GALOIS GROUPS OF CUBICS AND QUARTICS (NOT IN
CHARACTERISTIC 2)

KEITH CONRAD

We will describe a procedure for figuring out the Galois groups of separable irreducible
polynomials in degrees 3 and 4 over fields not of characteristic 2. This does not include
explicit formulas for the roots, i.e., we are not going to derive the classical cubic and quartic
formulas. But we will figure out when a tower of two quadratic extensions is Galois.

1. REVIEW

For a field K and separable f(X) in K[X], the Galois group of f(X) over K permutes
the roots of f(X) in a splitting field. Labeling the roots as r1, ..., r, provides an embedding
of the Galois group into S,. We recall two theorems about this embedding.!

Theorem 1.1. Let f(X) € K[X] be separable of degree n with Galois group G over K.

(a) If f(X) is irreducible over K then |G| is divisible by n.
(b) The polynomial f(X) is irreducible in K[X] if and only if G is a transitive subgroup
of Sy.

Definition 1.2. If f(X) € K[X] factors in a splitting field as f(X) = ¢(X —71) - -+ (X —ry),
then the discriminant of f(X) is defined to be
disc f = H(rj — )%
1<j
In degree 3 and 4, explicit formulas for discriminants of some monic polynomials are
(1.1) disc(X? +aX +b) = —4a® —27%
disc(X* +aX +b) = —27a* +2560°,
disc(X* +aX?+b) = 16b(a® — 4b)%

Theorem 1.3. Let f(X) € K[X] be a separable polynomial of degree n. If K does not have

characteristic 2, then the Galois group of f(X) over K is a subgroup of Ay if and only if
disc f is a square in K.

This theorem is why we will assume our fields do not have characteristic 2.

2. GALOIS GROUPS OF CUBICS
The Galois group of a cubic polynomial is completely determined by its discriminant.

Theorem 2.1. Let K not have characteristic 2 and f(X) be a separable irreducible cubic
in K[X]. If disc f = O in K then the Galois group of f(X) over K is As. Ifdisc f # O in
K then the Galois group of f(X) over K is Ss.

Iror proofs, see Theorems 2.9 and 4.7 in https://kconrad.math.uconn.edu/blurbs/galoistheory/galois
aspermgp.pdf.
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Proof. The permutation action of the Galois group of f(X) on its roots turns the Galois
group into a transitive subgroup of S3 (Theorem 1.1). The only transitive subgroups of
S3 are A3 and S3, and we can decide when the Galois group is in As or not using the
discriminant (Theorem 1.3). O

Example 2.2. For ¢ € Z, the polynomial X? — ¢X — 1 is irreducible over Q except when
¢ is 0 or 2. (If it is reducible then it must have root +1 by the rational roots theorem, and
1 or —1 is a root only when ¢ is 0 or 2.) In Table 1 we list the discriminants and Galois
groups over Q of X3 —cX — 1 for 1 < ¢ < 6 with ¢ # 2. The second row, where ¢ = 3, has
a square discriminant and Galois group As. The other Galois groups in the table are S3.

f(X) disc f | Galois group
X3 -X—-1| —23 S3
X3 -3X-1] 81 As
X3 —4X -1 229 S3
X3 —5X —1| 473 Ss
X3 —-6X -1 837 S3

TABLE 1. Some Galois groups over Q.

It turns out that for ¢ € Z — {0, 2}, the Galois group of X3 — c¢X — 1 over Q is A3 only
when ¢ = 3, and that is closely related to Fermat’s Last Theorem for exponent 3. Such a
connection is not at all obvious! By Theorem 2.1, the Galois group of X2 —cX —1 over Q is
Ajz if and only if its discriminant, which is 4¢® — 27 by (1.1), is a square in Q. Since 4¢® —27
is an integer, it is a square in Q if and only if it is a square in Z, so we want to find all
integral solutions to y? = 423 —27: two solutions are (x,y) = (3,49). Working with rational
numbers, not just integers, under the nonobvious® change of variables 7 = (9 —y)/(62) and
s =(9+y)/(6x) (which has inverse = 3/(r+s) and y = —9(r —s)/(r +s)), the condition
y? = 4x3 — 27 is the same as 73 + s3 = 1, so the equation y? = 423 — 27 has a rational
solution with y # 49 if and only if the equation 73 4+ s3 = 1 has a rational solution with
r # 0 and s # 0. That 73 + s> = 1 has no solution (7, s) in nonzero rational numbers is
Fermat’s Last Theorem for exponent 3.

Remark 2.3. If an irreducible cubic in Q[X] has Galois group As over Q, its roots all
generate the same field extension of Q, so all the roots are real since at least one root is
real. But if all the roots are real the Galois group over Q does not have to be As. The
polynomial X? —4X — 1 has all real roots but its Galois group over Q is S3. Each real root
of X3 —4X — 1 generates a different cubic field in R.

Remark 2.4. The cubics X2 — 2X + 1 and X2 — 7X — 6 have respective discriminants 5
and 400 = 202, but this does not mean by Theorem 2.1 that their Galois groups over Q
are S3 and As. Both polynomials are reducible (factoring as (X — 1)(X? + X — 1) and
(X +1)(X +2)(X — 3)). Do not forget to check that a cubic is irreducible before you use
Theorem 2.1! You also need to check it is separable if you’re working in characteristic 3.
Outside characteristic 3, irreducible cubics are automatically separable.

2The strange change of variables (z,y) — (r,s) has a natural explanation using the theory of elliptic curves.
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Example 2.5. In Example 2.2 we saw that X2 — ¢X — 1 for ¢ € Z is irreducible over Q
with Galois group As only for ¢ = 3. This has a generalization: for each b € Z — {0},
the cubic X3 4+ aX + b is irreducible over Q with Galois group Asz for only finitely many
a € Z (depending on b). For the cubic to be reducible over Q would require it to have a
root r € Z with r | b by the rational roots theorem, so there can be only finitely many
possible r (depending on b). Since 73 +ar +b =0 = a = —(r® + b)/r, a is determined
by r. Thus for all but finitely many a € Z, X® + aX + b is irreducible over Q. When it
is irreducible, it has Galois group As if and only if the integer —4a® — 27b? is a perfect
square in Q, which is equivalent to it being a square in Z. The equation t*> = —4a> — 27b?
is equivalent to (4t)? = (—4a)3 — 43202, so y? = 23 — 432b% must have an integral solution
(x,y) = (—4a,4t). For each b € Z — {0}, the equation y? = x3 — 432b? has only finitely
many integral solutions (x,y) by Siegel’s theorem about integral points on elliptic curves
over Q. Therefore 23 4+ ax + b is irreducible over Q with Galois group Az for only finitely
many integers a.

Example 2.6. Let F' be a field and u be transcendental over F. In F'(u)[X], the polynomial
X3 +uX 4w is irreducible by Eisenstein’s criterion at u. The discriminant is —4u? —27u? =
—u?(4u+27). If F does not have characteristic 2 or 3, this has a simple linear factor 4u+27,
so the discriminant is not a square in F'(u). If F' has characteristic 3, the discriminant is
—4u® = —u3, which is not a square in F(u). Therefore when I does not have characteristic
2, the Galois group of X3 4+ uX + u over F(u) is isomorphic to S3.

We can’t say anything here about the Galois group of X? + uX + u over F(u) when F
has characteristic 2. Its discriminant is —4u? — 27u? = u?, a perfect square, but this does
not mean the Galois group of X3 +uX +u over F(u) is A3. Theorem 2.1, and Theorem 1.3
which it depended upon, require the base field K not have characteristic 2. In characteristic
2 we can’t tell if the Galois group is in A,, or not by checking if the discriminant is a square.

If you write down a random cubic over Q, it is probably irreducible and has Galois group
S3. Therefore it’s nice to have a record of a few irreducible cubics over Q whose Galois
group is As. See Table 2, where each discriminant is a perfect square. (The polynomials in
the table are all irreducible over Q since +1 are not roots or because they are all irreducible
mod 2.) We list in the table all three roots of each cubic in terms of one root we call 7.
That list of roots is essentially telling us what the three elements of Gal(Q(r)/Q) are, as
each automorphism is determined by its effect on r.

f(X) disc f Roots
X?-3X -1 92 rort—r—2, —r?+2
X3 - X?2-2X+1 72 rr2—r—1, —r24+2

X34+ X2—4X+1| 132 | r,r?+r—3, —r?—2r+2
X342X2 85X +1| 192 |r, r242r—4, =12 —3r+2
TABLE 2. Some cubics with Galois group As over Q.

Here is an infinite family of As-cubics over Q.

Corollary 2.7. For any integer k, set a = k? + k + 7. The polynomial X3 — aX + a is
irreducible over Q and has Galois group As.
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Proof. For any odd number a, X3 —aX 4+ a = X+ X 4+ 1 mod 2, which is irreducible mod
2, 50 X3 — aX + a is irreducible over Q. Its discriminant is —4(—a)? — 27a? = a?(4a — 27).
To have Galois group Az we need 4a — 27 to be a square. Writing 4a — 27 = ¢?, we get
a = %(02 + 27). To make this integral we need ¢ odd, and writing ¢ = 2k + 1 gives us
a = 1(4k® + 4k + 28) = k? + k + 7. For any integer k, k? + k + 7 is odd so if we define this
expression to be a then X3 — aX + a has Galois group Az over Q. [l

Without using Galois groups, we can describe the splitting field of any separable cubic
(not necessarily irreducible) in terms of one root and the discriminant.

Theorem 2.8. Let K not have characteristic 2 and f(X) € K[X] be a separable cubic with
discriminant A. If r is one root of f(X) then a splitting field of f(X) over K is K(r,v/A).
In particular, if f(X) is a reducible cubic then its splitting field over K is K(v/A).

Proof. Without loss of generality, f(X) is monic. Let the roots of f(X) be r, 7/, and r”.
Write f(X) = (X — r)g(X), so v/ and " are the roots of g(X). In particular, g(r) # 0.
By the quadratic formula for g(X) over K(r), K(r,r',r") = K(r)(r',r") = K(r)(y/discg).
Since f(X) is monic, so is g(X) and a calculation shows disc f = g(r)? disc g. Since g(r) €
K*, K(r,v/discg) = K(r,/disc f) = K (r,VA).

If f(X) is reducible, we can take for r above a root of f(X) in K. Then K(r,vVA) =
K(VA). O

It is crucial here that K does not have characteristic 2. The proof used the quadratic
formula, which doesn’t work in characteristic 2. Could the theorem be proved by a different
argument in characteristic 27 No: the theorem as written is wrong in characteristic 2.
A counterexample is K = F(u) for F' of characteristic 2, u transcendental over F', and
f(X) = X®+uX +u. Thisis irreducible in K[X] with discriminant u?, so K (r, VA) = K(r).
It can be shown that the degree of the splitting field of f(X) over K is 6, not 3, so K (r, vVA)
is not the splitting field of f(X) over K.

3. GALOIS GROUPS OF QUARTICS

To compute Galois groups of separable irreducible quartics, we first list the transitive
subgroups of S4. These are the candidates for the Galois groups, by Theorem 1.1.

Type S4 A4 D4 Z/4Z %4
(1, 1,1, 1) 1 1 1 1 1
(1, 1, 2) 6 2
(2, 2) 3 3 3 1 3
(1, 3) 8 8
(4) 6 2 2
Sum 24 12 8 4 4
TABLE 3.

The heading of Table 3 includes all the transitive subgroups of Sy, up to isomorphism,
and the entries of the table are the number of permutations of each cycle type in such a
subgroup. (We write V for Klein’s four-group Z/2Z x Z/2Z.) Inside Sy there are three
transitive subgroups isomorphic to Dy:

(3.1) ((1234), (13)), ((1324),(12)), ((1243),(14)).
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These are the only subgroups of S; with order 8 and they are conjugate to each other.
There are three transitive subgroups of Sy isomorphic to Z/4Z:

(3.2) ((1234)), ((1243)), ((1324)).

These are the the only cyclic subgroups of order 4 in S; and they are conjugate to each
other. The unique transitive subgroup of S4 isomorphic to V is

(3-3) {(1), (12)(34), (13)(24), (14)(23) }.

There are other subgroups of Sy that are isomorphic to V, such as {(1), (12), (34), (12)(34)},
but they are not transitive so they can’t occur as the Galois groups we are looking for. We
will henceforth write V' for the group (3.3).

We will often treat Dy and Z/4Z as if they are subgroups of Sy rather than just subgroups
known up to conjugation. Since a Galois group as a subgroup of S, is only determined up
to conjugation anyway, this isn’t a bad convention provided we are careful when we refer
to specific elements of Sy lying in the Galois group.

A few observations from Table 3:

(1) The only transitive subgroups of S4 which are inside A4 are A4 and V. (In fact V'
is the only subgroup of A4 with order 4, transitive or not.)

(2) The only transitive subgroups of Sy with size divisible by 3 are S4 and Aj.

(3) The only transitive subgroups of S; containing a transposition (cycle type (1, 1,2))
are Sy and Dy.

Let f(X) = X%+ aX3 4+ bX2 + cX + d be monic irreducible® in K[X], so disc f # 0.
Write the roots of f(X) as r1,72,r3,74, SO
(3.4) X 4 aX?+0X?2+eX +d= (X —r)(X —r)(X —r3)(X —1y).

The Galois group of a separable irreducible cubic polynomial in K[X] is determined by
whether or not its discriminant A is a square in K, which can be thought of in terms of the
associated quadratic polynomial X? — A having a root in K. We will see that the Galois
group of a quartic polynomial depends on the behavior of an associated cubic polynomial.

We want to create a cubic polynomial with roots in the splitting field of f(X) over K
by finding an expression in the roots of f(X) which only has 3 possible images under the
Galois group. Since the Galois group is in Sy, we look for an polynomial in 4 variables
which, under all 24 permutations of the variables, has 3 values. One such expression is

T1X2 + T3X4.
Under Sy, acting on F (1, 2,23, 24), £1Z2 + 2324 can be moved to
T1xo + 3Ty, T1X3+ Toxy, and x1x4 + ToX3.
When we specialize z; — r;, these become
(3.5) 179 + 1r37r4, T1T3 + ToT4, and r1re + 1roTs3.

It might not be the case that these are all K-conjugates, since not all 24 permutations of
the r;’s have to be in the Galois group. But the K-conjugate of a number in (3.5) is also in
(3.5), so we are inspired to look at the cubic

(X — (rira +737m0) ) (X — (rirg 4+ rorg)) (X — (rirg + rars)).

3Irreducibility of a quartic implies separability outside of characteristic 2, so we don’t have to assume
separability explicitly since our running hypothesis is that K does not have characteristic 2.
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Its coefficients are symmetric polynomials in the r;’s because the three factors are permuted
amongst themselves by any element of the Galois group (a subgroup of S4). So the coeffi-
cients must be in K by Galois theory. What are the coefficients of this cubic, in terms of
the coefficients of f(X)?

Write

(3.6) (X — (r1ro +7r3r4))(X — (1173 + 7974)) (X — (1174 + 72713)) = X® + AX? + BX + C.

We seek expressions for A, B, and C' as polynomials in the elementary symmetric functions
of the r;’s, which are a, b, ¢, and d up to sign. The value of A is easy:

A= —(7“17"2 + 71314 + 7173 + 1724 + 17174 + 7“27"3) = —b.
The others require more effort. Multiplying out (3.6),
B — 42 2 2 2 2 2 2 2 2
= rirors + r1ryr4 + 1173704 + ror3ry + 124 + 17373 + 11737y + ror3rs + rir3ry +
r1r2r§ + 7’17“27‘2 + 7‘%7’37“4
and
C = —(rire + r3ry)(r17ms + 1or4) (1174 + T273).

Using the algorithm in the proof of the symmetric function theorem,

B = s1s3 —4s4 = ac — 4d

and
C = —(s%s4 + 53 — 4s954) = —(ad + ¢* — 4bd).
Thus
(3.7) X3+ AX? + BX +C = X? - bX? + (ac — 4d) X — (a’d + ¢* — 4bd).

Definition 3.1. When f(X) is a quartic with roots r1, 79, r3, 74, its cubic resolvent R3(X)
is the cubic polynomial (3.6).

When f(X) is monic, we just checked that
R3(X) = X3 —bX? + (ac — 4d) X — (a*d + ¢* — 4bd).

This may or may not be irreducible over K.
It is useful to record a special case of the cubic resolvent. Letting a = b = 0,

(3.8) f(X)=X'"+cX +d= R3(X) = X3 —4dX - .

Example 3.2. We compute the Galois group of X% — X — 1 over Q. This polynomial is
irreducible over Q since it is irreducible mod 2. By (3.8), the cubic resolvent of X4 — X — 1
is X3 +4X — 1, which is irreducible over Q (&1 are not roots). That shows the splitting
field of X* — X — 1 contains a cubic subfield (namely Q(ri72 + r374)), so the Galois group
of X* — X — 1 over Q has order divisible by 3. The splitting field also contains Q(r1), so
the Galois group is also divisible by 4. Therefore the Galois group is either A4 or Sy. The
discriminant of X* — X — 1 is —283, which is not a rational square, so the Galois group
must be Sy.

Example 3.3. Let’s determine the Galois group of X* + 8X + 12 over Q. First we show
the polynomial is irreducible. If it is reducible then it has a linear factor or is a product of
two quadratic irreducibles. There is no rational root (a rational root would be an integer
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factor of 12, and they are not roots), so there is no linear factor. To rule out two quadratic
irreducible factors over Q, consider the mod 5 irreducible factorization

XY 48X +12= (X —4)(X3+4X%+ X +2) mod 5.

If X*+ 8X + 12 were a product of two quadratics over Q, it would be a product of two
(monic) quadratics over Z, and compatibility with the mod 5 factorization above would
force there to be at least two roots mod 5, which there are not.

By (3.8), the cubic resolvent of X* +8X +12 is X3 —48X — 64, which is irreducible mod 5
and thus is irreducible over Q, so the Galois group of X*+8X 412 over Q has size divisible
by 3 (and 4), so the Galois group is either A4 or S;. The discriminant of X* +8X + 12 is
331776 = 5762, a perfect square, so the Galois group is Ay.*

Theorem 3.4. The quartic f(X) and its cubic resolvent R3(X) have the same discriminant.
In particular, R3(X) is separable since f(X) is separable.

Proof. A typical difference of two roots of R3(X) is

(rirg + rary) — (rirs +rory) = (r1 — ra)(ro — 13).
Forming the other two differences, multiplying, and squaring, we obtain disc R3 = disc f. [
Remark 3.5. There is a second polynomial that can be found in the literature under
the name of cubic resolvent for f(X). It’s the cubic whose roots are (r1 + r2)(rs + r4),
(r1 + r3)(ra + r4), and (r1 + r4)(r2 + r3). This amounts to exchanging additions and
multiplications in the formation of the resolvent’s roots. An explicit formula for the cubic
with these roots, in terms of the coefficients of f(X), is

X3 —20X2 + (b® + ac — 4d) X + (a®d + ¢* — abe),
which is like the formula for R3(X) in (3.7), but the X-coefficient of R3(X) is simpler. This
alternate resolvent, like R3(X), has the same discriminant as f(X). We will not use it.

Let Gy be the Galois group of f(X) over K.

Theorem 3.6. With notation as above, Gy can be described in terms of whether or not
disc f is a square in K and whether or not R3(X) factors in K[X], according to Table 4.

disc f in K | R3(X) in K[X] | Gy
#0 irreducible Sy
=0 1rreducible Ay
£ 0 reducible Dy or Z/4Z
=0 reducible |4
TABLE 4.

Proof. We check each row of the table in order.

disc f is not a square and R3(X) is irreducible over K: Since disc f # O, Gy ¢ Ay.
Since R3(X) is irreducible over K and its roots are in the splitting field of f(X) over
K, adjoining a root of R3(X) to K gives us a cubic extension of K inside the splitting field

4 For a diagram of subfields of the splitting field, see Example 4.15 in https://kconrad.math.uconn.edu/
blurbs/galoistheory/galoisaspermgp.pdf.
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of f(X), so #Gy is divisible by 3. It’s also divisible by 4, so Gy = S4 or A4, which implies
Gy = Sy. This is like Example 3.2.

disc f is a square and R3(X) is irreducible over K: We have Gy C A4 and #G is divis-
ible by 3 and 4, so Gy = A4. This is like Example 3.3.

disc f is not a square and R3(X) is reducible over K: Since disc f # O, Gy is not in Ay,
so Gy is Sy, Dy, or Z/4Z. We will show Gy # Sy.

What distinguishes Sy from the other two choices for G is that Sy contains 3-cycles. If
Gy = S4 then (123) € Gy. Applying this hypothetical automorphism in the Galois group
to the roots of R3(X) carries them through a single orbit:

1Ty + 137y V> ToT3 + 7174 > 13T 4+ rorg V> 11Ty + 13Ty

These numbers are distinct since R3(X) is separable. At least one root of R3(X) lies in K,
so the G p-orbit of that root is just itself, not three numbers. We have a contradiction.
disc f is a square and R3(X) is reducible over K: The group Gy lies in Ay, so Gy =V
or Gy = Ay. We want to eliminate the second choice. As in the previous case, we can
distinguish V' from A4 using 3-cycles. There are 3-cycles in A4 but not in V. If there were
a 3-cycle on the roots of f(X) in G then applying it to a root of R3(X) shows all the roots
of R3(X) are in a single G g-orbit, which is a contradiction since R3(X) is (separable and)
reducible over K. Thus Gy contains no 3-cycles. [l

Table 5 gives some examples of Galois group computations over Q using Theorem 3.6.
The discriminant of f(X) is written as a squarefree number times a perfect square and
R3(X) (computed from (3.8)) is factored into irreducibles over Q.

f(X) disc f R3(X) Gy
Xt X -1 —283 X3 44X -1 Sy
X4 42X +2 |101-42 X3 —-8X —4 Sy
X4 4+8X +12 | 5762 X3 — 48X — 64 Ay

X4+3X+3 |21-152| (X +3)(X?-3X—-3) | DyorZ/AZ

X4 45X +5 | 5552 | (X —5)(X2+5X+5) | Dyor Z/4AZ

X4 436X 463 | 43202 | (X —18)(X +6)(X + 12) 1%
TABLE 5.

Example 3.7. Let F' be a field and u be transcendental over F. In F'(u)[X], the polynomial
X* 4+ uX + u is irreducible. Its discriminant is —27u* + 256u® = u3(256 — 27u). When F
doesn’t have characteristic 2 or 3, the discriminant has a simple factor 256 — 27u, so it is
not a square. When F has characteristic 3, the discirminant is 256u3 = 3, which is not a
square. Therefore the discriminant is not a square when F' doesn’t have characteristic 2.

The cubic resolvent of X% + uX + u is X3 — 4uX — u?, which is irreducible in F(u)[X]
since it is a cubic without roots in F(u) (for degree reasons). Theorem 3.6 tells us the
Galois group of X4 +uX + u over F(u) is Sy.

By Theorem 3.6, R3(X) is reducible over K only when Gy is Dy, Z/4Z, or V. In the
examples in Table 5 of such Galois groups, R3(X) has one root in Q when Gy is Dy or
Z/AZ and all three roots are in Q when G is V. This is a general phenomenon.
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Corollary 3.8. With notation as in Theorem 3.6, Gy = V if and only if R3(X) splits
completely over K and Gy = Dy or Z/4Z if and only if R3(X) has a unique root in K.

Proof. The condition for G to be V' is: disc f = O and R3(X) is reducible over K. Since
disc R3 = disc f, Gy = V if and only if disc R3 is a square in K and Rj3 is reducible over K.
By Theorem 2.8, a splitting field of R3(X) over K is K(r,+/disc R3), where r is any root of
R3(X). Therefore Gy =V if and only if R3 splits completely over K.

The condition for Gy to be Dy or Z/4Z is: disc f # O in K and R3(X) is reducible over
K. These conditions, by Theorem 2.8 for the cubic R3(X), are equivalent to R3(X) having
a root in K but not splitting completely over K, which is the same as saying R3(X) has a
unique root in K. ]

Theorem 3.6 does not decide between Galois groups D4 and Z/4Z. The following theorem
provides a partial way to do this over Q, by checking the sign of the discriminant.

Theorem 3.9. Let f(X) be an irreducible quartic in Q[X]. If Gy = Z/4AZ then disc f > 0.
Therefore if Gy is Dy or Z/4Z and disc f <0, Gy = Dj.

Proof. If Gy = Z/4Z, the splitting field of f(X) over Q has degree 4. Any root of f(X)
already generates an extension of Q with degree 4, so the field generated over K by one
root of f(X) contains all the other roots. Therefore if f(X) has one real root it has 4 real
roots: the number of real roots of f(X) is either 0 or 4.

If f(X) has 0 real roots then they fall into complex conjugate pairs, say z and Z and w
and w. Then disc f is the square of

(39) (z-=2)(z—w)(z—W)E—-w)(Z-0)(w—w) = |z —w|*|z — @z - 2)(w — ).

The differences z — z and w — W are purely imaginary (and nonzero, since z and w are not
real), so their product is real and nonzero. Thus when we square (3.9), we find disc f > 0.

If f(X) has 4 real roots then the product of the differences of its roots is real and nonzero,
so disc f > 0. O

Example 3.10. The polynomial X* + 4X? — 2, which is irreducible by the Eisenstein
criterion, has discriminant —18432 and cubic resolvent X3 —4X24+8X —32 = (X —4)(X2%+8).
Theorem 3.6 says its Galois group is Dy or Z/4Z. Since the discriminant is negative,
Theorem 3.9 says the Galois group must be Dy.

Theorem 3.9 does not distinguish Dy and Z/4Z as Galois groups when disc f > 0, since
some polynomials with Galois group D4 have positive discriminant. For example, we can’t
decide yet in Table 5 if X* +5X + 5 has Galois group Dy or Z/4Z over Q.

Remark 3.11. Any quartic in Q[X], reducible or not, has its nonreal roots coming in
complex-conjugate pairs, so a separable quartic f(X) has either 0, 2, or 4 nonreal roots,
and thus 4, 2, or 0 real roots respectively. The computation in the proof of Theorem 3.9
shows disc f > 0 if f(X) has 0 or 4 real roots, whether or not f(X) is irreducible. When
f(X) has 2 real roots, disc f < 0.

Remark 3.12. More careful methods lead to a stronger conclusion in Theorem 3.9: if
Gy = Z/AZ then disc f is a sum of two rational squares. This is a much stronger constraint
on the condition Gy = Z/4Z than saying disc f > 0, and can be used quite effectively to
show a Galois group is not Z/4Z in case disc f > 0. But it is not an if and only if criterion:
some quartics with Galois group D4 have a discriminant that is a sum of two squares.
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4. GALOIS GROUPS OF QUARTICS: Dy AND Z/4AZ

In this section we develop a method that separates Dy from Z/4Z as Galois groups of
quartics Let f(X) € K[X] be an irreducible quartic where K does not have characteristic
2. By Theorem 3.6, G is D4 or Z/4Z if and only if

A :=disc f # O in K and R3(X) is reducible over K.

When this happens, Corollary 3.8 tells us R3(X) has a unique root 7’ in K.

Theorem 4.1 (Kappe, Warren). Let K be a field not of characteristic 2, f(X) = X* +
aX3+bX?+cX +d € K[X], and A = disc f. Suppose A # 0 in K and R3(X) is reducible
in K[X| with unique root r' € K. Then Gy = Z/AZ if the polynomials X* + aX + (b—1")
and X% — ' X +d split over K(v/A), while Gy = Dy otherwise.

Proof. Index the roots r1, 73, 73,74 of f(X) so that ' = r17ry +r3ry. Both Dy and Z/47Z, as
subgoups of S4, contain a 4-cycle. (The elements of order 4 in Sy are 4-cycles.) In Table 6
we describe the effect of each 4-cycle in S4 on rire + r3r4 if the 4-cycle were in the Galois
group. The (distinct) roots of R3(X) are in the second row, each appearing twice.

o | (1234) (1432) (1243) (1342) (1324) (1423)
o(rirg+mrsry) ‘ ror3+rary rari+rers rorg+rirs r3ri+rare r3ratroriy rars+rire
TABLE 6.

Since riry + rary is fixed by G, the only possible 4-cycles in Gy are (1324) and (1423).
Both are in Gy since at least one is and they are inverses. Let o = (1324).

If Gy = Z/AZ then Gy = (o). If Gy = Dy then (3.1) tells us Gy = ((1324),(12)) =
{(1),(1324), (12)(34), (1423), (12), (34), (13)(24), (14)(23) } and the elements of G ¢ fixing 7
are (1) and (34). Set 7 = (34). Products of ¢ and 7 as disjoint cycles are in Table 7.

1 o o2 o3 T oT o7 o3T
(1) (1324) (12)(34) (1423) (34) (13)(24) (12) (14)(23)
TABLE 7.

The subgroups of (o) and (o, 7) look very different. See the diagrams below, where the
subgroup lattices are written upside down.

{id}
// \\
{id} (T) (o?T) (o?) (oT) (o3T)
IO -
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Corresponding to the above subgroup lattices we have the following subfield lattices of
the splitting field, where L in both cases denotes the unique quadratic extension of K inside

K(r1): if Gf = Z/4Z then L corresponds to (02), while if Gy = Dy then L corresponds to
(02, 7). Since A # O in K, [K(VA) : K] = 2.

K(Tla r2,73, T4)

K(r1) // ? \\7 ?

r3) . . .

~_ 17

? K(VA)
/

L
K K

If Gy = Z/AZ, then L = K(v/A) since there is only one quadratic extension of K in the
splitting field.

If Gy = Dy, then let’s explain how, in the subgroup and subfield lattice diagrams above,
we know K (r1) corresponds to (1), K(r3) corresponds to (027), and K(v/A) corresponds
to (02,07). The degree [K(r1) : K] is 4, so its corresponding subgroup in Dy = (o, )
has order 8/4 = 2 and 7 = (34) fixes 1 and has order 2. Similarly, [K(r3) : K| = 4 and
0?1 = (12) fixes 73. The subgroup corresponding to K(v/A) is the even permutations in
the Galois group, and that is {(1), (12)(34), (13)(24), (14)(23)} = (02, 07).

Although the two cases Gy = Z/4Z and Gy = D, are different, we are going to develop
some common ideas for both of them concerning the quadratic extensions K(r1)/L and
L/K before we distinguish the two cases from each other.

If Gy = Z/AZ, Gal(K(r1)/L) = {1,0?}. If Gy = D4, Gal(K(r1)/L) = (¢%,7)/{T) =
{1,0%}. So in both cases, the L-conjugate of r; is ¢2(r1) = ro and the minimal polynomial
of r1 over L must be

(X — 7”1>(X — 7“2) = X2 — (7“1 + T‘Q)X + r1ra.
Therefore r1 +rg and 172 are in L. Since [K(r1) : K| = 4, this polynomial is not in K[X]:
(4.1) ri+ro € K or riry € K.

If Gy = Z/AZ then Gal(L/K) = (0)/(0?) = {1,5}, and if Gy = Dy then Gal(L/K) =
(o,7)/{0?,7) = {1,5}. The coset of ¢ in Gal(L/K) represents the nontrivial coset both
times, so L? = K. That is, an element of L fixed by o is in K. Since o(ry + ro) =13 + 14
and o(riry) = rary, the polynomials

(42) (X = (ri+r))(X = (rs+714)) = X> = (r1 + 12+ 13+ 1) X + (11 +72)(r3 + 74),
and
(4.3) (X — 7“1’/“2)(X — 7'37"4) = X2 — (?”17"2 + ?"3T4)X + r1ror3ry

have coefficients in L7 = K.
The linear coefficient in (4.2) is a and the constant term is

(ri+ro)(rs+ra) =rirg +rira +rors +rorg = b — (rira +r3r4) = b — r,
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so (4.2) equals X2 +aX + (b—1'). The quadratic polynomial (4.3) is X2 — /X +d. When
r1+ry & K, (4.2) is irreducible in K[X], so its discriminant is a nonsquare in K, and if
r1 + 12 € K then (4.2) has a double root and its discriminant is 0. Similarly, (4.3) has a
discriminant that is a nonsquare in K or is 0. Therefore the splitting field of (4.2) or (4.3)
over K is either L or K and (4.1) tells us at least one of (4.2) and (4.3) has a nonsquare
discriminant in K (so has splitting field L).

Since r; + ro and riry are in L and [L : K] = 2, each one generates L over K if it is not
in K. This happens for at least one of the two numbers, by (4.1).

First suppose G; = Z/4Z. Then L = K(vVA),s0 X?+aX + (b—7') and X2 —+'X +d
both split completely over K (v/A), since their roots are in L.

Next suppose Gy = D4. Then L # K(V/A). By (4.1) at least one of (4.2) or (4.3) is
irreducible over K, so its roots generate L over K and therefore are not in K (v/A). Thus
the polynomial in (4.2) or (4.3) will be irreducible over K (v/A) if it’s irreducible over K.

Since the conclusions about the two quadratic polynomials over K (v/A) are different
depending on whether G is Z/4Z or Dy, these conclusions tell us the Galois group. ([l

Remark 4.2. The proof of Theorem 4.1 by Kappe and Warren shows Gy = Z/4Z if and
only if X2 + aX + (b — ') and X2 — +/X + d split completely over K (/A), thereby not
having to treat the case Gy = Dy directly.

Corollary 4.3. When K does not have characteristic 2 and
F(X)=X"+aX3+bX%*+cX +d
is an irreducible quartic in K[X], define
A =disc f and R3(X) = X> — bX? + (ac — 4d)X — (a’d + ¢ — 4bd).
The Galois group of f(X) over K is described by Table 8.

Ain K | R3(X) in K[X] | (a® —4(b—1'))A and (r'"* —4d)A | Gy
#0 irreducible Sy
=0 irreducible Ay
£ 0 root ' € K at least one # 0O in K D,
£ 0 root ' € K both = 0O in K Z/AZ
=0 reducible v

TABLE 8.

Proof. The polynomials X2 +aX + (b—17") and X2 — ' X +d split completely over K(v/A)
if and only if their discriminants a® — 4(b — ') and 7’2 — 4d are squares in K (v/A). We saw
in the proof of Theorem 4.1 that these discriminants are either 0 or nonsquares in K. A
nonsquare in K is a square in K(v/A) if and only if its product with A is a square, and
this is vacuously true for 0 also. g

In Table 9 we list the Galois groups over Q of several quartic trinomials X4+ cX +d. All
but the last is Eisenstein at some prime; check as an exercise that the last polynomial in
the table is irreducible over Q. Verify all of the Galois group computations using Corollary
4.3. If you pick a quartic in Q[X] at random it probably will be irreducible and have Galois
group Sy, or perhaps Ay if by chance the discriminant is a square, so we only list examples
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in Table 9 where the Galois group is smaller, which means the cubic resolvent is reducible.
Since a = b =0, so a®> —4(b—1'") = 41’, to decide when Gy is Dy or Z/4Z we need to decide
when the rational numbers 4r'A and (r? — 4d)A are both squares in Q.

X'+ cX +d A X3 —4dX - ¢* 4r'A and (r? —4d)A | Gy
X443X+3 | 21-152 (X +3)(X? - 3X —3) —56700, —14175 Dy
X4 45X +5 5 - 552 (X —5)(X?2+5X +5) 5502, 2752 Z/AZ
X4 48X +14 | 25442 (X —8)(X2+8X +8) 46082, 21762 Z/AZ
X'+ 13X +39 | 13-1053% | (X — 13)(X?+ 13X +13) | 273782, 13689% | Z/4Z
X4 436X +63| 4320% | (X —18)(X +6)(X +12) irrelevant 1%
TABLE 9.

Remark 4.4. Remark 2.4 about cubics also holds for quartics: don’t forget to check that
your quartic is irreducible before applying Corollary 4.3. For example, X +4 has discrimi-
nant 1282 and cubic resolvent X3—16X = X (X +4)(X —4). Such data (square discriminant,
reducible resolvent) suggest the Galois group of X% +4 over Q is V, but X* +4 is reducible:
it factors as (X2 +2X +2)(X2—2X +2). Both factors have discriminant —4, so the splitting
field of X* + 4 over Q is Q(v/—4) = Q(i) and the Galois group of X* + 4 over Q is cyclic
of order 2.

As another example, X4 43X + 20 has discriminant A = 77-1632 and its cubic resolvent
is (X —9)(X?+9X + 1), which suggests the Galois group is Dy or Z/4Z. Since r' = 9 and
(r? —4d)A = 77-163% is not a square, it looks like the Galois group is Dy, but the quartic
is reducible: it is (X2 +3X +4)(X? —3X +5). The factors have discriminants —7 and —11,
so the splitting field of X* + 3X + 20 over Q is Q(v/—7,+/—11), whose Galois group over
QisV.

Exercise. Show X* + 24X + 36 has Galois group A4 over Q and X* + 24X + 73 has
Galois group V over Q. Remember to prove both polynomials are irreducible over Q first!

From Corollary 4.3 we obtain the following Galois group test for irreducible quartics of
the special form X* + bX? + d.

Corollary 4.5. Let f(X) = X* 4+ bX?% +d be irreducible in K[X], where K does not have
characteristic 2. Its Galois group over K is V, Z/AZ, or D4 according to the following
conditions:

(1) Gp=Vifd=0"in K,

(2) Gy =Z/AZ if d # 0 in K and (b* — 4d)d = O in K,

(3) Gy =Dy ifd# 0 in K and (b* —4d)d # 0 in K.

In the second condition, we could simplify the hypothesis to just (b*> — 4d)d = O in K
since this forces d # O: if (b> — 4d)d = O and d = O then b? — 4d = O, which contradicts
irreducibility of X* + bX? + d.

Proof. The discriminant of X* 4+ bX? + d is 16d(b> — 4d)?. By hypothesis the discriminant
is nonzero, so up to square factors it is the same as d.
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The cubic resolvent is
X3 —bX? — 4dX + 4bd = (X — b)(X? — 4d),

which is reducible over K with b as a root. In the notation of Corollary 4.3, if A is not a
square then r' = b, so "2 — 4d = b? — 4d and a® — 4(b — ') = 0. Translating Corollary 4.3
into the three conditions above is left to the reader. ([l

In Table 10 are some examples over Q.

XY+ bX%24+d| d | (b —4d)d| Gy
X*44X24+1| 1 12 1%
Xt—4x?2+2] 2 16 Z/AZ
X4 4+4X2 -2 -2 —16 Dy
X4 +5X24+2] 2 34 D,
X4-5X2+5| 5 25 Z/AZ
X*—-5X2+3] 3 13 Dy
TABLE 10.

The roots of a polynomial X% + bX? + d can be written down explicitly, using iterated
square roots. So it will come as no surprise that Corollary 4.5 was known before Corollary
4.3. The earliest reference to Corollary 4.5 which I know is an exercise in [1, p. 53].

Example 4.6. We’ll use Corollary 4.5 to show when n is nonzero in Z and not a perfect
square that
() [Q(Wn++vn): Q] =4,
(i) Q(yv/n ++/n)/Q is Galois if and only if n = m? + 1 for some m € Z*, in which case
its Galois group is Z/4Z, and otherwise its Galois closure has Galois group Djy.

For example, using n = 10 = 32 4+ 1, Q(1/10 +1/10)/Q is Galois with Galois group Z/4Z.

To prove (i), set @ = y/n + y/n, so a* = n+/n. Then (a®*—n)? = n. Expanding this out,
a is a oot of f(X) = X* — 2nX2% + n(n — 1). Therefore [Q(\/n + /1) : Q] < 4. If we can
directly show that f(X) is irreducible over Q, then [Q(\/n + v/n) : Q] = [Q(a) : Q] = 4.
When n is prime, or more generally when n has a prime factor with multiplicity 1, f(X) is
Eisenstein at that prime and thus is irreducible over Q, so (i) is proved for that n.

When n is a general nonsquare integer, rather than prove (i) by showing f(X) is irre-
ducible over Q, we’ll prove (i) by showing [Q(y/n + v/n) : Q(v/n)] = 2, since we already
know [Q(y/n) : Q] = 2 as n is not a perfect square. Since [Q(\/n+ /1) : Q(v/n)] < 2,
if [Q(v/n++/n) @ Q(v/n)] # 2 then the degree is 1, so v/n++/n € Q(y/n). Thus
vVn++vn = r+ sy/n where r,s € Q. We'll show r is an integer and then get a con-
tradiction. Our reasoning will be somewhat idiosyncratic, so the reader might want to skip
the next paragraph and move on to proving (ii).

Squaring both sides of \/n++/n = r + sy/n and equating coefficients of 1 and /n,
n=r?+mns? and 1 = 2rs, so r and s are nonzero and s = 1/(2r). Thus n = r2 + n/(4r?).
Clearing denominators, 4nr? = 4r*+n. Multiplying both sides by 4 and bringing everything
to one side, (2r)* —4n(2r)? +4n = 0. That makes the rational number 2r a root of a monic
polynomial in Z[X], so by the rational roots theorem, 2r € Z. That makes —4n(2r)? + 4n
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an even number, so (27)% is even, and thus 2r is even, so r € Z. Rewrite 4r* —4nr?4+n =0
as (2r2 —n)? = n(n —1), so the consecutive (relatively prime) integers n and n — 1 are both
squares or both negative squares, which makes {n,n — 1} either {1,0} or {0, —1}. Thus n
is 1 or 0, contradicting n not being a perfect square. That completes the proof of (i).

To prove (ii), we apply Corollary 4.5 with b = —2n and d = n(n — 1): when f(X) =
X*—2nX?+n(n—1), Gy up to isomorphism depends on whether or not d and (b* — 4d)d
are nonzero squares in Q. Since n and n — 1 are relatively prime and n is not a square, the
only way n(n — 1) can be a nonzero square is when n and n — 1 are both negative squares,
which implies n = 0: that’s impossible. Since (b — 4d)d = 4n?(n — 1), this is a nonzero
square in Q if and only if n — 1 = m? where m € Z*, so n = m? + 1. Thus Gy = 7Z/AZ
when n =m?+1 and G 7 = Dy otherwise.

A mistake made at some point by many students learning Galois theory is to think that
when F/K is Galois and E/F' is Galois, F/K is also Galois. The standard counterexample
is Q(v/2)/Q and Q(v/2)/Q(v/2): quadratic extensions outside characteristic 2 are Galois,
but Q(+/2)/Q is not Galois. Using Corollary 4.5, we can describe exactly when a tower of
two quadratic extensions is a Galois extension outside of characteristic 2.

Corollary 4.7. Let K be a field not of characteristic 2, F/K be a quadratic extension,
and E/F be a quadratic extension, with F = K(v/d) and E = F(\ a4+ bV/d) for some
d € K—K? and some a+b\Vd € F—F?, wherea € K andb € K*. Then E = K(\/a + bV/d)
and f(X) := X* —2aX? + a® — db? is the minimal polynomial of v a +bVd in K[X].

When f(X) above is irreducible over K, E/K is Galois under conditions (1) and (2)
below:

(1) Gp=V ifa®>—db* =0 in K,

(2) Gy =Z/AZ if a®> —dV® # 0 in K and d(a* — db*) =0 in K,

(3) Gy =Dy if a*> —db®* # 0 in K and d(a® — db*) # 0 in K,

In the first two cases, the splitting field of f(X) over K is K(v/a + bV/d).

The condition b # 0 is imposed in order to avoid the trivial case that E = F'(y/a) with
a € K, making E = K(v/d, \/a), which is obviously Galois over K (of degree 2 or 4).

Proof. Since F/K and E/F are quadratic extensions, [F : K] = 4. Set r = Va + bV/d.
We have E = F(r) = K(Vd)(r) = K(r) since Vd = (r? — a)/b € K(r), so r has degree 4
over K. It is easy to check algebraically that r is a root of f(X) = X* — 2aX? + a? — db?,
which has degree 4 in K[X], so this must be the minimal polynomial of r over K. It’s also
casy to check that —r and +v/a — bv/d are roots of f(X) = X* — 2aX? + a® — db®. Set
s = Va—bvd. You can check f(X) is separable either by showing its roots +r and =+s
are all distinct (here we need b # 0) or by noting that disc(f(X)) = 256b*d?(a® — db?) # 0.
Since £ = K(r), E/K is Galois if and only if |G| = 4.
When f(X) = X* — 2aX? 4 a® — db? is irreducible over K, applying Corollary 4.5 to

f(X) tells us that

(1) Gg=Vifa®>—db*=0in K,

(2) Gy =Z/AZ if a® — db* # O in K and 4db*(a? — db*) = O in K,

(3) Gy =Dy if a®> —db® # O in K and 4db*(a® — db?) # O in K,

In the last two conditions, the nonzero square factor 4b? in 4db?(a? — db?) is not needed. [J
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Example 4.8. Let £ = Q(v/2+v?2),50 E D Q(v2) D Q. Usingd =2,a=2,and b = 1,
the polynomial f(X) = X* —4X? + 2 is irreducible over Q since it is Eisenstein at 2. Here
a? — db®> = 2 is not a square in Q and d(a? — db?) = 2(2) = 4 = O, so £/Q is Galois with
Gal(E/Q) = Z/4Z. This is the second example in Table 10 and it is Example 4.6 when
n = 2. The only quadratic subfield of E is Q(v/2) since Gal(E/Q) is cyclic.

Example 4.9. Let £ = Q(v/2+V3), s0 E D Q(v3) D Q. Using d = 3, a = 2, and
b = 1, the polynomial f(X) = X* — 4X? 4 1 is irreducible over Q since f(X + 1) =
X4 +4X3 +2X?% — 4X — 2 is Eisenstein at 2. Here a®> —db?> =4 -3 =1=0,s0 E/Q is
Galois with Gal(E/Q) = V. There are three quadratic subfields of E: Q(+/3), Q(v/2), and
Q(V/6). It is not obvious that v/2 or v/6 is in E. To show /2 € E, if r is a root of f(X)
then r3 — 3r is a square root of 2 (that is, (r® — 3r)? = 2). So in fact E = Q(v/2,V3).
This example is not in Table 10; our polynomial f(X) = X* — 4X? + 1 looks similar
to the first polynomial g(X) = X* 4+ 4X? + 1 Table 10, and the Galois groups of f and g
over Q are both V, but the splitting fields of f and g over Q are not the same: for f it
is E = Q(v/2 ++/3), which has a real embedding, while for g it is Q(v/—2 + v/3), which
has no real embedding. (If 7’ is a root of g(X) then 73 + 37’ is a square root of —2, so

Q(V-2+V3) =Q(vV-2,v3).)

Example 4.10. Let £ = Q(v/1+v/2),50 E D> Q(v/2) D Q. Usingd=2and a = b = 1,
the polynomial f(X) = X* — 2X? — 1 is irreducible over Q since f(X +1) = X% +4X3 +
4X? — 2 is Eisenstein at 2. Here a®> — db®> = —1 # O in Q and d(a? — db*) = —2 # O, so
E/Q is not Galois and G = Dy.

APPENDIX A. THE OLD DISTINCTION BETWEEN D4 AND Z/47Z

Before Kappe and Warren proved Theorem 4.1, the following theorem was the classical
procedure to decide between Dy and Z/4Z as Galois groups (outside of characteristic 2).

Theorem A.1l. Let f(X) € K[X] be an irreducible quartic, where K does not have char-
acteristic 2, and set A = disc f. Suppose A is not a square in K and Rs(X) is reducible in
K[X], so Gy is Dy or Z/AZ.

(1) If f(X) is irreducible over K(v/A) then Gy = Dy.

(2) If f(X) is reducible over K(vVA) then Gy = Z/AZ.

Proof. We will make reference to the field diagrams for the two possible Galois groups in
Section 4.

When Gy = Dy, the field diagram in this case shows the splitting field of f(X) over K
is K(r1,VA). Since [K(r1,VA) : K] = 8, [K(r1,VA) : K(V/A)] = 4, so f(X) must be
irreducible over K (vA).

When G; = Z/4AZ, the splitting field of f(X) over K(v/A) has degree 2, so f(X) is
reducible over K (vA).

Because the different Galois groups imply different behavior of f(X) over K(v/A), these
properties of f(X) over K(v/A) tell us the Galois group. O

Example A.2. Taking K = Q, the polynomials X* 43X 43 and X4+ 5X + 5 from Table
5 both fit the hypotheses of Theorem A.1. We will use Theorem A.1 to show the Galois
groups over Q are as listed in Table 11.



GALOIS GROUPS OF CUBICS AND QUARTICS (NOT IN CHARACTERISTIC 2) 17

FX) | discf | Ry(X) | Gy
X4 43X +3[21-152 | (X +3)(X2-3X -3)| Dy
X4 45X +5| 5552 | (X —5)(X2+5X +5) | Z/AZ

TABLE 11.

To compute the Galois groups using Theorem A.1, we need to decide if X% +3X + 3 is
irreducible over Q(v/21) and if X* 4 5X + 5 is irreducible over Q(v/5). Theorem A.1 says
that when the polynomial is irreducible over the quadratic field, its Galois group over Q is
Dy. If it factors over the quadratic field then the Galois group is Z/47Z.

These quartics are both irreducible over Q, so their roots have degree 4 over Q and
therefore don’t lie in a quadratic field. That means if either of these quartics factors over
a quadratic field, it must be a product of two quadratic factors rather than into a linear
times a cubic.

To decide if X*+3X +3 is irreducible over Q(v/21), we set up a hypothetical factorization

(A1) X* 43X +3=(X24+ AX + B)(X>+CX + D)
and read off the algebraic conditions imposed on the coefficients:
(A.2) A+C=0, B+D+AC=0, AD+BC =3, BD =3.

Therefore C = —A and D = —AC — B = A? — B, so the third condition in (A.2) becomes
A(A? — 2B) = 3. Necessarily A # 0 and we can solve for B:
A3 -3

B =
2A

Therefore the condition BD = 3 becomes
A3 -3 ( 5, A3-3 A% —9
3= 94 <A_ 2A>_ 442

Clearing the denominator,
(A.3) 0= A% —124% — 9 = (A% + 3)(A% — 342 - 3).

This equation needs to have a solution A in Q(v/21). The condition A? 4+ 3 = 0 obviously
has no solution in Q(v/21) C R. Since X* — 3X?2 — 3 is irreducible over Q, its roots have
degree 4 over Q and therefore can’t lie in Q(\/ﬁ) So we have a contradiction, which proves
X* 43X + 3 is irreducible over Q(\/ﬁ), and that means the Galois group of X4 +3X +3
over Q is D4. Compare the way this method treats X* + 3X + 3 and the earlier procedure
in Table 9!

If we set up a hypothetical factorization of X* 45X +5 over Q(v/5) as in (A.1), but with
coefficients of 5 in place of 3 on the left side of (A.1), we get constraints similar to (A.2),
and the analogue of (A.3) is

(A.4) 0= A% — 2042 — 25 = (A% — 5)(A* + 5A% +5),
which has an obvious solution in Q(\/g): A = /5. This leads to the factorization

X* 45X +5= <X2+\/5X+5_2‘/5> (XQ—\/5X+5+2\/5>,

so X* 4+ 5X + 5 has Galois group Z/4Z over Q.
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It’s intriguing that to solve for A, the right sides of both (A.3) and (A.4) equal the cubic
resolvent from Table 11 evaluated at A2. Is A always a root of R3(X?)? No. For example,
if

f(X)=X*+2X3 - 6X%2-2X +1
then its cubic resolvent (using (3.7)) is
R3(X) =X +6X% —8X — 32 = (X +2)(X*+4X — 16),
and in a factorization f(X) = (X% + AX + B)(X? + CX + D) computations similar to the
ones above show A is a root of
X0 —6X° 4 40X3 —20X? — 56X + 16 = (X? — 2X —4)(X? —4X3 —4X? + 16X —4),

which is not R3(X?). But it is R3(X? —2X —6). Further investigation into the relationship
between factorizations of f(X) and R3(X) is left to the reader.

As this example illustrates, Theorem A.1 is tedious to use by hand to distinguish between
Galois groups Dy and Z/4Z. The theorem of Kappe and Warren is a lot nicer. Of course
if you have access to a computer algebra package that can factor quartic polynomials over
quadratic fields, then Theorem A.l becomes an attractive method.
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