +X − a′ = (X + c)2 + (X + c)− a,
so a splitting field of X2 +X − a′ over K is K(α− c) = K(α). �
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