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1. Introduction

The Fundamental Theorem of Algebra says every nonconstant polynomial with complex
coefficients can be factored into linear factors. The original form of this theorem makes
no mention of complex polynomials or even complex numbers: it says that in R[x], every
nonconstant polynomial can be factored into a product of linear and quadratic factors.
(For a polynomial f(x) ∈ C[x], the product f(x)f(x) has real coefficients and this permits
a passage between the real and complex formulations of the theorem.) That the theorem
can be stated without complex numbers doesn’t mean it can be proved without complex
numbers, and indeed nearly all proofs of the Fundamental Theorem of Algebra make some
use of complex numbers, either analytically (e.g., holomorphic functions) or algebraically
(e.g., the only quadratic extension field of R is C) or topologically (e.g., GLn(C) is path
connected).

In the articles [3] and [4], Pukhlikov and Pushkar’ give proofs of the Fundamental The-
orem of Algebra that make absolutely no use of the concept of a complex number. Both
articles are in Russian. The purpose of this note is to describe these two proofs in English
so they may become more widely known.

As motivation for the two proofs, let’s consider what it means to say a polynomial can be
factored, in terms of the coefficients. To say that every polynomial x4+Ax3+Bx2+Cx+D
in R[x] can be written as a product of two monic quadratic polynomials in R[x], so

x4 +Ax3 +Bx2 + Cx+D = (x2 + ax+ b)(x2 + cx+ d)

= x4 + (a+ c)x3 + (b+ d+ ac)x2 + (ad+ bc)x+ bd,

amounts to saying that given four real numbers A,B,C,D there is a real solution (a, b, c, d)
to the system of equations

A = a+ c,

B = b+ d+ ac,

C = ad+ bc,

D = bd.

This is a system of four (nonlinear) equations in four unknowns. Factoring a real polynomial
of degree greater than 4 into lower-degree real factors involves more complicated constraints
on the coefficients than the relations above, but they are also of the same basic flavor: a
certain system of polynomial conditions in several real variables must have a real solution.
Such systems of equations are not linear, so we can’t prove they are solvable using linear
algebra, and it may seem too complicated to prove directly that such “factorization equa-
tions” are always solvable. There was one very early proof of the Fundamental Theorem of
Algebra, by Lagrange, which reasoned along these lines, although it is hard to argue that
Lagrange’s proof provides conceptual insight (take a look at [5] and judge for yourself).

The basic idea in the two proofs presented here is to show the factorization constraints
are solvable using topology. In the example above, for instance, we should show the map
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µ : R2 ×R2 → R4 given by

(1.1) µ((a, b), (c, d)) = (a+ c, b+ d+ ac, ad+ bc, bd)

is surjective. There are theorems in topology that provide sufficient conditions for a con-
tinuous map to be surjective, and these theorems will lead to the two “real” proofs of the
Fundamental Theorem of Algebra presented here.

In Section 2 we will review proper maps and describe the example of a proper map on
polynomials that is common to the two proofs, which are developed separately in Sections
3 and 4.

I thank P. Pushkar’ for his comments on an earlier version of this note.

2. Proper Maps

For two topological spaces X and Y , a continuous map f : X → Y is called proper when
the inverse image of each compact set is compact.

Example 2.1. Let f(x) = xd+ad−1x
d−1+ · · ·+a1x+a0 be a nonconstant polynomial with

real coefficients. It defines a continuous function R→ R. Let’s show it is a proper map. In
R, a subset is compact when it is closed and bounded. If K ⊂ R is compact then f−1(K)
is closed since K is closed and f is continuous. Since |f(x)| → ∞ as |x| → ∞, for each
closed interval [−R,R] the inverse image f−1([−R,R]) is bounded. A compact set, such as
K, is in some [−R,R], so f−1(K) is bounded. Therefore f−1(K) is closed and bounded, so
it is compact.

Example 2.2. Let f(z) = zd + ad−1z
d−1 + · · · + a1z + a0 be a nonconstant polynomial

with complex coefficients. It defines a continuous function C → C. Since |f(z)| → ∞ as
|z| → ∞, by the same argument as in the previous example f is a proper map.

Example 2.3. In contrast to the previous examples, polynomials in several variables need
not be proper. The function f : R2 → R given by f(x, y) = xy is not proper since {0} is
compact but f−1(0) is the two coordinate axes, which is not compact. Similarly, the sine
function sin : R→ R is not proper since sin−1(0) = πZ is not compact.

Example 2.4. Let f : Rm → Rn be continuous such that ||f(v)|| → ∞ as ||v|| → ∞: for
each r > 0 there is an R > 0 such that ||v|| > R implies ||f(v)|| > r. To show f is proper, let
K ⊂ Rn be compact, so K is in the closed ball around the origin in Rn of some radius r.
Then there is an R > 0 such that ||v|| > R implies ||f(v)|| > r, so contrapositively ||f(v)|| ≤ r
implies ||v|| ≤ R. In particular, if f(v) ∈ K then ||v|| ≤ R, so f−1(K) is in the closed ball
around the origin in Rm of radius R. That makes f−1(K) bounded, and it is also closed
since K is closed and f is continuous. Thus f−1(K) is compact. Since K was an arbitrary
compact subset of Rn, f is proper. Examples 2.1 and 2.2 are special cases.

Example 2.5. If X is compact and Y is Hausdorff then every continuous map from X to
Y is proper because a compact subset of a Hausdorff space is closed and a closed subset
of a compact space is compact. In particular, all continuous mappings from one compact
Hausdorff space to another are proper. This will be important for us later.

Remark 2.6. If X and Y are noncompact locally compact Hausdorff spaces and X ∪{x∞}
and Y ∪ {y∞} are the one-point compactifications of X and Y , a continuous function

f : X → Y is proper when its extension f̂ : X ∪ {x∞} → Y ∪ {∞} given by f̂(x∞) = y∞
is continuous, so proper maps X → Y can be thought of as continuous functions that send
“large” values to “large” values. We can see from this point of view why the functions
f(x, y) = xy and f(x) = sinx are not proper.

Here is the principal property we need about proper maps.
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Theorem 2.7. If X and Y are locally compact Hausdorff spaces, then every proper map
f : X → Y has a closed image.

Proof. First we give a “sequence” proof, which doesn’t apply to general locally compact
Hausdorff spaces but is valid for metrizable spaces, which will include the spaces we care
about. Let {yn} be a sequence in f(X) and assume yn → y ∈ Y . We want to show y ∈ f(X).
Let K be a compact neighborhood of y. Then yn ∈ K for n � 0. Write yn = f(xn), so
xn ∈ f−1(K) for n� 0. Since f−1(K) is compact, there is a convergent subsequence {xni},
say xni → x ∈ f−1(K). Since f is continuous, f(xni) → f(x), so yni → f(x). Since also
yni → y, we get y = f(x) ∈ f(X).

Next we give a general proof of the theorem, which will be quite different from the
sequence proof. Let K be compact in Y . Then

f(X) ∩K = f(f−1(K)),

which is compact in Y since f is proper. In a locally compact Hausdorff space, a subset that
meets each compact set in a compact set is a closed subset. Therefore f(X) is closed. �

Remark 2.8. In the notation of Theorem 2.7, if C is closed in X then f |C : C → Y is
proper and (f |C)(C) = f(C), so Theorem 2.7 implies f(C) is closed. That is, a proper map
between locally compact Hausdorff spaces is a closed map.

Lemma 2.9. If f : X → Y is a proper map and B is an arbitrary subset of Y then the
restriction of f to a map f−1(B)→ B is proper.

Proof. If K ⊂ B is compact then f−1(K) ∩ f−1(B) = f−1(K) is compact. �

Lemma 2.9 provides a method of showing a continuous function between non-compact
spaces is proper: embed the non-compact spaces into compact spaces, check the original
continuous function extends to a continuous function on the chosen compactification (where
Example 2.5 might be used), and then return to the original function with Lemma 2.9.

Although polynomials in R[x] define proper maps from R to R, this is not the way we
will be using proper maps. We are going to use multiplication maps between spaces of
polynomials with a fixed degree. For each positive integer d, let Pd be the space of monic
polynomials of degree d:

(2.1) xd + ad−1x
d−1 + · · ·+ a1x+ a0.

For n ≥ 2 and 1 ≤ k ≤ n− 1, define the multiplication map

µk : Pk × Pn−k → Pn by µk(g, h) = gh.

For example, taking n = 4, µ1 : P1 × P3 → P4 by

µ1(x+ a0, x
3 + b2x

2 + b1x+ b0) = x4 + (b2 + a0)x
3 + (b1 + a0b2)x

2 + (b0 + a0b1)x+ a0b0.

and µ2 : P2 × P2 → P4 by

µ2(x
2+a1x+a0, x

2+b1x+b0) = x4+(a1+b1)x
3+(a0+b0+a1b1)x

2+(a1b0+b1a0)x+a0b0.

We met µ2 in the introduction as the map µ : R2 ×R2 → R4 in (1.1).
To say a polynomial in Pn can be factored into polynomials of degree k and n−k (without

loss of generality the factors are monic too) amounts to saying the polynomial is in the image
of µk.

To bring topology to bear on the study of µk, identify Pd with Rd by associating to the
polynomial (2.1) the vector (ad−1, . . . , a1, a0). This makes µk : Pk×Pn−k → Pn a continuous
mapping between two locally compact spaces.

Theorem 2.10. For 1 ≤ k ≤ n− 1, the mapping µk : Pk × Pn−k → Pn is proper.
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Proof. Using coefficients to identify Pd with Rd, µk is a continuous mapping Rk×Rn−k →
Rn. Since these spaces are not compact, properness of µk is not obvious. To make it obvious,
we will follow an idea of A. Khovanskii and “compactify” µk to a mapping between compact
spaces, to which we we can apply Example 2.5.

Rather than looking at the spaces Pd, let’s consider all the nonzero polynomials of degree
≤ d and identify two such polynomials if they are scalar multiples of one another. Call

this set P̂d and write the equivalence class of a polynomial f in P̂d as [f ]. For example,

[x2 + 1] = [3x2 + 3] and [2x3 − x + 4] = [x3 − (1/2)x + 2]. Every equivalence class in P̂d

contains a unique monic polynomial of degree at most d, since a monic polynomial can’t

be scaled by a number other than 1 and remain monic. Therefore Pd embeds into P̂d by

f 7→ [f ]. The image of Pd in P̂d is the equivalence classes of polynomials with exact degree
d (not less than d).

We can identify P̂d with real projective d-space Pd(R) by associating to the equivalence
class of polynomials [adx

d + · · · + a1x + a0] the point [ad, . . . , a1, a0]. Since Pd(R) is a

compact Hausdorff space, P̂d becomes a compact Hausdorff space and the copy of Pd inside

P̂d is identified with a standard copy of Rd in Pd(R): the points whose first homogeneous

coordinate is not 0. From a projective point of view, the polynomials “at infinity” in P̂d are
those with degree less than d.

Since polynomials that are determined up to an overall (nonzero) scaling factor have a
product that is determined up to an overall scaling factor, we can define a multiplication

map µ̂k : P̂k × P̂n−k → P̂n by µ̂k([g], [h]) = [gh]. For example, when n = 3 and k = 1,

µ1([a1x+ a0], [b2x
2 + b1x+ b0]) = [a1b2x

3 + (a1b1 + a0b2)x
2 + (a1b0 + a0b1)x+ a0b0].

Viewing each Pd inside of P̂d, the restriction of µ̂k from P̂k × P̂n−k to Pk × Pn−k is the
mapping µk : Pk ×Pn−k → Pn defined earlier. In projective coordinates, µ̂k is a polynomial
mapping so it is continuous. Since projective spaces are compact and Hausdorff, µ̂k is a
proper map by Example 2.5. Finally, since µ̂−1k (Pn) = Pk × Pn−k, Lemma 2.9 tells us µk is
proper. �

Corollary 2.11. If n = d1 + · · ·+ dr, where each di is a positive integer, the map µ : Pd1 ×
· · · × Pdr → Pn given by µ(f1, . . . , fr) = f1 · · · fr is proper.

Proof. This proceeds in the same way as the proof of Theorem 2.10, using a multiplication

map µ̂ : P̂d1 × · · · × P̂dr → P̂n that extends the map µ. �

For each k from 1 to n− 1, the set of polynomials in Pn that can be written as a product
of (monic) polynomials of degree k and n− k is µk(Pk × Pn−k), which is closed by Remark
2.8 and Theorem 2.10. For example, a fifth degree monic polynomial in R[x] that is the
coefficientwise limit of a sequence of fifth degree monic polynomials that each factor as a
quadratic and cubic will itself factor as a quadratic and cubic. More generally, Remark 2.8
and Corollary 2.11 imply that the polynomials in Pn that admit some factorization with
fixed degrees d1, . . . , dr for the factors form a closed subset of Pn. That means polynomial
factorizations respect limit operations: if fi → f in Pn and each fi is a product of monic
polynomials of degree d1, d2, . . . , dr then f also has such a factorization. This is nontrivial
since convergence of polynomials conveys no direct information about how factorizations
behave along the way.1

1The proofs of Theorem 2.10 and Corollary 2.11 remain true when R is replaced by a locally compact
field F , like C or a p-adic field, so the monic polynomials of degree n in F [x] with a factorization in F [x]
having fixed degrees form a closed subset of all monics of degree n in F [x].
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3. Proof of Pukhlikov

For the first proof we give of the Fundamental Theorem of Algebra, due to Pukhlikov
[3], we want to show for n ≥ 1 that each polynomial in Pn can be written as a product of
linear and quadratic polynomials in R[x]. The argument is by induction on n, and since it
is clear when n is 1 or 2 we take n ≥ 3 from now on. Assume by induction that every monic
polynomial in the spaces P1, . . . , Pn−1 is a product of linear and quadratic real polynomials.
We will show every monic polynomial in Pn is a product of a polynomial in some Pk and
Pn−k where 1 ≤ k ≤ n− 1 and therefore is a product of linear and quadratic polynomials.
Using the multiplication maps µk, what we want to show is

Pn =

n−1⋃
k=1

µk(Pk × Pn−k).

Set Zk = µk(Pk × Pn−k) and

Z =
n−1⋃
k=1

Zk.

The set Z is all the monic polynomials of degree n that are reducible (and thus are products
of linear and quadratic polynomials by the inductive hypothesis). We want to show Z = Pn.

Since each µk is proper, its image Zk is a closed subset of Pn. Since Z = Z1 ∪ · · · ∪Zn−1
is a finite union of closed sets, Z is closed in Pn. Topologically, Pn

∼= Rn is connected, so if
we could show Z is also open in Pn then we would immediately get Z = Pn (since Z 6= ∅),
which is the goal. Alas, it will not be easy to show Z is open directly, but a modification
of this idea will work.

To say Z is open in Pn means for each polynomial f in Z, all polynomials in Pn that are
near f are also in Z. The inverse function theorem is a natural tool to use here: supposing
f = µk(g, h), is the Jacobian determinant of µk : Pk × Pn−k → Pn nonzero at (g, h)? If it
is, then µk has a continuous local inverse defined in a neighborhood of f .

To analyze µk near (g, h), we can write all nearby points in Pk × Pn−k as (g + u, h+ v)
where deg u ≤ k − 1 and deg v ≤ n− k − 1 (allowing u = 0 or v = 0 too). Then

(3.1) µk(g + u, h+ v) = (g + u)(h+ v) = gh+ gv + hu+ uv = f + (gv + hu) + uv.

As functions of the coefficients of u and v, the coefficients of gv + hu are all linear and the
coefficients of uv are all higher degree polynomials in the coefficients of u and v. Whether the
Jacobian of µk at (g, h) is invertible or not depends on the uniqueness of writing polynomials
with degree less than n as gv + hu for some u and v.

Lemma 3.1. Let g and h be nonconstant polynomials whose degrees add up to n.

a) If g and h are relatively prime then every polynomial of degree less than n is uniquely
of the form gv + hu where deg u < deg g or u = 0, and deg v < deg h or v = 0.

b) If g and h are not relatively prime then we can write gv+ hu = 0 for some nonzero
polynomials u and v where deg u < deg g and deg v < deg h.

Proof. a) By counting dimensions, it suffices to show the only way to write gv + hu = 0
with deg u < deg g or u = 0 and deg v < deg h or v = 0 is by using u = 0 and v = 0.
Since gv = −hu, g|hu, so g|u since g and h are relatively prime. If u 6= 0 then we get a
contradiction from the inequality deg u < deg g. Therefore u = 0, so also v = 0.

b) Let d(x) be a nonconstant common factor of g(x) and h(x). Write g(x) = d(x)a(x) and
h(x) = d(x)b(x). Then g(x)b(x)+h(x)(−a(x)) = 0. Set u(x) = b(x) and v(x) = −a(x). �
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By (3.1) and Lemma 3.1, the Jacobian matrix of µk at (g, h) is invertible if g and h are
relatively prime and not otherwise.2 We conclude that if f ∈ Z can somehow be written as
a product of nonconstant relatively prime polynomials of degrees k and n−k then all monic
polynomials in a neighborhood of f in Pn can be factored in the same way, so this neighbor-
hood is inside Z. Which f ∈ Z can’t be written as a product of nonconstant relatively prime
polynomials?3 Every monic polynomial in R[x] has a monic factorization into irreducibles
in R[x], and as soon as a polynomial has two different monic irreducible factors it has a
decomposition into nonconstant relatively prime factors. Therefore a polynomial f ∈ Z is
not a product of at least 2 nonconstant relatively prime polynomials in R[x] exactly when
it is a power of a monic irreducible in R[x]. Since each polynomial in Z is a product of
linear and quadratic factors, f is a power of a linear or quadratic polynomial. Let Y be all
these “degenerate” polynomials in Pn:

Y =

{
{(x+ a)n : a ∈ R} if n is odd,

{(x+ a)n, (x2 + bx+ c)n/2 : a, b, c ∈ R} if n is even.

When n is even, we can write (x+ a)n as (x2 + 2ax+ a2)n/2, so4

Y =

{
{(x+ a)n : a ∈ R} if n is odd,

{(x2 + bx+ c)n/2 : b, c ∈ R} if n is even.

We have shown Z − Y is open in Pn. This is weaker than the plan to show Z is open in
Pn. But we’re actually in good shape, as long as we change the focus from Pn to Pn−Y . If
n = 2 then Y = P2 and P2 − Y is empty. For the first time we will use the fact that n ≥ 3.

Lemma 3.2. If n ≥ 3, then Pn − Y is path connected.

Proof. We identify Pn with Rn using polynomial coefficients:

xn + an−1x
n−1 + · · ·+ a1x+ a0 7→ (an−1, . . . , a1, a0).

If n is odd then Y is a smooth curve sitting in Rn: it is the image of the polynomial map
R → Rn that associates to a ∈ R the non-leading coefficients of (x + a)n in the order of
decreasing degree. For instance, if n = 3 this map is

a 7→ (3a, 3a2, a3).

If n is even then Y is a smooth surface in Rn. For instance, if n = 4 then computing
(x2 + bx+ c)2 shows us that

Y = {(2b, b2 + 2c, 2bc, c2) : b, c ∈ R} ⊂ R4,

which is smooth since the 2× 4 matrix of partial derivatives at a point is(
2 2b 2c 0
0 2 2b 2c

)
,

which has rank 2 from its first two columns.

2The Jacobian determinant of µk at (g, h) is equal to the resultant of g and h, so we recover the classical
theorem that the resultant of two polynomials is nonzero exactly when they are relatively prime, which is
the same as saying they have no common root in a splitting field.

3Viewing µk : Pk × Pn−k → Pk as a smooth map of manifolds, such f are not just critical values of µk:
all points in µ−1

k (f) have a noninvertible differential. Such f are called strongly critical values in [4].
4Since each odd-degree real polynomial has a real root, obviously Pn = µ1(P1 × Pn−1), so we could just

focus on even n.
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It is left to the reader to check that the complement of a smooth5 curve in Rn is path
connected for n ≥ 3 and the complement of a smooth surface in Rn is path connected for
n ≥ 4. �

When n ≥ 3, (x−1)(x−2) · · · (x−n) ∈ Z−Y , so Z−Y is nonempty. Since Z is closed in
Pn, Z∩ (Pn−Y ) = Z−Y is closed in Pn−Y . Since we know Z−Y is open in Pn, it is open
in Pn−Y . Therefore Z −Y is a nonempty open and closed subset of Pn−Y . Since Pn−Y
is path connected, and thus connected,6 and Z − Y is not empty, Z − Y = Pn − Y . Since
Y ⊂ Z, we get Z = Pn and this completes the first proof of the Fundamental Theorem of
Algebra.

4. Proof of Pushkar’

The second proof of the Fundamental Theorem of Algebra, by Pushkar’ [4], focuses on
even degree polynomials. (All real polynomials of odd degree have a real root.) For each
n ≥ 1, we want to show every polynomial in P2n can be factored into a product of n monic
quadratic polynomials. Consider the multiplication mapping

(4.1) un : Pn
2 → P2n where un(f1, f2, . . . , fn) = f1f2 · · · fn.

To prove the Fundamental Theorem of algebra, we’ll show un is surjective for all even n ≥ 2.
By Corollary 2.11, un is proper.

We will use a theorem from topology about the degree of a mapping. For a smooth proper
mapping ϕ : M → N of connected oriented manifolds M and N with the same dimension,
the degree of ϕ is defined by picking a regular value7 y and forming∑

x∈ϕ−1(y)

εx,

where εx = 1 is dϕx : Tx(M) → Ty(N) is orientation preserving and εx = −1 if dϕx is
orientation-reversing. If ϕ−1(y) is empty, set this sum to be 0. That the degree is well-
defined is rather complicated to prove. Details can be found in [1, Sect. 13]. It immediately
implies the following result.

Theorem 4.1. Let M and N be smooth connected oriented manifolds of the same dimension
and ϕ : M → N be a smooth proper mapping of degree not equal to zero. Then f is surjective.

We will apply Theorem 4.1 to the mapping un : Pn
2 → P2n in (4.1). Choose an orientation

for P2, which is naturally identified with R2, and then give Pn
2 the product orientation (as

a product of oriented manifolds). Orient P2n by identifying it with R2n in a natural way.
We want to show un has nonzero degree. To do this, we need a regular value.

Lemma 4.2. The polynomial p(x) =
∏n

i=1(x
2 + i) = un(x2 + 1, . . . , x2 + n) in P2n is a

regular value of un.

Proof. Exercise. Note p(x) is a product of distinct monic quadratic irreducibles. Look at
the description of the regular points of the multiplication mappings µk in Section 3. �

5Space-filling curves show some constraint is necessary for the complement of a “curve” in Rn to be path
connected.

6If we had removed from Pn not Y but the larger set of nonseparable polynomials, we would not be
left with a connected set: the nonseparable polynomials in Pn divide the rest of Pn into two open subsets:
those with positive discriminant and those with negative discriminant. However, if we were working over C
instead of over R then the complement of the nonseparable polynomials would be connected. An analogue
of Pukhlikov’s “real” proof that is carried out over C was given by Litt [2].

7A regular value is a point y ∈ N such that for all x ∈ ϕ−1(y), dϕx : Tx(M)→ Ty(N) is surjective. This
includes the y for which ϕ−1(y) is empty. Regular values in N exist by Sard’s theorem.
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The polynomial p(x) has n! inverse images under un: all ordered n-tuples with coordinates
x2 + i for i = 1, . . . , n. Since un is invariant under permutations of its arguments, and each
such permutation preserves orientation (exercise), the sign of the determinant of dun at
each point in u−1n (p(x)) is the same. Since these points each contribute the same sign to
the degree, un has degree n! or −n! (the exact choice depends on how we oriented P2 and
P2n). Since the degree is not zero, by Theorem 4.1 un is surjective, which completes the
second proof of the Fundamental Theorem of Algebra.

The novel feature of these two proofs of the Fundamental Theorem of Algebra is the
topological study of multiplication maps on real polynomials to settle a factorization ques-
tion. Complex numbers never enter the argument, even indirectly. The proofs provide an
interesting topic for discussion in a course on differential topology, on account of the ideas
that are used: spaces of real polynomials with fixed or bounded degree as an abstract man-
ifold, passage to a projective space to “compactify” a smooth map and show it is proper,
determining where the inverse function theorem can be applied, and the degree of a map.
That proper maps and the degree of a map can be used to prove the Fundamental Theorem
of Algebra is not itself new: proofs using these ideas appear in complex variable proofs.
Here is one such proof, taken from [1, p. 109].

Proof. Pick a nonconstant monic polynomial with complex coefficients, say

f(z) = zn + a1z
n−1 + · · ·+ an.

We want to show f has a complex zero. As a continuous mapping C → C, f is proper
(Example 2.2). Its degree is n since f is smoothly homotopic to z 7→ zn, whose degree is
easy to calculate as n. We now find ourselves in the situation of Theorem 4.1, which proves
f is surjective, so f has a complex root. �
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