CONSTRUCTING ALGEBRAIC CLOSURES

KEITH CONRAD

Let K be a field. We want to construct an algebraic closure of K, i.e., an algebraic extension of K which is algebraically closed. It will be built as the quotient of a polynomial ring in a very large number of variables.

For each nonconstant monic polynomial $f(X)$ in $K[X]$, let its degree be n_f and let $t_{f,1}, \ldots, t_{f,n_f}$ be independent variables. Let $A = K[[t_{f,i}]]$ be the polynomial ring generated over K by independent variables doubly indexed by every nonconstant monic $f \in K[X]$ and $1 \leq i \leq n_f$. This is a very large polynomial ring containing K.

Since $K \subset A$, we can view all $f(X)$ in $A[X]$. Let’s make them all split in some $(A/I)[X]$. Let I be the ideal in A generated by the coefficients of powers of X in all the differences

$$f(X) - \prod_{i=1}^{n_f} (X - t_{f,i}) \in A[X]$$

as f runs over nonconstant monic polynomials in $K[X]$. These differences all lie in $I[X]$, so $f(X) \equiv \prod_{i} (X - t_{f,i})$ in $(A/I)[X]$.

We want to use a maximal ideal in place of I since working modulo a maximal ideal would give a complete splitting of all monic $f(X) \in K[X]$ over a field.

Lemma 1. The ideal I is proper: $1 \notin I$.

Proof. We will argue by contradiction and the main idea is to use the existence of a splitting field for finitely many polynomials in $K[X]$.

Suppose $1 \in I$. Then we can write 1 as a finite sum $\sum_{j=1}^{m} a_j c_j$, where $a_j \in A$ and $c_j \in I$: each c_j is a coefficient of some power of X in some difference

$$f_j(X) - \prod_{i=1}^{n_j} (X - t_{j,i}),$$

where n_j means $n_{f_j} = \deg f_j$. Since $f_j(X)$ is monic in $K[X]$ and $n_j = \deg(f_j)$, there is a (finite) field extension L/K over which the polynomials $f_1(X), \ldots, f_m(X)$ all split completely, say $f_j(X) = \prod_{i=1}^{n_j} (X - r_{j,i})$ in $L[X]$ for $j = 1, \ldots, m$. (Some numbers in the list $r_{j,1}, \ldots, r_{j,n_j}$ might be repeated.)

Using the roots $r_{j,i}$ of $f_1(X), \ldots, f_m(X)$, we can construct a ring homomorphism φ from $A = K[[t_{f,i}]]$ to L by substitution: φ fixes K, $\varphi(t_{f,i}) = r_{j,i}$ for $1 \leq i \leq n_j$, and $\varphi(t_{f_i}) = 0$ if f is not one of the f_j’s. Extend φ to a homomorphism $A[X] \rightarrow L[X]$ by acting on coefficients and fixing X. The polynomial difference in (1) is mapped by φ to

$$f_j(X) - \prod_{i=1}^{n_j} (X - r_{j,i}) = 0 \text{ in } L[X],$$

and a polynomial in $L[X]$ is 0 only when all of its coefficients are 0. Therefore each coefficient of the powers of X in (1) is mapped by φ to 0 in L. In particular, $\varphi(c_j) = 0$. Thus φ sends the equation $1 = \sum_{j=1}^{m} a_j c_j$ in A to the equation $1 = 0$ in L, and that is a contradiction. \qed
Since I is a proper ideal, Zorn’s lemma guarantees that I is contained in some maximal ideal m in A. (Probably I itself is not a maximal ideal, but I don’t have a proof of that.) The quotient ring $A/m = K[[t_{f,i}]]/m$ is a field and the natural composite homomorphism $K \to A \to A/m$ of rings let us view the field A/m as an extension of K (ring homomorphisms out of fields are always injective).

Theorem 2. The field A/m is an algebraic closure of K.

Proof. For a nonconstant monic $f(X) \in K[X]$ we have $f(X) - \prod_{i=1}^{n_f}(X - t_{f,i}) \in I[X] \subset m[X]$, so in $(A/m)[X]$ we have $f(X) = \prod_{i}(X - \bar{t}_{f,i})$, where $\bar{t}_{f,i}$ denotes $t_{f,i} \mod m$. Each $\bar{t}_{f,i}$ is algebraic over K (being a root of $f(X)$) and A is generated as a ring over K by the $t_{f,i}$’s, so A/m is generated as a ring over K by the $\bar{t}_{f,i}$’s. Therefore A/m is an algebraic extension field of K in which every nonconstant monic in $K[X]$ splits completely.

We will now show A/m is algebraically closed, and thus it is an algebraic closure of K. Set $F = A/m$. It suffices to show every monic irreducible $\pi(X)$ in $F[X]$ has a root in F. We have already seen that each nonconstant monic polynomial in $K[X]$ splits completely in $F[X]$, so let’s show $\pi(X)$ is a factor of some monic polynomial in $K[X]$. There is a root α of $\pi(X)$ in some extension of F. Since α is algebraic over F and F is algebraic over K, α is algebraic over K. That implies some monic $f(X)$ in $K[X]$ has α as a root. The polynomial $\pi(X)$ is the minimal polynomial of α in $F[X]$, so $\pi(X)\mid f(X)$ in $F[X]$. Since $f(X)$ splits completely in $F[X]$, $\alpha \in F$. \qed

Our construction of an algebraic closure of K is done, but we want to compare it with another construction to put the one above in context.

The idea of building an algebraic closure of K by starting with a large polynomial ring over K whose variables are indexed by polynomials in $K[X]$ goes back at least to Emil Artin. He used a large polynomial ring (somewhat smaller than the ring $K[[t_{f,i}]]$ we started with above) modulo a suitable maximal ideal to obtain an algebraic extension K_1/K such that every nonconstant polynomial in $K[X]$ has a root in K_1 (not, a priori, that they all split completely in $K_1[X]$). Then he iterated this construction with K_1 in place of K to get a new algebraic extension K_2/K_1, and so on, and proved that the union $\bigcup_{n} K_n$ (or, more rigorously, the direct limit of the K_n’s) contains an algebraic closure of K [2, pp. 544-545]. With more work, treating separately characteristic 0 and characteristic p, it can be shown [3] that Artin’s construction only needs one step: K_1 is an algebraic closure of K (so $K_n = K_1$ for all n, which is not obvious in Artín’s own proof). In other words, the following is true: if F/K is an algebraic extension such that every nonconstant polynomial in $K[X]$ has a root in F then every nonconstant polynomial in $F[X]$ has a root in F, so F is an algebraic closure of K.

Theorem 2 and its proof, which I learned from B. Conrad, is a variation on a proof by Zorn [6] in the paper where he first introduced Zorn’s lemma. It modifies Artin’s construction by using a larger polynomial ring over K in order to adjoin to K in one step a full set of roots – not just one root – of each nonconstant monic in $K[X]$, rather than adjoining just one root for each nonconstant monic polynomial. Adjoining a full set of roots at once makes it easier to prove the constructed field A/m is an algebraic closure of K. A similar construction, using a maximal ideal in a tensor product, is in [1, Prop. 4, p. A V 21].

Remark 3. That every field has an algebraic closure and that two algebraic closures of a field are isomorphic were first proved by Steinitz in 1910 in a long paper that created from scratch the general theory of fields as part of abstract algebra. The influence of this paper
on the development of algebra was enormous; for an indication of this, see [4]. Steinitz was hindered in this work by the primitive state of set theory at that time and he used the well-ordering principle rather than Zorn’s lemma (which only became widely known in the 1930s [6]). Steinitz’s proof of the existence of algebraic closures and their uniqueness up to isomorphism, together with his account of set theory, took up 20 pages [5, Sect. 19–21].

At the end of the proof of Theorem 2, the polynomial \(f(X) \) in \(K[X] \) with \(\alpha \) as a root can be taken to be irreducible over \(K \), so we could build an algebraic closure of \(K \) by defining the ideal \(I \) using just the monic irreducible \(f(X) \) in \(K[X] \) rather than all monic \(f(X) \) in \(K[X] \); the proofs of Lemma 1 and Theorem 2 carry over with no essential changes other than inserting the word “irreducible” in a few places. Finally, if we restrict the \(f \) in the construction of \(I \) to run over the monic separable polynomials in \(K[X] \), or the monic separable irreducible polynomials in \(K[X] \), then the field \(A/\mathfrak{m} \) turns out to be a separable closure of \(K \). The proof of Lemma 1 carries over with the \(f_j \) being separable (or separable irreducible), and in the proof of Theorem 2 two changes are needed: \(A/\mathfrak{m} \) is a separable algebraic extension of \(K \) since it would be generated as a ring over \(K \) by roots of separable polynomials in \(K[X] \), and we need transitivity of separability instead of algebraicity (if \(F/K \) is separable algebraic then each root of a separable polynomial in \(F[X] \) is separable over \(K \)).

References