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Our goal is to use abstract linear algebra to prove the following result, which is called
the fundamental theorem of algebra.

Theorem 1. Any nonconstant polynomial with complex coefficients has a complex root.

We will prove this theorem by reformulating it in terms of eigenvectors of linear operators.
Let

f(z) = zn + an−1z
n−1 + · · ·+ a1z + a0

have degree n ≥ 1, with aj ∈ C. By induction on n, the matrix

A =



0 0 0 · · · 0 −a0
1 0 0 · · · 0 −a1
0 1 0 · · · 0 −a2
...

...
...

. . .
...

...
0 0 0 · · · 0 −an−2
0 0 0 · · · 1 −an−1


satisfies det(λIn −A) = f(λ). Therefore Theorem 1 is a consequence of

Theorem 2. For each n ≥ 1, every n× n square matrix over C has an eigenvector in Cn.
Equivalently, for each n ≥ 1, every linear operator on an n-dimensional complex vector
space V has an eigenvector in V .

Theorem 2 is also consequence of Theorem 1, so the two theorems are equivalent. In fact,
the implication Theorem 1 ⇒ Theorem 2 is usually how one first meets the fundamental
theorem of algebra in a linear algebra course: it assures us that every complex square matrix
has an eigenvector because the characteristic polynomial of the matrix has a complex root.
But here, we will prove Theorem 2 without assuming Theorem 1, so we can deduce Theorem
1 as a consequence of Theorem 2. Our argument is a modification of a proof by H. Derksen
[1]. It uses an interesting induction. Our starting point is the following lemma.

Lemma 3. Fix an integer m > 1 and a field F . Suppose that, for every F -vector space
V whose dimension is not divisible by m, every linear operator on V has an eigenvector in
V . Then for every F -vector space V whose dimension is not divisible by m, each pair of
commuting linear operators on V has a common eigenvector in V .

The hypothesis of Lemma 3 is quite restrictive, so Lemma 3 does not apply in too many
examples. For instance, it does not apply for m > 1 if F = Q. We will use Lemma 3 when
m is a power of 2. I know no worthwhile applications of Lemma 3 for other values of m.

Proof. We induct on the dimension d of the vector space as d runs through integers not
divisible by m. The case d = 1 is trivial: a nonzero vector in a one-dimensional space is an
eigenvector of every linear operator on the space (and two such operators commute).

Assume now that d > 1 is not divisible by m and we have settled all dimensions less than
d that are not divisible by m. Let A1 and A2 be commuting linear operators on an F -vector
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space V of dimension d. Since d is not divisible by m, the hypothesis of the lemma tells us
A1 has an eigenvalue in F , say λ. Let

U = im(A1 − λIV ), W = ker(A1 − λIV ).

Each of these subspaces of V is A1-stable (that is, u ∈ U ⇒ A1(u) ∈ U , and w ∈ W ⇒
A1(w) ∈ W ), and dimF W ≥ 1 since λ is an eigenvalue of A1. Each of U and W is also
A2-stable since A1 and A2 commute. (For instance, if u ∈ U , write u = A1(v)− λv. Then

A2(u) = A2(A1(v))−A2(λv) = A1(A2(v))− λ(A2(v)) = (A1 − λIV )(A2(v))

is also in U .) Note dimF U + dimF W = d is not divisible by m, so one of U or W has
dimension not divisible by m. If the subspace U or W with dimension not divisible by m is
a proper subspace of V , then A1 and A2 have a common eigenvector in that subspace (and
thus in V ) by induction. The other case is that U or W is all of V and the other subspace
is {0} since the dimensions add up to d. In that case W = V since we already noted that
dimF W is positive. When W = V every vector in V is an eigenvector for A1, and one of
them is an eigenvector for A2 since V has dimension not divisible by m. �

Corollary 4. For every real vector space V whose dimension is odd, each pair of commuting
linear operators on V has a common eigenvector in V .

Proof. In Lemma 3, use F = R and m = 2. Any linear operator on an odd-dimensional real
vector space V has an eigenvector in V since the characteristic polynomial has odd degree
and therefore has a real root, which is a real eigenvalue. Any real eigenvalue leads to a real
eigenvector. �

Note Lemma 3 and Corollary 4 are not saying commuting linear operators have a common
eigenvalue, but rather a common eigenvector. A common eigenvector does not have to occur
with the same eigenvalue for A1 and A2.

Example 5. Let

A1 =

 1 0 1
0 0 0
1 0 1

 , A2 =

 2 1 1
1 0 −1
1 −1 2

 ,

viewed as linear operators on R3. A direct calculation shows A1A2 = A2A1, so there must
be a common eigenvector for A1 and A2 in R3. One common eigenvector is 1

0
1

 ,

with eigenvalue 2 for A1 and 3 for A2. In fact, this is the only common eigenvector for A1

and A2 in R3, up to scaling.

Now we turn to the proof of the Fundamental Theorem of Algebra.

Proof. (Derksen) Our proof will be by induction on the highest power of 2 dividing n. That
is, writing n = 2kn′, where k ≥ 0 and n′ is odd, we will prove the theorem by induction
on k. Let’s be concrete about how the induction proceeds, before we carry it out. First we
will treat the case k = 0, which means n is odd.

For the base case (k = 0), let n be odd. Pick A ∈ Mn(C). To show A has an eigenvector
in Cn, we will associate to A some linear operators on the space

Hn = {M ∈ Mn(C) : M∗ = M},
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where M∗ = M
>

denotes the conjugate-transpose of M . (In coordinates, (mij)
∗ = (mji).

Note (MN)∗ = N∗M∗.) Matrices in Hn are called Hermitian. They form a real vector
space, with dimension n2 over R. In particular, Hn has odd dimension over R.

We can decompose each C ∈ Mn(C) as

C =
C + C∗

2
+ i

C − C∗

2i
,

where (C+C∗)/2 and (C−C∗)/2i are Hermitian. (Symbolically, Mn(C) = Hn + iHn.) For
B ∈ Mn(C), take C = AB:

(1) AB =
AB +B∗A∗

2
+ i

AB −B∗A∗

2i
.

When B ∈ Hn, (1) becomes

(2) AB =
AB +BA∗

2
+ i

AB −BA∗

2i
.

Looking at (2), we are inspired to consider the R-linear operators L1, L2 : Hn → Hn

defined by

L1(B) =
AB +BA∗

2
, L2(B) =

AB −BA∗

2i
.

The operators L1 and L2 commute with each other (check!). Since Hn has odd (real)
dimension, Corollary 4 implies L1 and L2 have a common eigenvector in Hn. That is, there
is some nonzero B ∈ Hn such that

L1(B) = λ1B, L2(B) = λ2B,

where λ1, λ2 ∈ R. Therefore

AB = L1(B) + iL2(B) = (λ1 + iλ2)B.

Any nonzero column vector of B is an eigenvector in Cn for A. That concludes the proof
of the Fundamental Theorem of Algebra for odd n, which was the base case. (Notice that
the base case of a proof by induction is not always trivial!)

Now we treat the inductive step. The following is our inductive hypothesis for k ≥ 1: for
each d ≥ 1 where the highest power of 2 dividing d is less than 2k (that is, d is not divisible
by 2k), every linear operator on a d-dimensional complex vector space has an eigenvector in
that vector space. It follows, by Lemma 3 with F = C, that each pair of commuting linear
operators on a vector space of such a dimension has a common eigenvector in that space.
The hypothesis of Lemma 3 is precisely our inductive hypothesis.

(Derksen’s paper [1] has a more involved inductive hypothesis, because he is trying to
prove not only the Fundamental Theorem of Algebra, but also that every finite set of
commuting linear operators on a complex vector space – not just two commuting operators
as in Lemma 3 – has a common eigenvector in the space.)

The case to consider now is linear operators on complex vector spaces with dimension
divisible by 2k but not by a higher power of 2. By choosing bases to convert operators into
matrices, it will suffice to treat the case of matrices acting on concrete spaces of the form
Cn instead of linear operators acting on abstract complex vector spaces. However, in the
course of our argument for matrix operators, we will be using linear operators on vector
spaces other than Cn (specifically, we will be using linear operators on the vector space
Symn(C)), so it is important to have the abstract point of view in mind.

Let n be a positive integer such that the highest power of 2 dividing n is 2k. Let A be
an n× n complex matrix. We want to show A has an eigenvector in Cn.

Consider the space of n× n complex symmetric matrices,

Symn(C) = {M ∈ Mn(C) : M> = M}.
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This is a complex vector space with dimension n(n+1)
2 . Notice that the highest power of 2

dividing n(n+1)
2 is 2k−1. Since n(n+1)

2 is not divisible by 2k, every pair of commuting linear
operators on Symn(C) has a common eigenvector in Symn(C). (This is the application of
Lemma 3 that we made right after formulating the inductive hypothesis.) We are going to
apply this result to a pair of operators on Symn(C) built from the matrix A.

Define L1,L2 : Symn(C)→ Symn(C) by

L1(B) = AB +BA>, L2(B) = ABA>.

The maps L1 and L2 are C-linear operators and commute (check!). Therefore, by the
application of Lemma 3 in the previous paragraph, L1 and L2 have a common eigenvector
in Symn(C): some nonzero B ∈ Symn(C) satisfies

AB +BA> = λB, ABA> = µB,

where λ, µ ∈ C. Applying A to the first equation on the left, and using the second equation
to simplify, we find

A2B + µB = λAB,

so

(A2 − λA+ µ)B = 0.

Since every complex number has a complex square root, the quadratic formula shows every
quadratic polynomial over C splits into linear factors. (This is the first time we have used
something about C that is not true for R. Up until this point, we could have been trying
to prove the Fundamental Theorem of Algebra for operators on real vector spaces, and
even invoked Lemma 3 with F = R as part of the induction. But the proof would break
down now, because real quadratics generally don’t have real roots.) Factor the complex
polynomial z2− λz+µ as (z−α)(z− β). Then the matrix product (A−αI)(A− βI) is O,
so

(A− αI)((A− βI)B) = O.

If (A−βI)B = O, then a nonzero column vector of B is an eigenvector of A (with eigenvalue
β). If (A − βI)B 6= O, then a nonzero column vector of (A − βI)B is an eigenvector of A
(with eigenvalue α).

That concludes the Fundamental Theorem of Algebra. �

Derksen’s base case made essential use of complex conjugation on C, but the only place
where Derksen’s inductive argument uses something about C that is not true for R is near
the end: every complex quadratic polynomial splits into linear factors. Up until that point,
we could have been trying to prove the Fundamental Theorem of Algebra for R. The base
case of odd degree would be trivial since real polynomials of odd degree have a real root and
in the inductive step we would use Lemma 3 with F = R. But the proof of the inductive
step for R instead of C would break down at the end when we try to factor a real quadratic
over R, because real quadratics generally don’t have real roots.

While some motivation for L1 and L2 comes from (2), and the definition L1(B) = AB +
BA> is, at least up to a factor of 1/2, the symmetric part of the product AB (and thus
resembles the definition of L1 and L2 as the “real” and “imaginary” parts of a matrix
product in Hn), the definition of L2 seems to come out of nowhere. One rationale for
the definition of L2 is the following. Given a square matrix C, two ways of producing a
symmetric matrix from C are addition and multiplication with the transpose: C +C> and
CC>. Applying this to the matrix product C = AB (with B symmetric, as in the proof)
gives rise to the expressions

AB + (AB)> = AB +B>A> = AB +BA>
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and
(AB)(AB)> = AB2A>.

While AB +BA> is linear in B (and defines L1(B)), AB2A> is not linear in B. However,
if we work instead with ABA>, we do get a linear function of B, and thus we are led to
L2(B).

Two extended treatments of the fundamental theorem of algebra are in [2] and [3]. Chap-
ter 4 of [2] gives an historical treatment of this result, while [3] proves the result in twelve
different ways (six in the main text and six in appendices). Derksen’s use of 2-power divisi-
bility to view the passage from n to n(n+1)/2 as a reduction step is reminiscent of Laplace’s
proof of the fundamental theorem of algebra, which is in the appendix to [2, Chap. 4].
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