CONSTRUCTING ALGEBRAIC CLOSURES

KEITH CONRAD

Let K be a field. We want to construct an algebraic closure of K, i.e., an algebraic extension of K which is algebraically closed. It will be built out of the quotient of a polynomial ring in a very large number of variables.

Let P be the set of all nonconstant monic polynomials in $K[X]$ and let $A = K[t_f]_{f \in P}$ be the polynomial ring over K generated by a set of indeterminates indexed by P. This is a huge ring. For each $f \in K[X]$ and $a \in A$, $f(a)$ is an element of A. Let I be the ideal in A generated by the elements $f(t_f)$ as f runs over P.

Lemma 1. The ideal I is proper: $1 \notin I$.

Proof. Every element of I has the form $\sum_{i=1}^{n} a_i f_i(t_f)$ for a finite set of f_1, \ldots, f_n in P and a_1, \ldots, a_n in A. We want to show 1 can't be expressed as such a sum. Construct a finite extension L/K in which f_1, \ldots, f_n all have roots. There is a substitution homomorphism $A = K[t_f]_{f \in P} \to L$ sending each polynomial in A to its value when t_f is replaced by a root of f_i in L for $i = 1, \ldots, n$ and t_f is replaced by 0 for those $f \in P$ not equal to an f_i. Under this substitution homomorphism, the sum $\sum_{i=1}^{n} a_i f_i(t_f)$ goes to 0 in L so this sum could not have been 1. \hfill \Box

Since I is a proper ideal, Zorn's lemma guarantees that I is contained in some maximal ideal m in A. The quotient ring A/m is a field and the natural composite homomorphism $K \to A \to A/m$ of rings let us view the field A/m as an extension of K (ring homomorphisms out of fields are always injective). Every nonconstant monic polynomial $f \in K[X]$ has a root in A/m: the coset $\overline{f} = f(t_f) \mod m$ is a root, since $f(\overline{f}) = f(t_f) = 0$. Since each \overline{f} is algebraic over K and A/m is generated over K as a ring by the \overline{f}'s, A/m is an algebraic extension of K in which every monic polynomial in $K[X]$ has a root.

If K is not algebraically closed, the field $K' := A/m$ is a larger field than K because every polynomial in $K[X]$ has a root in K'. If K' is algebraically closed then we are done. If it is not then our construction can be iterated (producing a larger field $K'' \supset K'$ whose relation to K' is the same as that of K' to K) over and over and a union of all iterations is taken. The union is an algebraic extension of the initial field K since it is at the top of a tower of algebraic extensions. It can be proved [1, pp. 544-545] that this union contains an algebraic closure of K, and thus it is an algebraic closure of K since it's algebraic over K.

The interesting point is that there is no need to iterate the construction: $K' = A/m$ is already algebraically closed, and thus K' is an algebraic closure of K. This requires some effort to prove, but it is a nice illustration of various techniques (in particular, the use of perfect fields in characteristic p). The result follows from the next theorem and was inspired by [2].

Theorem 2. Let L/K be an algebraic extension such that every nonconstant polynomial in $K[X]$ has a root in L. Then every nonconstant polynomial in $L[X]$ has a root in L, so L is an algebraic closure of K.
Proof. It suffices to show every irreducible in \(L[X]\) has a root in \(L\).

First we will describe an incomplete attempt at a proof, just to make it clear where the difficulty in the proof lies. Pick an irreducible \(\tilde{\pi}(X)\) in \(L[X]\). We want to show it has a root in \(L\), but all we know to begin with is that each irreducible in \(K[X]\) has a root in \(L\). So let’s first show \(\tilde{\pi}(X)\) divides some irreducible of \(K[X]\) in \(L[X]\). A root of \(\tilde{\pi}(X)\) (in some extension of \(L\)) is algebraic over \(L\), and thus is algebraic over \(K\), so it has a minimal polynomial \(m(X)\) in \(K[X]\). Then \(\tilde{\pi}(X) \mid m(X)\) in \(L[X]\) since \(\tilde{\pi}(X)\) divides every polynomial in \(L[X]\) having a root in common with \(\tilde{\pi}(X)\). Since \(m(X) \in K[X]\), by hypothesis \(m(X)\) has a root in \(L\). But this does not imply \(\tilde{\pi}(X)\) has a root in \(L\) since we don’t know if the root of \(m(X)\) in \(L\) is a root of its factor \(\tilde{\pi}(X)\) or is a root of some other irreducible factor of \(m(X)\) in \(L[X]\). So we are stuck. It would have been much simpler if our hypothesis was that every irreducible polynomial in \(K[X]\) splits completely in \(L[X]\), since then \(m(X)\) would split completely in \(L[X]\) so its factor \(\tilde{\pi}(X)\) would split completely in \(L[X]\) too: if a polynomial splits completely over a field then so does every factor, but if a polynomial has a root in some field then not every factor of it has to have a root in that field. Thus, the difficulty with proving this theorem is working with the weaker hypothesis that polynomials in \(K[X]\) pick up a root in \(L\) rather than a full set of roots in \(L\).

It turns out that the stronger hypothesis we would rather work with is actually a consequence of the weaker hypothesis we are provided: if every irreducible polynomial in \(K[X]\) has a root in \(L\) then every irreducible polynomial in \(K[X]\) splits completely in \(L[X]\). Once we prove this, the idea in the previous paragraph does show every irreducible in \(L[X]\) splits completely in \(L[X]\) and thus \(L\) is algebraically closed.

First we will deal with the case when \(K\) has characteristic 0. We want to show that every irreducible polynomial in \(K[X]\) splits completely in \(L[X]\). Let \(\pi(X) \in K[X]\) be irreducible. Let \(K_{\pi}\) denote a splitting field of \(\pi\) over \(K\). Since \(K\) has characteristic 0, it is perfect field so by the primitive element theorem we can write \(K_{\pi} = \langle K(\alpha) \rangle\) for some \(\alpha\). There is no reason to expect \(\alpha\) is a root of \(\pi(X)\) (usually the splitting field of \(\pi(X)\) over \(K\) is obtained by doing more than adjoining just one root of \(\pi(X)\) to \(K\)), but \(\alpha\) does have some minimal polynomial over \(K\). Denote it by \(m(\alpha)\), so \(m(X)\) is an irreducible polynomial in \(K[X]\). By hypothesis \(m(X)\) has a root in \(L\), say \(\beta\). Then the fields \(K_{\pi} = \langle K(\alpha) \rangle\) and \(K(\beta)\) are both obtained by adjoining to \(K\) a root of the irreducible polynomial \(m(X) \in K[X]\), so these fields are \(K\)-isomorphic. Since \(\pi(X)\) splits completely in \(K_{\pi}[X] = \langle K(\alpha) \rangle[X]\) by the definition of a splitting field, \(\pi(X)\) splits completely in \(K(\beta)[X] \subset L[X]\).

Thus when \(K\) has characteristic 0, every irreducible in \(K[X]\) splits completely in \(L[X]\), which means the argument at the start of the proof shows \(L\) is algebraically closed.

If \(K\) has characteristic \(p > 0\), is the above argument still valid? The essential construction was a primitive element for the splitting field \(K_{\pi}/K\) for an irreducible \(\pi\) in \(K[X]\). There is a primitive element for every finite extension of \(K\) provided \(K\) is perfect. In characteristic 0 this is no constraint at all. When \(K\) has characteristic \(p\), it is perfect if and only if \(K^p = K\). It may not be true for our \(K\) that \(K^p = K\). We will find a way to reduce ourselves to the case of a perfect base field in characteristic \(p\) by replacing \(K\) with a larger base field.

Let \(F = \{x \in L : x^{p^n} \in K\}\) for some \(n \geq 1\}. If \(x^{p^n} \in K\) and \(y^{p^{n'}} \in K\) then let \(s = \max(n, n')\) and note \((x \pm y)^{p^s} = x^{p^s} \pm y^{p^s} \in K\). So \(F\) is an additive subgroup of \(L\) and contains \(K\). It is easy to see \(F\) is closed under multiplication and inversion of nonzero elements, so \(F\) is a field between \(K\) and \(L\). This field is perfect: \(F^p = F\). To see this, choose \(x \in F\). For some \(n \geq 1\), \(x^{p^n} \in K\). Let \(a = x^{p^n}\). The polynomial \(X^{p^{n+1}} - a\) is in \(K[X]\), so by the basic hypothesis of the theorem this polynomial has a root \(r\) in \(L\). Since
$r^{p+1} = a$ is in K, $r \in F$. Since $x^{p^n} = a = (r^p)^{p^n}$,

$x = r^p$ because the pth power map is injective for fields of characteristic p. Therefore every $x \in F$ is the pth power of an element of F, so $F^p = F$.

Since L/F is algebraic, each irreducible polynomial in $L[X]$ divides some irreducible polynomial in $F[X]$ and the latter polynomial is separable (F is perfect), so every irreducible polynomial in $L[X]$ is separable. Thus L is perfect, so $L^p = L$.

If we can show that every polynomial in $F[X]$ has a root in L then our proof in characteristic 0 can be applied to the extension L/F, so we will be able to conclude that L is algebraically closed.

Let $g(X) \in F[X]$, say $g(X) = \sum c_i X^i$. We want to show $g(X)$ has a root in L. For some n, $c_i^{p^n} \in K$ for all i. The polynomial $\sum c_i^{p^n} X^i$ is in $K[X]$, so it has a root $r \in L$ by hypothesis. Since $L = L^p$, also $L = L^{p^n}$, so $r = z^{p^n}$ for some $z \in L$. Then

$$0 = \sum_i c_i^{p^n} r^i = \sum_i (c_i z^i)^{p^n} = \left(\sum_i c_i z^i \right)^{p^n} = g(z)^{p^n},$$

so $g(X)$ has a root z in L. □

For a generalization of this theorem, see [3].

Remark 3. That every field has an algebraic closure and that two algebraic closures of a field are isomorphic were first proved by Steinitz in 1910 in a long paper [5] that created from scratch the general theory of fields as part of abstract algebra. The influence of this paper on the development of algebra was enormous; for an indication of this, see [4]. Steinitz was hindered in this work by the primitive state of set theory at that time and he used the well-ordering principle rather than Zorn’s lemma (which only became widely known in the 1930s [6]). Steinitz’s proof of the existence of algebraic closures and their uniqueness up to isomorphism, together with his account of set theory, took up 20 pages [5, Sect. 19–21].

References