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This is a proof of the fundamental theorem of algebra which is due to Gauss [2], in 1816.
It is based on [1, pp. 680–682]. The proof is accessible, in principle, to anyone who has
had multivariable calculus and knows about complex numbers. The main idea will be to
compute a certain double integral and then compute the integral in the other order.

We take for granted the following result from calculus, which is a special case of Fubini’s
theorem.

Lemma 1. Let [a, b] × [c, d] ⊂ R2 be a rectangle, and f be a continuous function on this
rectangle, with real values. Then∫ d

c

(∫ b

a
f(x, y) dx

)
dy =

∫ b

a

(∫ d

c
f(x, y) dy

)
dx.

Theorem 1. Every nonconstant polynomial in C[z] has a complex root.

Proof. We are going to prove the contrapositive: if

f(z) = cnz
n + cn−1z

n−1 + · · ·+ c1z + c0

has no complex roots, then f(z) is a (nonzero) constant. Here n is the degree of f .
Write z = reiθ, so zj = rj cos(jθ) + irj sin(jθ). Therefore the decomposition of f(z) into

real and imaginary parts is

f(z) = P (r, θ) + iQ(r, θ),

where

P (r, θ) = rn cos(nθ) + · · ·+ Re(c0), Q(r, θ) = rn sin(nθ) + · · ·+ Im(c0).

Both P and Q are polynomials in r of degree n,with constant terms independent of θ.
(In particular, a trigonometric function of θ appears in P and Q only when multiplied by
positive powers of r, so the ambiguity in the definition of θ at the origin does not matter:
P (0, θ) = Re(c0) and Q(0, θ) = Im(c0) for all θ.) From this observation about the constant
terms,

∂P

∂θ

∣∣∣∣
r=0

= 0,
∂Q

∂θ

∣∣∣∣
r=0

= 0.

Clearly P and Q are 2π-periodic, as are ∂P/∂r and ∂Q/∂r.
To say f has no complex roots is the same as saying P and Q are not simultaneously

0 anywhere. Writing f(z) = P + iQ in polar coordinates, we contemplate its angular
component, arctan(Q/P ).

Set

U = arctan

(
Q

P

)
.

From the derivative formula for the arctangent,

(1)
∂U

∂r
=

1

(1 +Q/P )2
· PQr −QPr

P 2
=
PQr −QPr
P 2 +Q2
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and similarly

(2)
∂U

∂θ
=
PQθ −QPθ
P 2 +Q2

,

where we adopt the subscript notation for partial derivatives.
The formulas on the right side of (1) and (2) make sense everywhere, since P 2 +Q2 6= 0

for all (r, θ). However, there is something mysterious about the definition of the function
U as a “value” of arctangent. Usually one defines the function arctanx to take values
in (−π/2, π/2), with values ±π/2 at ±∞ from the asymptotics visible on the graph of
y = arctanx. But this kind of definition is bad to use in the definition of U , because we
can imagine wandering through a point in the plane where P = 0 (and thus where Q/P is
“infinite”) such that the continuous variation in arctan may demand that the function U
increase above the value π/2.

This is the same kind of problem one meets when trying to define logarithms of complex
numbers, but we can circumvent the trouble with U by taking the right sides of (1) and
(2) as our basic functions (i.e., the partial derivative notation on the left sides is purely
suggestive, at least for readers who only know up to multivariable calculus). For example,
the formula

(3)
∂

∂θ

(
∂U

∂r

)
=

∂

∂r

(
∂U

∂θ

)
can be checked by a direct calculation of the θ-partial of the right side of (1) and the r-
partial of the right side of (2). We do not appeal to the theorem on equality of mixed
partials. The common “iterated” derivative in (3) has the form H(r, θ)/(P 2 +Q2)2 for an
explicit continuous function H.

Applying Lemma 1 to the rectangle [0, R]× [0, 2π] (with R > 0) in the (r, θ) plane, and
integrating the function in (3), we have

(4)

∫ R

0

(∫ 2π

0

∂

∂r

∂U

∂θ
dθ

)
dr =

∫ 2π

0

(∫ R

0

∂

∂r

∂U

∂θ
dr

)
dθ.

On the left side, we evaluate the inner integral by appealing to (3):∫ 2π

0

∂

∂r

∂U

∂θ
dθ =

∫ 2π

0

∂

∂θ

∂U

∂r
dθ

=
∂U

∂r

∣∣∣∣θ=2π

θ=0

= 0,

since ∂U/∂r is 2π-periodic. Therefore the left side of (4) is 0 for all R > 0.
Now we compute the right side of (4). The inside integral is∫ R

0

∂

∂r

∂U

∂θ
dr =

∂U

∂θ

∣∣∣∣r=R
r=0

=
∂U

∂θ

∣∣∣∣
r=R

since the θ-partials of P and Q vanish at r = 0. Having separately computed the two sides
of (4), we conclude that for R > 0,

∂U

∂θ

∣∣∣∣
r=R

= 0.

Now we are going to compute the value of this partial derivative by the explicit formula
(2). First we look at the numerator. Because

Pθ = −nrn sin(nθ) + · · · , Qθ = nrn cos(nθ) + · · · ,
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where · · · represents terms of lower degree in r,

PQθ −QPθ = nr2n cos2(nθ) + · · ·+ nr2n sin(nθ) + · · · = nr2n + · · · .
Similarly, the denominator in (2) is r2n + · · · , so

∂U

∂θ
=
nr2n + · · ·
r2n + · · ·

.

The lower degree terms have θ appearing only inside trigonometric (and thus bounded)
functions, hence

lim
R→∞

∂U

∂θ

∣∣∣∣
r=R

= n

uniformly in θ. That lets us evaluate the right side of (4), and obtain∫ 2π

0

(∫ R

0

∂

∂r

∂U

∂θ
dr

)
dθ =

∫ 2π

0

∂U

∂θ

∣∣∣∣
r=R

dθ → 2πn

as R → ∞. On the other hand, we already computed from (4) that the integral is 0.
Therefore n = 0. �

To summarize the argument, we showed that if f(z) has degree n and f(z) 6= 0 for all
complex z, then U = arctan(Im(f)/Re(f)) satisfies

0 =

∫ R

0

(∫ 2π

0

∂

∂r

∂U

∂θ
dθ

)
dr =

∫ 2π

0

(∫ R

0

∂

∂r

∂U

∂θ
dr

)
dθ → 2πn

as R→∞, so n = 0, i.e., f is a constant.
Since arctan(Q/P ) is essentially the argument of P + iQ = f , this proof of Gauss is a

precursor of the proof of the Fundamental Theorem of Algebra based on winding numbers,
which involves the computation of (1/2πi)

∫
C(f ′(z)/f(z)) dz.
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