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Let K be a field. We want to construct an algebraic closure of K, i.e., an algebraic
extension of K which is algebraically closed. It will be built out of the quotient of a
polynomial ring in a very large number of variables.

Let P be the set of all nonconstant monic polynomials in K[X] and let A = K[tf ]f∈P be
the polynomial ring over K generated by a set of indeterminates indexed by P . This is a
huge ring. For each f ∈ K[X] and a ∈ A, f(a) is an element of A. Let I be the ideal in A
generated by the elements f(tf ) as f runs over P .

Lemma 1. The ideal I is proper: 1 6∈ I.

Proof. Every element of I has the form
∑n

i=1 aifi(tfi) for a finite set of f1, . . . , fn in P and
a1, . . . , an in A. We want to show 1 can’t be expressed as such a sum. Construct a finite
extension L/K in which f1, . . . , fn all have roots. There is a substitution homomorphism
A = K[tf ]f∈P → L sending each polynomial in A to its value when tfi is replaced by a root
of fi in L for i = 1, . . . , n and tf is replaced by 0 for those f ∈ P not equal to an fi. Under
this substitution homomorphism, the sum

∑n
i=1 aifi(tfi) goes to 0 in L so this sum could

not have been 1. �

Since I is a proper ideal, Zorn’s lemma guarantees that I is contained in some maximal
ideal m in A. The quotient ring A/m is a field and the natural composite homomorphism
K → A→ A/m of rings let us view the field A/m as an extension of K (ring homomorphisms
out of fields are always injective). Every nonconstant monic polynomial f ∈ K[X] has a

root in A/m: the coset tf = tf mod m is a root, since f(tf ) = f(tf ) = 0. Since each tf is
algebraic over K and A/m is generated over K as a ring by the tf ’s, A/m is an algebraic
extension of K in which every monic polynomial in K[X] has a root.

If K is not algebraically closed, the field K ′ := A/m is a larger field than K because
every polynomial in K[X] has a root in K ′. If K ′ is algebraically closed then we are done.
If it is not then our construction can be iterated (producing a larger field K ′′ ⊃ K ′ whose
relation to K ′ is the same as that of K ′ to K) over and over and a union of all iterations is
taken. The union is an algebraic extension of the initial field K since it is at the top of a
tower of algebraic extensions. It can be proved [1, pp. 544-545] that this union contains an
algebraic closure of K, and thus it is an algebraic closure of K since it’s algebraic over K.

The interesting point is that there is no need to iterate the construction: K ′ = A/m is
already algebraically closed, and thus K ′ is an algebraic closure of K. This requires some
effort to prove, but it is a nice illustration of various techniques (in particular, the use of
perfect fields in characteristic p). The result follows from the next theorem and was inspired
by [2].

Theorem 2. Let L/K be an algebraic extension such that every nonconstant polynomial
in K[X] has a root in L. Then every nonconstant polynomial in L[X] has a root in L, so
L is an algebraic closure of K.
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Proof. It suffices to show every irreducible in L[X] has a root in L.
First we will describe an incomplete attempt at a proof, just to make it clear where the

difficulty in the proof lies. Pick an irreducible π̃(X) in L[X]. We want to show it has a
root in L, but all we know to begin with is that each irreducible in K[X] has a root in
L. So let’s first show π̃(X) divides some irreducible of K[X] in L[X]. A root of π̃(X) (in
some extension of L) is algebraic over L, and thus is algebraic over K, so it has a minimal
polynomial m(X) in K[X]. Then π̃(X) | m(X) in L[X] since π̃(X) divides every polynomial
in L[X] having a root in common with π̃(X). Since m(X) ∈ K[X], by hypothesis m(X)
has a root in L. But this does not imply π̃(X) has a root in L since we don’t know if the
root of m(X) in L is a root of its factor π̃(X) or is a root of some other irreducible factor
of m(X) in L[X]. So we are stuck. It would have been much simpler if our hypothesis
was that every irreducible polynomial in K[X] splits completely in L[X], since then m(X)
would split completely in L[X] so its factor π̃(X) would split completely in L[X] too: if a
polynomial splits completely over a field then so does every factor, but if a polynomial has
a root in some field then not every factor of it has to have a root in that field. Thus, the
difficulty with proving this theorem is working with the weaker hypothesis that polynomials
in K[X] pick up a root in L rather than a full set of roots in L.

It turns out that the stronger hypothesis we would rather work with is actually a conse-
quence of the weaker hypothesis we are provided: if every irreducible polynomial in K[X]
has a root in L then every irreducible polynomial in K[X] splits completely in L[X]. Once
we prove this, the idea in the previous paragraph does show every irreducible in L[X] splits
completely in L[X] and thus L is algebraically closed.

First we will deal with the case when K has characteristic 0. We want to show that every
irreducible polynomial in K[X] splits completely in L[X]. Let π(X) ∈ K[X] be irreducible.
Let Kπ denote a splitting field of π over K. Since K has characteristic 0, it is perfect field
so by the primitive element theorem we can write Kπ = K(α) for some α. There is no
reason to expect α is a root of π(X) (usually the splitting field of π(X) over K is obtained
by doing more than adjoining just one root of π(X) to K), but α does have some minimal
polynomial over K. Denote it by m(X), so m(X) is an irreducible polynomial in K[X].
By hypothesis m(X) has a root in L, say β. Then the fields Kπ = K(α) and K(β) are
both obtained by adjoining to K a root of the irreducible polynomial m(X) ∈ K[X], so
these fields are K-isomorphic. Since π(X) splits completely in Kπ[X] = K(α)[X] by the
definition of a splitting field, π(X) splits completely in K(β)[X] ⊂ L[X].

Thus when K has characteristic 0, every irreducible in K[X] splits completely in L[X],
which means the argument at the start of the proof shows L is algebraically closed.

If K has characteristic p > 0, is the above argument still valid? The essential construction
was a primitive element for the splitting field Kπ/K for an irreducible π in K[X]. There is
a primitive element for every finite extension of K provided K is perfect. In characteristic 0
this is no constraint at all. When K has characteristic p, it is perfect if and only if Kp = K.
It may not be true for our K that Kp = K. We will find a way to reduce ourselves to the
case of a perfect base field in characteristic p by replacing K with a larger base field.

Let F = {x ∈ L : xp
n ∈ K for some n ≥ 1}. If xp

n ∈ K and yp
n′
∈ K then let

s = max(n, n′) and note (x ± y)p
s

= xp
s ± yps ∈ K. So F is an additive subgroup of L

and contains K. It is easy to see F is closed under multiplication and inversion of nonzero
elements, so F is a field between K and L. This field is perfect: F p = F . To see this,

choose x ∈ F . For some n ≥ 1, xp
n ∈ K. Let a = xp

n
. The polynomial Xpn+1 − a is in

K[X], so by the basic hypothesis of the theorem this polynomial has a root r in L. Since
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rp
n+1

= a is in K, r ∈ F . Since
xp

n
= a = (rp)p

n
,

x = rp because the pth power map is injective for fields of characteristic p. Therefore every
x ∈ F is the pth power of an element of F , so F p = F .

Since L/F is algebraic, each irreducible polynomial in L[X] divides some irreducible
polynomial in F [X] and the latter polynomial is separable (F is perfect), so every irreducible
polynomial in L[X] is separable. Thus L is perfect, so Lp = L.

If we can show that every polynomial in F [X] has a root in L then our proof in char-
acteristic 0 can be applied to the extension L/F , so we will be able to conclude that L is
algebraically closed.

Let g(X) ∈ F [X], say g(X) =
∑
ciX

i. We want to show g(X) has a root in L. For

some n, cp
n

i ∈ K for all i. The polynomial
∑
cp

n

i X
i is in K[X], so it has a root r ∈ L by

hypothesis. Since L = Lp, also L = Lp
n
, so r = zp

n
for some z ∈ L. Then

0 =
∑
i

cp
n

i r
i =

∑
i

(ciz
i)p

n
=

(∑
i

ciz
i

)pn
= g(z)p

n
,

so g(X) has a root z in L. �

For a generalization of this theorem, see [3].

Remark 3. That every field has an algebraic closure and that two algebraic closures of a
field are isomorphic were first proved by Steinitz in 1910 in a long paper [5] that created
from scratch the general theory of fields as part of abstract algebra. The influence of this
paper on the development of algebra was enormous; for an indication of this, see [4]. Steinitz
was hindered in this work by the primitive state of set theory at that time and he used the
well-ordering principle rather than Zorn’s lemma (which only became widely known in the
1930s [6]). Steinitz’s proof of the existence of algebraic closures and their uniqueness up to
isomorphism, together with his account of set theory, took up 20 pages [5, Sect. 19–21].
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