ACCELERATING CONVERGENCE OF SERIES

KEITH CONRAD

1. INTRODUCTION

An infinite series is the limit of its partial sums. However, it may take a large number of
terms to get even a few correct digits for the series from its partial sums. For example,

1
(1.1) >3
n
n=1
converges but the partial sums sy =1+ 1/4+1/9+ --- + 1/N? take a long time to settle
down, as the table below illustrates, where sy is truncated to 8 digits after the decimal
point. The 1000th partial sum s1900 winds up matching the full series (1.1) only in 1.64.

N | 10 20 25 50 100 1000
sy | 1.54976773  1.59616324 1.60572340 1.62513273 1.63498390 1.64393456

That the partial sums sy converge slowly is related to the error bound from the integral
o
1
test: Z 2= SN + ry where
n=1

=1 > dx 1

(1.2) N n_%:ﬂ 5 < /N =N
To approximate (1.1) by sy correctly to 3 digits after the decimal point means ry < .0001 =
1/10%, so the bound in (1.2) suggests we make 1/N < 1/10% so N > 10000.! In the era
before electronic computers, computing the 10000th partial sum of (1.1) was not feasible.

Our theme is speeding up convergence of a series S = ) -, an. This means rewriting
S in a new way, say S = >, al,, so that the new tail )y = >,y al, goes to 0 faster
than the old tail ry = Zn> Nan. Such techniques are called series acceleration methods.
For instance, we will accelerate (1.1) twice so the 20th accelerated partial sum s, is more
accurate than the 1000th standard partial sum sigg9 above.

2. SERIES WITH POSITIVE TERMS: KUMMER’S TRANSFORMATION

(o]
Let E a, be a convergent series whose terms a, are positive. If {b,} is a sequence

n=1
oo

. . a
growing at the same rate as {a,}, meaning b—n — 1 as n — oo, then Z b, converges by
n

n=1

o
the limit comparison test. If we happen to know the exact value of B = Z bn, then
n=1

(2.1) Zan:an+Z(an—bn):B+Z(1—zn>an
n=1 n=1 n=1 n=1 n

IThe lower bound ry > f;o_ﬂ dx/xz? = 1/(N + 1) proves ry < .0001 = N +1 > 10000, so N > 10000.
1
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and the series on the right in (2.1) is likely to converge more rapidly than the series on the
left since its terms tend to 0 more quickly than a,, on account of the new factor 1 — b, /a,,
which tends to 0. The identity (2.1) goes back to Kummer [5] and is called Kummer’s
transformation.

Example 2.1. We will use (2.1) to rewrite (1.1) as a new series where the remainder for
the Nth partial sum decays faster than the error bound 1/N in (1.2).

o0

1
A seri hose t t th t 1.1) 1 —_—
series whose terms grow at the same rate as (1.1) is nz:l nln 4 1)

value B = 1 from the simplest example of a telescoping series:

N N o 1 1
22 S =2 (a ) = w !

n=1 n=1

, which has exact

1 1 b
— and b, = ————,50 — = r , (2.1) says

N — oo. Taki =
as oo. laking an = —3 I

o0

S I 1 1
(23) Zmzznm.+z( ) IR D e}

n=1 n=1

Letting sy = 1+ Z m, here are its values (truncated to 8 digits after the decimal

point) for the same N as in the previous table. This seems to converge faster than sy.

N | 10 20 25 50 100 1000
sy | 1.64067682 1.64378229 1.64418494 1.64474057 1.64488489 1.64493356

— 1 - 1 1

We have Z 3= s+ 7y where 'y = Z m This tends to 0 faster than e
= n=N+1
oo
1 * dx 1
/ —

n=N+1

Therefore 'y < .0001 if 1/(2N?) < .0001, which is equivalent to N > 71, and that’s a great
improvement on the bound N > 10000 to make ry < .0001. Since s, = 1.644837. .., the
series (1.1) lies between s, — .0001 = 1.644737. .. and s%; 4+ .001 = 1.644937 .. ., and since
1/(2N?%) = .0000005 when N = 1000, the value of s}y tells us (1.1) is 1.64493 to 5 digits
after the decimal point. By accelerating (1.1) even further we’ll approximate it to 5 digits

using a far earlier partial sum than the 1000-th.
1

m. A sequence that grows at

From the series on the right in (2.3), let a, =

o0

1
and we can compute Z b, exactly using a

n(n+1)(n+2)’
telescoping series: as N — o0,

1/2 1/2 1 1/2
(2.5) Zb’”_z< (n+1) (n+1)(n+2)>_4_(N+1)(N+2) 4

the same rate as a,, is b, =

n=1

—_
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1 1 1 by, n
In (2.1) with a, = ——— and b, = ) have B = - and — = :
n (2.1) with a n?(n+1) o n(n+1)(n+2) e have T ap n+2

. 1 1 < 2
z:17”L2(n—|—1 +Z< n—|—2> n2(n+1):4+nz::1n2(n—|—1)(n—|—2)'

Feeding this into the right side of (2.3),

=1  — 2
2.6 =14 .
(26) D R R S B raray T raree
n=1 n=1

N
1 2
When s7 = 1 + + E n2 CESICED) the next table exhibits faster convergence than

previous tables for sy and sy for the same values of N.

N ‘ 10 20 25 50 100 1000
sy ‘ 1.64446470 1.64486454 1.64489719 1.64492911 1.64493342 1.64493406
- 2 — 1
Letting r; = Z 5 , SO Z — = sy + 77\, we have
W ™ (n+1)(n+2) —n
2 2
R D R
n= N+1

which improves on (2.4) by an extra power of N just as (2.4) improved on (1.2) by an extra
power of N. We have < .0001 if 2/(3N3) < .0001, Whlch is equivalent to N > 19, so
from the value of sj, in the table above, (1.1) is between sho — .0001 = 1.64476... and
sho +.0001 = 1.644964. ..: the series (1.1) is 1.644 to 3 digits after the decimal pomt

2

Let’s accelerate the series on the right in (2.6): for a, = a sequence

n?(n+1)(n+2)’
2

growing at the same rate that is exactly summable is b, = , where

n(n +1)(n+2)(n +3)

- 2/3 ~ 2/3 _ !
27  B= Zb Z( (T 1) +2) <n+1><n+2><n+3>>_9

b n

andézm, so (2.1) tells us
[e.e] o
2 1 n 2
> S (k)
nzln(n+1)(n+2) 9 = n+3/) n? (n+1)(n+2)
oo

6
:9+;n2(n+1)(n+2)(n+3)'

Feeding this into (2.6),

=1 1 6
(2:8) ZE_H ) +Zn2n+1)(n+2)(n+3)

n=1

N
1 1 6
Setting 8" = 1+ 1 + 9 + EZI 2+ 1)+ 2)n+3) we have the following values.



4 KEITH CONRAD

N ‘ 10 20 25 50 100 1000
s ‘ 1.64485320 1.64492728 1.64493110 1.64493385 1.64493405 1.64493406

oo

6

/l/ " "
We have Z 3 = SN -+ ry where ry = n;ﬂ 20+ (n 120 +3) has the bound
o
6 6 6 3
///
N < Z nd / 5d$:4N4:2N4,
n=N+1

so rht < .00000384. Using the table above, (1.1) is between sjf — .00000384 > 1.64492726
and 57 4+ .00000384 < 1.64493495, so (1.1) is 1.6449 to 4 diglts after the decimal point.

We can continue this process. For each k& > 1, telescoping series like (2.2), (2.5), and
(2.7) generalize to

[o.9]

1 > 1/k 1/k
nzln(n—irl)---(n—irk) nzl (n(n+1)--~(n+k—1) a (n+1)(n+2)-~(n—|—k)>
(2.9) _ ﬁ
and this lets us generalize (2.3), (2.6), and (2.8) to
(2.10) il—il+i i
= n? = j? =nt(n+1)(n+2)-- (n+k)

(k)

for each k > 0, where the first sum on the right is 0 at £ = 0. The remainder term 7" for
the Nth partial sum of the rightmost series in (2.10) satisfies

o [TR Rk
(2.11) TN </N g
5 N
1 120
Put £ = 2.1 d let = — '
wk =5 (210) andlet s = 35 43 o e S T D T D )

We get the following values.

N| 10 20 25 50 100 1000
s | 164492805 1.64493391 1.64493402 1.64493406 1.64493406 1.64493406

By (2.11), | 200 1/n2 — s = r{)| < (120/6)/208 = 1/20° = .0000003125, which puts
(1.1) between s5) — 0000003125 = 1.6449335 . .. and s5)) + .0000003125 = 1.6449342. . .
The series (1.1) that we have been finding good approximations to has an exact formula:

— = 1.6449340 . ... This beautiful and unexpected result was discovered by Euler in 1735,

when he was still in his 20s, and it is what first made him famous. Before finding the exact
value 72 /6, Euler created an acceleration method in 1731 to estimate (1.1) to 6 digits after
the decimal point, which was far beyond feasible hand calculations using the terms in (1.1).
(Figure 1 shows Euler’s estimate on the second line, taken from the end of his article.) An
account of this work is in [6], and the original paper (and an English translation) is in [1].

480453 ; ergo fumma feriei 1 4 g—+54-{5+
etc. eft =1, 6449354 ¢.p. Si quis autem huius

FIGURE 1. End of Euler’s article where °, -, 1/n? is estimated as 1.644934.
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o0
1
Example 2.2. Consider Z —. Unlike (1.1), there is no known formula for this series in
n

n=1

terms of more familiar numbers. We will estimate the series by accelerating it four times.
1 1
The nth term a, = — grows at the same rate as b, = and we know
T s 8 " nn4+1)(n+2)

o
1
the exact value of an: by (2.5), it is 7 % by (2.1)

n=1
oo o0
1 1 by, 3n + 2
— 1-— -
> 4+Z( an) +Zn3 CESE
3 2 3
Now let a,, = T _:L f)L(n ey so a, grows like v A sequence growing at the same
3
rate whose exact sum is known is b,, = : by (2.9),

(n+ 1)(n+2)(n+3)

by _ _ 2
; ; (n+1)( n+2)(n+3) 3.3 6

so by (2. 1) and algebra

1In+6
Z + +Z<1_)a”: "6 +Zn3n+1 (n+2)(n+3)

11 6 11
Next let a,, = TP 1)(2 1 CEE)N which grows like 5 A sequence growing at the
11
same rate whose exact sum is known is b, = : by (2.9),

nn+1)(n+2)(n+3)(n+4)

LY L _u
n=1 n_nzl n(n+1)(n+2)(n+3)(n+4) _4.4! - 96’

so by (2.1) and algebra

ii_LrLrEJri AN _}+1+E+i 50n + 24
=1 n3 o 4 6 96 ] an n - 4 6 96 ] ng(n+1)“'(n+4)'

It is left to the reader to derive the next acceleration, which is
oo oo
1 11 11 1 274n + 120
DD R A A RS TR S ces et

n=1

We now have five partial sums that each tend to Z — as N — oo

n= 1
N N N
B 1 ;1 3n+2 s 11 11n+6
SN_;In3’ SN_4+nz:1n3(n+1)(n+2)’ SN_4+6+;n3(n+1)(n+2)(n+3)’
S"'_1+1+11+ZN: 50n + 24
M40 60 96 Zndn+1)(n+2)(n+3)(n+4)
@ 1 1 11 al 274n 4 120

N1t T T2 +nZ::1n3(n+1)(n+2)(n+3)(n+4)(n+5).



The table below compares these partial sums for several values of N, each partial sum
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being truncated (not rounded) to 8 digits after the decimal point.

N 10

20

25

50

100

1000

1.19753198
sh | 1.20131986
s | 1.20190261
s% | 1.20201708

s\ | 1.20204483

1.20086784
1.20195009
1.20204420
1.20205498

1.20205655

1.20128826
1.20200051
1.20205138
1.20205621

1.20205679

1.20186086
1.20204940
1.20205651
1.20205687

1.20205690

1.20200740
1.20205593
1.20205687
1.20205690

1.20205690

1.20205640
1.20205690
1.20205690
1.20205690

1.20205690

We can bound the remainder term for each partial sum using the integral test, as in our
previous example:

o0

1 * dz 1
= Y <) =
n=N+1
> 3n+2 > >~ 3 1
/
CE <3 wrg <), weo e
n:NHn(n—i—l )(n+2) ol n+2 T N
> 11n +6 > 11 * 11 11
"
TN = Z 3 < Z 3 </ 75d.fl',' = 74’
i+ 2)(n+3) L ndn+2)(n+3) y @ AN
" = 50n + 24 <050 (™50 50 10
=Y = < Y H< | Fdr=_n =
Wi m+1)(n+2)(n+3)(n+4) Mol N T 5N N
and
() - 274n + 120 — 274 /00 274 274 137
TN = < — < —dr = — = .
N n:ZN:H nd(n+1)(n+2)---(n+5) n:ZN:H n” =y a2’ 6N6 — 3NG
These bounds imply ry < .00001 for N > 224, r%, < .00001 for N > 47, %, < .00001 for

N > 23, r%; < .00001 for N > 16, and 7“5\,) < .00001 for N > 13. Using the bounds on 7],

Z — lies between sjy — .00001 = 1.202044 ... and s, + .00001 = 1.202064.... We also

o0
1
have 7 < .000001 for N > 19, s0 > — lies between sy —.000001 = 1.2020555... and
n

n=1
s+ 000001 = 1.2020575 . . .
=1 =1
Anal to the k-fold acceleration (2.10) f — is a k-fold acceleration of §  —
nalogous to (S (0) accelera IOIl( ) OIT;HQ 1S a (0] acceleration o ;nB
— 1 c > cgrn + (B +1)!
Zn3_z(j+1)(]+1) Zn3(n+1)~-(n+k+1)

for each k > 0, where the first sum on the right is 0 at £k = 0 and ¢, = 1,3, 11, 50,274, ...
is determined by the recursive relation ¢; = 1 and ¢ = kcg—1 + (K — 1)! for k£ > 2. (The
integers c¢; are the unsigned Stirling numbers of the first kind that count the number of
permutations of the set {1,...,k + 1} having 2 disjoint cycles.)
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3. ALTERNATING SERIES: EULER’S TRANSFORMATION

The Leibniz series

o0

T, 1+1 1+1 1+1 1+1 1+ _Z(—l)"
4 35 7 9 11 13 15 17 19 o+ 1]
which equivalently says
4 4 4 4 4 4 4 4 4 2 (-1)"4
1 e T
@1 sty 7o T T BT w7 T;Qn—l—l’

converges very slowly. For example, the 100th partial sum of the series in (3.1) is 3.151.. .,
which is accurate to only one digit past the decimal point.

We will describe a method due to Euler for accelerating the convergence of alternating
series?, and illustrate it for both (3.1) and the alternating harmonic series

1 1 1 1 1 1 1 1 1 (=1t
D) In2=1--4+-—-—-+- -4+ -4+ - — 4...= -
(3.2) . 53 175 677 s o 1w0F >

Euler’s basic idea is that a convergent alternating series
(3.3) S=ap—ai+as—a3+as—as+---

can be rewritten as

aq ag al al as a9 as as aq ay as
w0 5=3(3-5)- (55 (5-9)-(5-9) (55
(34) 2+ 2 2 2 2 + 2 2 2 2 + 2 2

where each term of the original series is split in half and combined with half of the adjacent
terms on both sides of the original series (except the first term ag, where a single ag/2 is
left on its own). The order of addition has not changed in passing from (3.3) to (3.4), so
the value of the series does not change. Since the terms a,, /2 —a,+1/2 = (an —an+1)/2 may
have a faster decay rate than the original terms a,, applying this transformation multiple
times can accelerate the convergence in an impressive way.

Example 3.1. Applying (3.3) ~» (3.4) to (3.1) turns this series into

oo EY (22 (22 (22 (22N _(2_2),

= 3 35 57 779 9 11 11 13
4 4 4 4 4

— 924

13 35 57 7.9 9.1 1113
We have changed (3.1) into

o0

(3.5) 24> (=1
. =
— (2n+1)(2n+3)
by replacing a,, = o+ 1 in (3.3) with
L an apit 2 2 2(2n +3) — 2(2n + 1) 4
2 2 2n+1 2n+3 (2n+1)(2n + 3) (2n+1)(2n +3)

2Euler gives a brief account of accelerating the series in our Examples 3.1 and 3.2 in [2, Chap. 1, Part II]
(pp. 236-237 of the original Latin and pp. 399-400 in the English translation). See also [4, Sect. 35B].
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Now view the alternating series in (3.5) as an instance of (3.3) and transform it using (3.4):

7T_2+<4 4+4_4+4_4+...)
5 5.7 7-9 9-11 11-13
(34) 2 2 2 2 2 2 2
T 3+<1 3 3. 5) (3-5_5-7 +<5-7_7-9>_(7-9_9-11>+”'
= 2+2+ 5 I . E I
371-3-5 3-5.7 5.7-9 7-9-11

which has changed (3.5) into

L2 (-1)"8
(3.7) 7T—2+3+;(2n+1)(2n+3)(2n+5)

by replacing a/, in (3.6) with

(3.8) ! = %_(I%+1 _ 4 B 4 B 8
T 2 2n+1)2n+3) 2n+3)2n+5) (2n+1)(2n+3)(2n+5)

Next view the alternating series in (3.7) as (3.3) and transform it using (3.4):

w:2+2+( > 8 [ 8 5 +-~>

37135 357 5.7-9 7.9-11

(‘3:4)2+2+4+( i1 >—< i 4 >+
3715 \1-3.5 3.5.7 357 5.7-11
2 4 24 24

=244y

We have changed (3.7) into

(3.9) 242 + - 1 + (-1)"24
. = —
3 « (2n +1)(2n +3)(2n + 5)(2n + 7)
by replacing @) in (3.8) with
" a// angl - 24

(3.10) W T Ty T @n D@t 8@ 5@ 17

Applying this process two more times, we get

(3.11) R Y (=1)96
. T = N _
3 105 2= (2n+1)(2n + 3)(2n +5)(2n +7)(2n +9)
and
2 04 12 48 & —1)"480
(312) =24+ —F+——F+——+ (=1

315 105 945 Z(2n+1)(2n+3)(2n+5)(2n+7)(2n+9)(2n+11)'
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We now have six partial sums that each tend to m as N — oo:

()4

SN = —_—

N m+1’
n=0

N
/ (_1)n4
SN_2+7;)(2n+1)(2n+3)’

N (—1)"8

1 §

—2 -
N 3 - 0(2n+1)(2n+3)(2n+5)’

ol (—1)"24

"

—94+ 4=
SN=2tgt 15+;)(2n+1)(2n+3)(2n+5)(2n+7)’

N

(4) 2 4 12 (—1)"96

—94 4 4=
R L TR TIE +nz_% 2n+1)(2n +3)(2n+5)2n + 7)(2n + 9)’

N n

) _g, 2, 4, 12 48 (=1)"480
N T3 T T 105 T ass +nz% @n+1)2n+3)2n+5)2n+ T 2n +9)2n + 11)°

The table below lists these partial sums at N = 10, 20, 25, 50, 100, and 1000 truncated

(not rounded) to 8 digits after the decimal point. While s1¢ is only accurate to one digit,

sgg) is accurate to 6 digits. While s1gg is only accurate to two digits, 3550)0 is accurate to 11

digits (the 9th and 10th digits after the decimal point are not in the table).

N 10 20 25 20 100 1000

3.23231580
3.14535928
3.14188102
3.14162337
3.14159672

3.14159328

3.18918478
3.14267315
3.14163956
3.14159558
3.14159288

3.14159267

3.10314531
3.14088116
3.14156726
3.14159134
3.14159256

3.14159264

3.16119861
3.14178113
3.14159620
3.14159275
3.14159265

3.14159265

3.15149340
3.14164118
3.14159312
3.14159266
3.14159265

3.14159265

3.14259165
3.14159315
3.14159265
3.14159265
3.14159265

3.14159265

The reason accelerated series tend to converge faster is that their terms decay to 0 at
ever faster rates. Terms in the successive series for 7 — (3.1), (3.5), (3.7), (3.9), (3.11), and
(3.12) — decay as follows:

42
"T o+l n
_ 4 1
T n+)@n+3) " w2’
4 = 8 - i
" 2n+1)2n+3)2n+5) n3’
o — 24 o~ 2
" 2n+1D)(2n+3)2n+5)(2n+7)  2n*’
oD = 96 3
" 2n+1)2n+3)2n+5)2n+T)(2n+9)  nd’
6 480 15

T 20+ )20 +3)2n+5)2n+7)(2n+9)(2n + 11) 26’
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In general, after applying k series accelerations to (3.1) we have

k—1 2(j1) s (—1)"4(k!)
(3.13) W:; 1-3-5---(2j +1) —i_nzz;)(2n—i—1)(2n+3)"'(2n+2k?+1)7

where the first sum in (3.13) is 0 for £ = 0. This formula at £ =0, 1, 2, 3, 4, and 5 is (3.1),
(3.5), (3.7), (3.9), (3.11), and (3.12) respectively, and for each k the magnitude of the nth
term in the second series in (3.13) decays like 1/n*+1 up to a scaling factor: as n — oo,
4(k!) 4(kl)  Klj2kt
n+1)2n+3)---(2n+2k+1)  (2n)FtT Rl
In an answer on https://math.stackexchange.com/questions/1702694/why-is-the-
leibniz-method-for-approximating-pi-so-inefficient the series (3.1) is accelerated

24 times.
Error bounds on the remainder for each series for 7 can be obtained from the alternating

(1) _ (@)

series test: the absolute value of the first omitted term is a bound. Writing ry/ =7 — s,
ST S S WA Loy 8 1
r — < — r — === r — =
M>oN+1) SN TN gnz T N2 PNIT QNS TN
24 3 (4) 96 3 (5) 480 15
" _ 9 < _ 2 < -2
vl < fon = ot IVl < 3o = s IV I< Gave  ane

For example, |ri)| < .000001 if 3/N® < .000001, which is the same as N > 20. Thus 7 is
between s5) —.000001 = 3.141591 ... and s\ +.000001 = 3.141593.. ..

Example 3.2. Now we turn to the alternating harmonic series (3.2), and will be more brief
o

than we were with the series for 7. Write (3.2) asay —as+a3 —ag+--- = Z(—l)”_lan,

n=1

1
where a, = —. Accelerating (3.2) once turns that series into
n

o
an  Qptl 1 (-nH~t 1 1 1 1 1
14) G S I e e -
(3 *Z 2 2+;2n(n+1) st TR Tu
Acceleratmg (3 14) makes it
1 1 11 (-1t
(3.15) -
+Z <4n(n+1) 4(n+1)(n+2)> 2 8+Z 2n(n + 1)(n +2)
and the reader Should check as an exercise that the next few accelerations of (3.2) are
1 1 1 (-1)"13
3.16 = —
(3.16) SRR — 4dn(n+1)(n +2)(n+3)’
1 1 1 1 (-1)"13
3.17 = —
(3:.17) 2+8+24+ 4+nzl2n(n+1)(n+2)(n+3)(n+4)’
and
1 1 1 1 (-1)"115
3.18 - — .
(3.18) 2+8+24+64+ +Z4nn+1)(n+2)(n+3)(n+4)(n+5)

In the table below we list partial sums of (3.2) and its accelerated forms (3.14), (3.15),

(3.16), (3.17), and (3.18). The notation sg\i,) in the first column is, by analogy with the series
for m, the ith accelerated form of (3.2), for 0 < ¢ < 5, with the sum running up to n = N.


https://math.stackexchange.com/questions/1702694/why-is-the-leibniz-method-for-approximating-pi-so-inefficient
https://math.stackexchange.com/questions/1702694/why-is-the-leibniz-method-for-approximating-pi-so-inefficient
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N 10 20 25 50 100 1000

sy | 64563492 66877140 .71274749 .68324716 .68817217 .69264743
sy | 69108946 69258092 .69351673 .69305108 .69312267 .69314693
s | 69298340 69312205 .69316060 .69314535 .69314694 .69314718
s% | 69312909 69314557 .69314788 .69314712 .69314717 .69314718

853) 69314470 .69314705 .69314722 .69314717 .69314718 .69314718
SS{?) 69314678 .69314716 .69314718 .69314718 .69314718 .69314718

Since all these series fit the alternating series test, we can bound remainders using the
first missing term. For example, from (3.18), \rég)| < 15/(4(21%)) ~ 4.37/10%, so from the

value of sé%) we know (3.2) equals .693147.... By comparison, the 1000th partial sum of
(3.2) is accurate to just two digits!
Generalizing the series (3.14)—(3.18), after k accelerations

n—1 k

00 1 1 00 nlk"
(3.19) Z(,Z=Z2J]+Z2k n—i—l) (n+k)’

n=1 j=1

where the first sum on the right in (3.19) is 0 when k& = 0, and for each k the nth term of
the second series on the right in (3.19) decays like 1/75T! up to a scaling factor: as n — oo,
k! k! /2%
2kn(n+1)---(n+k) nktl’

o
We can describe the effect of applying Euler’s transformation k times to Z(—l)”an

n=0
by using notation from the difference calculus. For a sequence a = (ag, a1, az, ...), its first

discrete difference is the sequence Aa = (a1 —ag, ag—aj,az—az, . ..), so (Aa)(n) = ap+1—ay
The second discrete difference of a is A%?a = A(Aa), which starts out as
((Aa)(1) — (Aa)(0), (Aa)(2) — (Aa)(1),...) = (a2 — 2a1 + ap,a3 — 2as + ay,...)

and in general the kth discrete difference of a is A¥a = A(A*~1a). The formula (A%a)(n) =
Gnt2 — 2ap41 + @, suggests a connection with binomial coefficients using alternating signs.
Indeed, for £ > 0 we have

O

J=0

for each n > 0. In particular, ( < )a =ar —kap_1+---+ (—1)ka0.

QMN

With this notation, Euler’s transformation in (3.4) consists of rewriting Z(—l)"an as
n=0
a a1 ap 1
an — Gnt1 0 0
(3.20) Z = 5 ~5 2 D ani—an) = 5 =5 ) (=1)"(Aa)(n).

Applying Euler’s transformation to the series on the right in (3.20) gives us

S -1t (aa ) = EVO IS a@a)m = D50 - DS 1yt (aaym)
n=0
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and feeding this into (3.20) shows Z(—l)”an is

n=0

ap 1 <a1 —Go 1 (—1)"(A2a)(n)> =3 _ A (—1)"(A2a)(n).

n=0

In general, applying Euler’s transformation k times leads to the acceleration formula

0o k—1 1V ' . k oo
B2) 1 =3 S0+ (G ) T e@am,

n=0 7=0 n=0

where the first (finite) series on the right is 0 at k£ = 0.

Remark 3.3. While we are interested in examples where Euler’s transformation speeds up
convergence, it does not always have such an effect. For example, if a, = r™ with |r| < 1
then (Aa)(n) = "t —r" = (r —1)r" = (r — 1)ay, so Euler’s transformation on a geometric
series leads to no improvement:

[e.9]

S =g = TSy

A version of Euler’s transformation can be applied to any convergent series that can be
o0
written as a power series Z anc" for some ¢ in [—1, 1), not just for alternating series (the

n=0
case ¢ = —1):

o0
n o__ 2 3
anC” = ap + aic+ asc” +azc” + - - -

n=0
l1-c 0—02+ CQ—CS+ 63—C4+
=a a a a
'1—¢ "T—¢ 1—c 1-c
_ % +*ao+alc+*a1+a262+*a2+a303+”.
1-c 1-c 1-c 1-c
Qo ap — ag ag —ai o a3 —0az 3
_1—c+ 1-c ct 1-¢ ¢ + 1-¢ ¢ +
a c —
0
:1_C+1_CZ(an+1—an)c”
n=0
a C =
— 0 n
=ty ) ().
n=0
When ¢ = —1 this is (3.20), and in case the result seems like a trick it could also be derived

using summation by parts with u, = a, and v, = ¢""!/(c — 1). Repeating this process k
times for k > 0,

0o k-1 ¢ ) Ck o0
D anc” =) ———=(Na)(0) + —— > _(AFa)(n)c",
n=0 7=0 (1 C)] (1 C) n=0

where the first sum on the right is 0 at £ = 0. At ¢ = —1 the above formula is (3.21).
For more on this, see [3] and [4, Sect. 33, 35], but watch out: in [4], (Aa)(n) = an — ant1.
That is the negative of our convention, so A™ in [4] is our (—1)"A".



(1
2]

3]

(4]

(5]

(6]
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4. MORE SPEED-UP METHODS

We briefly mention two further techniques for accelerating convergence of series.
(1) The Shanks transformation is applied to the partial sums of a series, not to the
terms of the series. If S =3 ., a, has partial sums sy for N > 1 then the Shanks
transformation of the partial sums is the new sequence sy where

(sn+2 — 8N+1)2

SN+42 — 25N41 + SN
provided the denominators are not 0. For example, if S = In2 = .69314718... =
> 51 (=1)"71/n then s100 = .688172... is only accurate to one digit while s}, =
693065 . . . is accurate to 3 digits and sty = .693146. .. is accurate to 5 digits.

Check as an exercise that if S =Y - ar""! is a geometric series with |r| < 1
and a # 0, and sy = a+ar + -+ +ar™ 1 then sy, = a/(1 —r) for all N. Thus the
Shanks transformation accelerates every partial sum of a geometric series directly
to the full series in one step.

(2) The discrete Fourier transform of a sequence ag, aq,...,a,—1 in C is the new se-
quence ag, @i, - ..,0a,n—1 where ap = Z;-”:_Ol ape~2miak/m  Calculating all of these
(finite) series rapidly is an important task. To compute each @y from its definition
requires m multiplications, so computing every @y, requires m - m = m? multiplica-
tions. The fast Fourier transform (FFT) is an alternate approach to computing the
discrete Fourier transform that requires something on the order of at most mlnm
operations, which is a big improvement on the naive approach directly from the
definitions.

/
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