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Let K be a field. We want to construct an algebraic closure of K, i.e., an algebraic
extension of K which is algebraically closed. It will be built as the quotient of a polynomial
ring in a very large number of variables.

For each nonconstant monic polynomial f(X) in K[X], let its degree be nf and let
tf,1, . . . , tf,nf

be independent variables. Let A = K[{tf,i}] be the polynomial ring generated
over K by independent variables doubly indexed by every nonconstant monic f ∈ K[X]
and 1 ≤ i ≤ nf . This is a very large polynomial ring containing K.

Since K ⊂ A, we can view all f(X) in A[X]. Let’s make them all split in some (A/I)[X].
Let I be the ideal in A generated by the coefficients of powers of X in all the differences

f(X)−
nf∏
i=1

(X − tf,i) ∈ A[X]

as f runs over nonconstant monic polynomials in K[X]. These differences all lie in I[X],
so f(X) ≡

∏
i(X − tf,i) in (A/I)[X].

We want to use a maximal ideal in place of I since working modulo a maximal ideal
would give a complete splitting of all monic f(X) ∈ K[X] over a field.

Lemma 1. The ideal I is proper: 1 6∈ I.

Proof. We will argue by contradiction and the main idea is to use the existence of a splitting
field for finitely many polynomials in K[X].

Suppose 1 ∈ I. Then we can write 1 as a finite sum
∑m

j=1 ajcj , where aj ∈ A and cj ∈ I:
each cj is a coefficient of some power of X in some difference

(1) fj(X)−
nj∏
i=1

(X − tfj ,i),

where nj means nfj = deg fj . Since fj(X) is monic in K[X] and nj = deg(fj). there
is a (finite) field extension L/K over which the polynomials f1(X), . . . , fm(X) all split
completely, say fj(X) =

∏nj

i=1(X − rj,i) in L[X] for j = 1, . . . ,m. (Some numbers in the
list rj,1, . . . , rj,nj might be repeated.)

Using the roots rj,i of f1(X), . . . , fm(X), we can construct a ring homomorphism ϕ from
A = K[{tf,i}] to L by substitution: ϕ fixes K, ϕ(tfj ,i) = rj,i for 1 ≤ i ≤ nj , and ϕ(tf,i) = 0
if f is not one of the fj ’s. Extend ϕ to a homomorphism A[X] → L[X] by acting on
coefficients and fixing X. The polynomial difference in (1) is mapped by ϕ to

fj(X)−
nj∏
i=1

(X − rfj ,i) = 0 in L[X],

and a polynomial in L[X] is 0 only when all of its coefficients are 0. Therefore each coefficient
of the powers of X in (1) is mapped by ϕ to 0 in L. In particular, ϕ(cj) = 0. Thus ϕ sends
the equation 1 =

∑m
j=1 ajcj in A to the equation 1 = 0 in L, and that is a contradiction. �
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Since I is a proper ideal, Zorn’s lemma guarantees that I is contained in some maximal
ideal m in A. (Probably I itself is not a maximal ideal, but I don’t have a proof of that.)
The quotient ring A/m = K[{tf,i}]/m is a field and the natural composite homomorphism
K → A→ A/m of rings let us view the field A/m as an extension of K (ring homomorphisms
out of fields are always injective).

Theorem 2. The field A/m is an algebraic closure of K.

Proof. For a nonconstant monic f(X) ∈ K[X] we have f(X) −
∏nf

i=1(X − tf,i) ∈ I[X] ⊂
m[X], so in (A/m)[X] we have f(X) =

∏
i(X − tf,i), where tf,i denotes tf,i mod m. Each

tf,i is algebraic over K (being a root of f(X)) and A is generated as a ring over K by the
tf,i’s, so A/m is generated as a ring over K by the tf,i’s. Therefore A/m is an algebraic
extension field of K in which every nonconstant monic in K[X] splits completely.

We will now show A/m is algebraically closed, and thus it is an algebraic closure of K.
Set F = A/m. It suffices to show every monic irreducible π(X) in F [X] has a root in F .
We have already seen that each nonconstant monic polynomial in K[X] splits completely in
F [X], so let’s show π(X) is a factor of some monic polynomial in K[X]. There is a root α
of π(X) in some extension of F . Since α is algebraic over F and F is algebraic over K, α is
algebraic over K. That implies some monic f(X) in K[X] has α as a root. The polynomial
π(X) is the minimal polynomial of α in F [X], so π(X) | f(X) in F [X]. Since f(X) splits
completely in F [X], α ∈ F . �

Our construction of an algebraic closure of K is done, but we want to compare it with
another construction to put the one above in context.

The idea of building an algebraic closure of K by starting with a large polynomial ring
over K whose variables are indexed by polynomials in K[X] goes back at least to Emil Artin.
He used a large polynomial ring (somewhat smaller than the ring K[{tf,i}] we started with
above) modulo a suitable maximal ideal to obtain an algebraic extension K1/K such that
every nonconstant polynomial in K[X] has a root in K1 (not, a priori, that they all split
completely in K1[X]). Then he iterated this construction with K1 in place of K to get a
new algebraic extension K2/K1, and so on, and proved that the union

⋃
n≥1Kn (or, more

rigorously, the direct limit of the Kn’s) contains an algebraic closure of K [2, pp. 544-545].
With more work, treating separately characteristic 0 and characteristic p, it can be shown [3]
that Artin’s construction only needs one step: K1 is an algebraic closure of K (so Kn = K1

for all n, which is not obvious in Artin’s own proof). In other words, the following is true:
if F/K is an algebraic extension such that every nonconstant polynomial in K[X] has a
root in F then every nonconstant polynomial in F [X] has a root in F , so F is an algebraic
closure of K.

Theorem 2 and its proof, which I learned from B. Conrad, is a variation on a proof by Zorn
[6] in the paper where he first introduced Zorn’s lemma. It modifies Artin’s construction
by using a larger polynomial ring over K in order to adjoin to K in one step a full set
of roots – not just one root – of each nonconstant monic in K[X], rather than adjoining
just one root for each nonconstant monic polynomial. Adjoining a full set of roots at once
makes it easier to prove the constructed field A/m is an algebraic closure of K. A similar
construction, using a maximal ideal in a tensor product, is in [1, Prop. 4, p. A V 21].

Remark 3. That every field has an algebraic closure and that two algebraic closures of a
field are isomorphic were first proved by Steinitz in 1910 in a long paper [5] that created
from scratch the general theory of fields as part of abstract algebra. The influence of this
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paper on the development of algebra was enormous; for an indication of this, see [4]. Steinitz
was hindered in his work by the primitive state of set theory at that time and he used the
well-ordering principle rather than Zorn’s lemma (which only became widely known in the
1930s [6]). Steinitz’s proof of the existence of algebraic closures and their uniqueness up to
isomorphism, together with his account of set theory, took up 20 pages [5, Sect. 19–21].

At the end of the proof of Theorem 2, the polynomial f(X) in K[X] with α as a root
can be taken to be irreducible over K, so we could build an algebraic closure of K by
defining the ideal I using just the monic irreducible f(X) in K[X] rather than all monic
f(X) in K[X]; the proofs of Lemma 1 and Theorem 2 carry over with no essential changes
other than inserting the word “irreducible” in a few places. Finally, if we restrict the f in
the construction of I to run over the monic separable polynomials in K[X], or the monic
separable irreducible polynomials in K[X], then the field A/m turns out to be a separable
closure of K. The proof of Lemma 1 carries over with the fj being separable (or separable
irreducible), and in the proof of Theorem 2 two changes are needed: A/m is a separable
algebraic extension of K since it would be generated as a ring over K by roots of separable
polynomials in K[X], and we need transitivity of separability instead of algebraicity (if
F/K is separable algebraic then each root of a separable polynomial in F [X] is separable
over K).
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