
ACCELERATING CONVERGENCE OF SERIES

KEITH CONRAD

1. Introduction

An infinite series is the limit of its partial sums. However, it may take a large number of
terms to get even a few correct digits for the series from its partial sums. For example,

(1.1)
∞∑
n=1

1

n2

converges but the partial sums sN = 1 + 1/4 + 1/9 + · · ·+ 1/N2 take a long time to settle
down, as the table below illustrates, where sN is truncated to 8 digits after the decimal
point. The 1000th partial sum s1000 winds up matching the full series (1.1) only in 1.64.

N 10 20 25 50 100 1000
sN 1.54976773 1.59616324 1.60572340 1.62513273 1.63498390 1.64393456

That the partial sums sN converge slowly is related to the error bound from the integral

test:
∞∑
n=1

1

n2
= sN + rN where

(1.2) rN =
∞∑

n=N+1

1

n2
<

∫ ∞
N

dx

x2
=

1

N
.

To approximate (1.1) by sN correctly to 3 digits after the decimal point means rN < .0001 =
1/104, so the bound in (1.2) suggests we make 1/N ≤ 1/104, so N ≥ 10000.1 In the era
before electronic computers, computing the 1000th partial sum of (1.1) was not feasible.

Our theme is speeding up convergence of a series S =
∑

n≥1 an. This means rewriting

S in a new way, say S =
∑

n≥1 a
′
n, so that the new tail r′N =

∑
n>N a

′
n goes to 0 faster

than the old tail rN =
∑

n>N an. Such techniques are called series acceleration methods.
For instance, we will accelerate (1.1) twice so the 20th accelerated partial sum s′′20 is more
accurate than the 1000th standard partial sum s1000 above.

2. Series with positive terms: Kummer’s transformation

Let
∞∑
n=1

an be a convergent series whose terms an are positive. If {bn} is a sequence

growing at the same rate as {an}, meaning
an
bn
→ 1 as n → ∞, then

∞∑
n=1

bn converges by

the limit comparison test. If we happen to know the exact value of B =
∞∑
n=1

bn, then

(2.1)

∞∑
n=1

an =

∞∑
n=1

bn +

∞∑
n=1

(an − bn) = B +

∞∑
n=1

(
1− bn

an

)
an

1The lower bound rN >
∫∞
N+1

dx/x2 = 1/(N + 1) proves rN < .0001⇒ N + 1 > 10000, so N ≥ 10000.
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and the series on the right in (2.1) is likely to converge more rapidly than the series on the
left since its terms tend to 0 more quickly than an on account of the new factor 1− bn/an,
which tends to 0. The identity (2.1) goes back to Kummer [5] and is called Kummer’s
transformation.

Example 2.1. We will use (2.1) to rewrite (1.1) as a new series where the remainder for
the Nth partial sum decays faster than the error bound 1/N in (1.2).

A series whose terms grow at the same rate as (1.1) is
∞∑
n=1

1

n(n+ 1)
, which has exact

value B = 1 from the simplest example of a telescoping series:

(2.2)

N∑
n=1

1

n(n+ 1)
=

N∑
n=1

(
1

n
− 1

n+ 1

)
= 1− 1

N
→ 1

as N →∞. Taking an =
1

n2
and bn =

1

n(n+ 1)
, so

bn
an

=
n

n+ 1
, (2.1) says

(2.3)
∞∑
n=1

1

n2
=
∞∑
n=1

1

n(n+ 1)
+
∞∑
n=1

(
1− n

n+ 1

)
1

n2
= 1 +

∞∑
n=1

1

n2(n+ 1)
.

Letting s′N = 1 +
N∑
n=1

1

n2(n+ 1)
, here are its values (truncated to 8 digits after the decimal

point) for the same N as in the previous table. This seems to converge faster than sN .

N 10 20 25 50 100 1000
s′N 1.64067682 1.64378229 1.64418494 1.64474057 1.64488489 1.64493356

We have
∞∑
n=1

1

n2
= s′N +r′N where r′N =

∞∑
n=N+1

1

n2(n+ 1)
. This tends to 0 faster than

1

N
:

(2.4) r′N <
∞∑

n=N+1

1

n3
<

∫ ∞
N

dx

x3
=

1

2N2
.

Therefore r′N < .0001 if 1/(2N2) ≤ .0001, which is equivalent to N ≥ 71, and that’s a great
improvement on the bound N ≥ 10000 to make rN < .0001. Since s′71 = 1.644837 . . ., the
series (1.1) lies between s′71 − .0001 = 1.644737 . . . and s′71 + .001 = 1.644937 . . ., and since
1/(2N2) = .0000005 when N = 1000, the value of s′1000 tells us (1.1) is 1.64493 to 5 digits
after the decimal point. By accelerating (1.1) even further we’ll approximate it to 5 digits
using a far earlier partial sum than the 1000-th.

From the series on the right in (2.3), let an =
1

n2(n+ 1)
. A sequence that grows at

the same rate as an is bn =
1

n(n+ 1)(n+ 2)
, and we can compute

∞∑
n=1

bn exactly using a

telescoping series: as N →∞,

(2.5)

N∑
n=1

bn =

N∑
n=1

(
1/2

n(n+ 1)
− 1/2

(n+ 1)(n+ 2)

)
=

1

4
− 1/2

(N + 1)(N + 2)
→ 1

4
.
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In (2.1) with an =
1

n2(n+ 1)
and bn =

1

n(n+ 1)(n+ 2)
, we have B =

1

4
and

bn
an

=
n

n+ 2
:

∞∑
n=1

1

n2(n+ 1)
=

1

4
+

∞∑
n=1

(
1− n

n+ 2

)
1

n2(n+ 1)
=

1

4
+

∞∑
n=1

2

n2(n+ 1)(n+ 2)
.

Feeding this into the right side of (2.3),

(2.6)
∞∑
n=1

1

n2
= 1 +

1

4
+
∞∑
n=1

2

n2(n+ 1)(n+ 2)
.

When s′′N = 1+
1

4
+

N∑
n=1

2

n2(n+ 1)(n+ 2)
, the next table exhibits faster convergence than

previous tables for sN and s′′N for the same values of N .

N 10 20 25 50 100 1000
s′′N 1.64446470 1.64486454 1.64489719 1.64492911 1.64493342 1.64493406

Letting r′′N =
∞∑

n=N+1

2

n2(n+ 1)(n+ 2)
, so

∞∑
n=1

1

n2
= s′′N + r′′N , we have

r′′N <
∞∑

n=N+1

2

n4
<

∫ ∞
N

2

x4
dx =

2

3N3
,

which improves on (2.4) by an extra power of N just as (2.4) improved on (1.2) by an extra
power of N . We have r′′N < .0001 if 2/(3N3) < .0001, which is equivalent to N ≥ 19, so
from the value of s′′20 in the table above, (1.1) is between s′′20 − .0001 = 1.64476 . . . and
s′′20 + .0001 = 1.644964 . . .: the series (1.1) is 1.644 to 3 digits after the decimal point.

Let’s accelerate the series on the right in (2.6): for an =
2

n2(n+ 1)(n+ 2)
, a sequence

growing at the same rate that is exactly summable is bn =
2

n(n+ 1)(n+ 2)(n+ 3)
, where

(2.7) B =

∞∑
n=1

bn =

∞∑
n=1

(
2/3

n(n+ 1)(n+ 2)
− 2/3

(n+ 1)(n+ 2)(n+ 3)

)
=

1

9

and
bn
an

=
n

n+ 3
, so (2.1) tells us

∞∑
n=1

2

n2(n+ 1)(n+ 2)
=

1

9
+

∞∑
n=1

(
1− n

n+ 3

)
2

n2(n+ 1)(n+ 2)

=
1

9
+

∞∑
n=1

6

n2(n+ 1)(n+ 2)(n+ 3)
.

Feeding this into (2.6),

(2.8)

∞∑
n=1

1

n2
= 1 +

1

4
+

1

9
+

∞∑
n=1

6

n2(n+ 1)(n+ 2)(n+ 3)
.

Setting s′′′N = 1 +
1

4
+

1

9
+

N∑
n=1

6

n2(n+ 1)(n+ 2)(n+ 3)
, we have the following values.
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N 10 20 25 50 100 1000
s′′′N 1.64485320 1.64492728 1.64493110 1.64493385 1.64493405 1.64493406

We have

∞∑
n=1

1

n2
= s′′′N + r′′′N where r′′′N =

∞∑
n=N+1

6

n2(n+ 1)(n+ 2)(n+ 3)
has the bound

r′′′N <
∞∑

n=N+1

6

n5
<

∫ ∞
N

6

x5
dx =

6

4N4
=

3

2N4
,

so r′′′25 < .00000384. Using the table above, (1.1) is between s′′′25 − .00000384 > 1.64492726
and s′′′25 + .00000384 < 1.64493495, so (1.1) is 1.6449 to 4 digits after the decimal point.

We can continue this process. For each k ≥ 1, telescoping series like (2.2), (2.5), and
(2.7) generalize to
∞∑
n=1

1

n(n+ 1) · · · (n+ k)
=

∞∑
n=1

(
1/k

n(n+ 1) · · · (n+ k − 1)
− 1/k

(n+ 1)(n+ 2) · · · (n+ k)

)
=

1

k · k!
(2.9)

and this lets us generalize (2.3), (2.6), and (2.8) to

(2.10)
∞∑
n=1

1

n2
=

k∑
j=1

1

j2
+
∞∑
n=1

k!

n2(n+ 1)(n+ 2) · · · (n+ k)

for each k ≥ 0, where the first sum on the right is 0 at k = 0. The remainder term r
(k)
N for

the Nth partial sum of the rightmost series in (2.10) satisfies

(2.11) r
(k)
N <

∫ ∞
N

k!

xk+2
dx =

k!/(k + 1)

Nk+1
.

Put k = 5 in (2.10) and let s
(5)
N =

5∑
n=1

1

n2
+

N∑
n=1

120

n2(n+ 1)(n+ 2)(n+ 3)(n+ 4)(n+ 5)
.

We get the following values.

N 10 20 25 50 100 1000

s
(5)
N 1.64492895 1.64493391 1.64493402 1.64493406 1.64493406 1.64493406

By (2.11), |
∑∞

n=1 1/n2− s(5)20 | = |r
(5)
20 | < (120/6)/206 = 1/205 = .0000003125, which puts

(1.1) between s
(5)
20 − .0000003125 = 1.6449335 . . . and s

(5)
20 + .0000003125 = 1.6449342 . . ..

The series (1.1) that we have been finding good approximations to has an exact formula:
π2

6
= 1.6449340 . . .. This beautiful and unexpected result was discovered by Euler in 1735,

when he was still in his 20s, and it is what first made him famous. Before finding the exact
value π2/6, Euler created an acceleration method in 1731 to estimate (1.1) to 6 digits after
the decimal point, which was far beyond feasible hand calculations using the terms in (1.1).
(Figure 1 shows Euler’s estimate on the second line, taken from the end of his article.) An
account of this work is in [6], and the original paper (and an English translation) is in [1].

Figure 1. End of Euler’s article where
∑

n≥1 1/n2 is estimated as 1.644934.
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Example 2.2. Consider

∞∑
n=1

1

n3
. Unlike (1.1), there is no known formula for this series in

terms of more familiar numbers. We will estimate the series by accelerating it four times.

The nth term an =
1

n3
grows at the same rate as bn =

1

n(n+ 1)(n+ 2)
, and we know

the exact value of
∞∑
n=1

bn: by (2.5), it is
1

4
, so by (2.1)

∞∑
n=1

1

n3
=

1

4
+

∞∑
n=1

(
1− bn

an

)
an =

1

4
+

∞∑
n=1

3n+ 2

n3(n+ 1)(n+ 2)
.

Now let an =
3n+ 2

n3(n+ 1)(n+ 2)
, so an grows like

3

n4
. A sequence growing at the same

rate whose exact sum is known is bn =
3

n(n+ 1)(n+ 2)(n+ 3)
: by (2.9),

∞∑
n=1

bn =
∞∑
n=1

3

n(n+ 1)(n+ 2)(n+ 3)
=

3

3 · 3!
=

1

6
,

so by (2.1) and algebra
∞∑
n=1

1

n3
=

1

4
+

1

6
+
∞∑
n=1

(
1− bn

an

)
an =

1

4
+

1

6
+
∞∑
n=1

11n+ 6

n3(n+ 1)(n+ 2)(n+ 3)
.

Next let an =
11n+ 6

n3(n+ 1)(n+ 2)(n+ 3)
, which grows like

11

n5
. A sequence growing at the

same rate whose exact sum is known is bn =
11

n(n+ 1)(n+ 2)(n+ 3)(n+ 4)
: by (2.9),

∞∑
n=1

bn =

∞∑
n=1

11

n(n+ 1)(n+ 2)(n+ 3)(n+ 4)
=

11

4 · 4!
=

11

96
,

so by (2.1) and algebra
∞∑
n=1

1

n3
=

1

4
+

1

6
+

11

96
+
∞∑
n=1

(
1− bn

an

)
an =

1

4
+

1

6
+

11

96
+
∞∑
n=1

50n+ 24

n3(n+ 1) · · · (n+ 4)
.

It is left to the reader to derive the next acceleration, which is
∞∑
n=1

1

n3
=

1

4
+

1

6
+

11

96
+

1

12
+

∞∑
n=1

274n+ 120

n3(n+ 1) · · · (n+ 5)
.

We now have five partial sums that each tend to
∞∑
n=1

1

n3
as N →∞:

sN =
N∑
n=1

1

n3
, s′N =

1

4
+

N∑
n=1

3n+ 2

n3(n+ 1)(n+ 2)
, s′′N =

1

4
+

1

6
+

N∑
n=1

11n+ 6

n3(n+ 1)(n+ 2)(n+ 3)
,

s′′′N =
1

4
+

1

6
+

11

96
+

N∑
n=1

50n+ 24

n3(n+ 1)(n+ 2)(n+ 3)(n+ 4)
,

s
(4)
N =

1

4
+

1

6
+

11

96
+

1

12
+

N∑
n=1

274n+ 120

n3(n+ 1)(n+ 2)(n+ 3)(n+ 4)(n+ 5)
.
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The table below compares these partial sums for several values of N , each partial sum
being truncated (not rounded) to 8 digits after the decimal point.

N 10 20 25 50 100 1000
sN 1.19753198 1.20086784 1.20128826 1.20186086 1.20200740 1.20205640
s′N 1.20131986 1.20195009 1.20200051 1.20204940 1.20205593 1.20205690
s′′N 1.20190261 1.20204420 1.20205138 1.20205651 1.20205687 1.20205690
s′′′N 1.20201708 1.20205498 1.20205621 1.20205687 1.20205690 1.20205690

s
(4)
N 1.20204483 1.20205655 1.20205679 1.20205690 1.20205690 1.20205690

We can bound the remainder term for each partial sum using the integral test, as in our
previous example:

rN :=
∞∑

n=N+1

1

n3
<

∫ ∞
N

dx

x3
=

1

2N2
,

r′N :=
∞∑

n=N+1

3n+ 2

n3(n+ 1)(n+ 2)
<

∞∑
n=N+1

3

n3(n+ 2)
<

∫
N

3

x4
dx =

1

N3
,

r′′N :=
∞∑

n=N+1

11n+ 6

n3(n+ 1)(n+ 2)(n+ 3)
<

∞∑
n=N+1

11

n3(n+ 2)(n+ 3)
<

∫
N

11

x5
dx =

11

4N4
,

r′′′N :=
∞∑

n=N+1

50n+ 24

n3(n+ 1)(n+ 2)(n+ 3)(n+ 4)
<

∞∑
n=N+1

50

n6
<

∫
N

50

x6
dx =

50

5N5
=

10

N5
,

and

r
(4)
N :=

∞∑
n=N+1

274n+ 120

n3(n+ 1)(n+ 2) · · · (n+ 5)
<

∞∑
n=N+1

274

n7
<

∫
N

274

x7
dx =

274

6N6
=

137

3N6
.

These bounds imply rN < .00001 for N ≥ 224, r′N < .00001 for N ≥ 47, r′′N < .00001 for

N ≥ 23, r′′′N < .00001 for N ≥ 16, and r
(4)
N < .00001 for N ≥ 13. Using the bounds on r′′′N ,

∞∑
n=1

1

n3
lies between s′′′20 − .00001 = 1.202044 . . . and s′′′20 + .00001 = 1.202064 . . .. We also

have r
(4)
N < .000001 for N ≥ 19, so

∞∑
n=1

1

n3
lies between s

(4)
20 − .000001 = 1.2020555 . . . and

s
(4)
20 + .000001 = 1.2020575 . . ..

Analogous to the k-fold acceleration (2.10) for
∞∑
n=1

1

n2
is a k-fold acceleration of

∞∑
n=1

1

n3
:

∞∑
n=1

1

n3
=

k∑
j=1

cj
(j + 1)(j + 1)!

+
∞∑
n=1

ck+1n+ (k + 1)!

n3(n+ 1) · · · (n+ k + 1)

for each k ≥ 0, where the first sum on the right is 0 at k = 0 and ck = 1, 3, 11, 50, 274, . . .
is determined by the recursive relation c1 = 1 and ck = kck−1 + (k − 1)! for k ≥ 2. (The
integers ck are the unsigned Stirling numbers of the first kind that count the number of
permutations of the set {1, . . . , k + 1} having 2 disjoint cycles.)
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3. Alternating series: Euler’s transformation

The Leibniz series

π

4
= 1− 1

3
+

1

5
− 1

7
+

1

9
− 1

11
+

1

13
− 1

15
+

1

17
− 1

19
+ · · · =

∞∑
n=0

(−1)n

2n+ 1
,

which equivalently says

(3.1) π = 4− 4

3
+

4

5
− 4

7
+

4

9
− 4

11
+

4

13
− 4

15
+

4

17
− 4

19
+ · · · =

∞∑
n=0

(−1)n4

2n+ 1
,

converges very slowly. For example, the 100th partial sum of the series in (3.1) is 3.151 . . .,
which is accurate to only one digit past the decimal point.

We will describe a method due to Euler for accelerating the convergence of alternating
series2, and illustrate it for both (3.1) and the alternating harmonic series

(3.2) ln 2 = 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+

1

7
− 1

8
+

1

9
− 1

10
+ · · · =

∞∑
n=1

(−1)n−1

n
.

Euler’s basic idea is that a convergent alternating series

(3.3) S = a0 − a1 + a2 − a3 + a4 − a5 + · · ·

can be rewritten as

(3.4) S =
a0
2

+
(a0

2
− a1

2

)
−
(a1

2
− a2

2

)
+
(a2

2
− a3

2

)
−
(a3

2
− a4

2

)
+
(a4

2
− a5

2

)
− · · · ,

where each term of the original series is split in half and combined with half of the adjacent
terms on both sides of the original series (except the first term a0, where a single a0/2 is
left on its own). The order of addition has not changed in passing from (3.3) to (3.4), so
the value of the series does not change. Since the terms an/2−an+1/2 = (an−an+1)/2 may
have a faster decay rate than the original terms an, applying this transformation multiple
times can accelerate the convergence in an impressive way.

Example 3.1. Applying (3.3)  (3.4) to (3.1) turns this series into

π = 2 +

(
2− 2

3

)
−
(

2

3
− 2

5

)
+

(
2

5
− 2

7

)
−
(

2

7
− 2

9

)
+

(
2

9
− 2

11

)
−
(

2

11
− 2

13

)
+ · · ·

= 2 +
4

1 · 3
− 4

3 · 5
+

4

5 · 7
− 4

7 · 9
+

4

9 · 11
− 4

11 · 13
+ · · · .

We have changed (3.1) into

(3.5) π = 2 +
∞∑
n=0

(−1)n4

(2n+ 1)(2n+ 3)

by replacing an =
4

2n+ 1
in (3.3) with

(3.6) a′n =
an
2
− an+1

2
=

2

2n+ 1
− 2

2n+ 3
=

2(2n+ 3)− 2(2n+ 1)

(2n+ 1)(2n+ 3)
=

4

(2n+ 1)(2n+ 3)
.

2Euler gives a brief account of accelerating the series in our Examples 3.1 and 3.2 in [2, Chap. 1, Part II]
(pp. 236-237 of the original Latin and pp. 399-400 in the English translation). See also [4, Sect. 35B].
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Now view the alternating series in (3.5) as an instance of (3.3) and transform it using (3.4):

π = 2 +

(
4

1 · 3
− 4

3 · 5
+

4

5 · 7
− 4

7 · 9
+

4

9 · 11
− 4

11 · 13
+ · · ·

)
(3.4)
= 2 +

2

1 · 3
+

(
2

1 · 3
− 2

3 · 5

)
−
(

2

3 · 5
− 2

5 · 7

)
+

(
2

5 · 7
− 2

7 · 9

)
−
(

2

7 · 9
− 2

9 · 11

)
+ · · ·

= 2 +
2

3
+

8

1 · 3 · 5
− 8

3 · 5 · 7
+

8

5 · 7 · 9
− 8

7 · 9 · 11
+ · · · ,

which has changed (3.5) into

(3.7) π = 2 +
2

3
+
∞∑
n=0

(−1)n8

(2n+ 1)(2n+ 3)(2n+ 5)

by replacing a′n in (3.6) with

(3.8) a′′n =
a′n
2
−
a′n+1

2
=

4

(2n+ 1)(2n+ 3)
− 4

(2n+ 3)(2n+ 5)
=

8

(2n+ 1)(2n+ 3)(2n+ 5)
.

Next view the alternating series in (3.7) as (3.3) and transform it using (3.4):

π = 2 +
2

3
+

(
8

1 · 3 · 5
− 8

3 · 5 · 7
+

8

5 · 7 · 9
− 8

7 · 9 · 11
+ · · ·

)
(3.4)
= 2 +

2

3
+

4

15
+

(
4

1 · 3 · 5
− 4

3 · 5 · 7

)
−
(

4

3 · 5 · 7
− 4

5 · 7 · 11

)
+ · · ·

= 2 +
2

3
+

4

15
+

24

1 · 3 · 5 · 7
− 24

3 · 5 · 7 · 9
+ · · · .

We have changed (3.7) into

(3.9) π = 2 +
2

3
+

4

15
+

∞∑
n=0

(−1)n24

(2n+ 1)(2n+ 3)(2n+ 5)(2n+ 7)

by replacing a′′n in (3.8) with

(3.10) a′′′n =
a′′n
2
−
a′′n+1

2
=

24

(2n+ 1)(2n+ 3)(2n+ 5)(2n+ 7)
.

Applying this process two more times, we get

(3.11) π = 2 +
2

3
+

4

15
+

12

105
+

∞∑
n=0

(−1)n96

(2n+ 1)(2n+ 3)(2n+ 5)(2n+ 7)(2n+ 9)

and

(3.12) π = 2+
2

3
+

4

15
+

12

105
+

48

945
+

∞∑
n=0

(−1)n480

(2n+ 1)(2n+ 3)(2n+ 5)(2n+ 7)(2n+ 9)(2n+ 11)
.
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We now have six partial sums that each tend to π as N →∞:

sN =

N∑
n=0

(−1)n4

2n+ 1
,

s′N = 2 +
N∑
n=0

(−1)n4

(2n+ 1)(2n+ 3)
,

s′′N = 2 +
2

3
+

N∑
n=0

(−1)n8

(2n+ 1)(2n+ 3)(2n+ 5)
,

s′′′N = 2 +
2

3
+

4

15
+

N∑
n=0

(−1)n24

(2n+ 1)(2n+ 3)(2n+ 5)(2n+ 7)
,

s
(4)
N = 2 +

2

3
+

4

15
+

12

105
+

N∑
n=0

(−1)n96

(2n+ 1)(2n+ 3)(2n+ 5)(2n+ 7)(2n+ 9)
,

s
(5)
N = 2 +

2

3
+

4

15
+

12

105
+

48

945
+

N∑
n=0

(−1)n480

(2n+ 1)(2n+ 3)(2n+ 5)(2n+ 7)(2n+ 9)(2n+ 11)
.

The table below lists these partial sums at N = 10, 20, 25, 50, 100, and 1000 truncated
(not rounded) to 8 digits after the decimal point. While s10 is only accurate to one digit,

s
(5)
10 is accurate to 6 digits. While s100 is only accurate to two digits, s

(5)
100 is accurate to 11

digits (the 9th and 10th digits after the decimal point are not in the table).

N 10 20 25 50 100 1000
sN 3.23231580 3.18918478 3.10314531 3.16119861 3.15149340 3.14259165
s′N 3.14535928 3.14267315 3.14088116 3.14178113 3.14164118 3.14159315
s′′N 3.14188102 3.14163956 3.14156726 3.14159620 3.14159312 3.14159265
s′′′N 3.14162337 3.14159558 3.14159134 3.14159275 3.14159266 3.14159265

s
(4)
N 3.14159672 3.14159288 3.14159256 3.14159265 3.14159265 3.14159265

s
(5)
N 3.14159328 3.14159267 3.14159264 3.14159265 3.14159265 3.14159265

The reason accelerated series tend to converge faster is that their terms decay to 0 at
ever faster rates. Terms in the successive series for π – (3.1), (3.5), (3.7), (3.9), (3.11), and
(3.12) – decay as follows:

an =
4

2n+ 1
∼ 2

n
,

a′n =
4

(2n+ 1)(2n+ 3)
∼ 1

n2
,

a′′n =
8

(2n+ 1)(2n+ 3)(2n+ 5)
∼ 1

n3
,

a′′′n =
24

(2n+ 1)(2n+ 3)(2n+ 5)(2n+ 7)
∼ 3

2n4
,

a(4)n =
96

(2n+ 1)(2n+ 3)(2n+ 5)(2n+ 7)(2n+ 9)
∼ 3

n5
,

a(5)n =
480

(2n+ 1)(2n+ 3)(2n+ 5)(2n+ 7)(2n+ 9)(2n+ 11)
∼ 15

2n6
.
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In general, after applying k series accelerations to (3.1) we have

(3.13) π =
k−1∑
j=0

2(j!)

1 · 3 · 5 · · · (2j + 1)
+
∞∑
n=0

(−1)n4(k!)

(2n+ 1)(2n+ 3) · · · (2n+ 2k + 1)
,

where the first sum in (3.13) is 0 for k = 0. This formula at k = 0, 1, 2, 3, 4, and 5 is (3.1),
(3.5), (3.7), (3.9), (3.11), and (3.12) respectively, and for each k the magnitude of the nth
term in the second series in (3.13) decays like 1/nk+1 up to a scaling factor: as n→∞,

4(k!)

(2n+ 1)(2n+ 3) · · · (2n+ 2k + 1)
∼ 4(k!)

(2n)k+1
=
k!/2k−1

nk+1
.

In an answer on https://math.stackexchange.com/questions/1702694/why-is-the-

leibniz-method-for-approximating-pi-so-inefficient the series (3.1) is accelerated
24 times.

Error bounds on the remainder for each series for π can be obtained from the alternating

series test: the absolute value of the first omitted term is a bound. Writing r
(i)
N = π − s(i)N ,

|rN | <
4

2(N + 1)
<

2

N
, |r′N | <

4

4N2
=

1

N2
, |r′′N | <

8

8N3
=

1

N3
,

|r′′′N | <
24

16N4
=

3

2N4
, |r(4)N | <

96

32N5
=

3

N5
, |r(5)N | <

480

64N6
=

15

2N6
.

For example, |r(4)N | < .000001 if 3/N5 < .000001, which is the same as N ≥ 20. Thus π is

between s
(4)
20 − .000001 = 3.141591 . . . and s

(4)
20 + .000001 = 3.141593 . . ..

Example 3.2. Now we turn to the alternating harmonic series (3.2), and will be more brief

than we were with the series for π. Write (3.2) as a1 − a2 + a3 − a4 + · · · =
∞∑
n=1

(−1)n−1an,

where an =
1

n
. Accelerating (3.2) once turns that series into

(3.14)
a1
2

+

∞∑
n=1

(−1)n−1
(an

2
− an+1

2

)
=

1

2
+

∞∑
n=1

(−1)n−1

2n(n+ 1)
=

1

2
+

1

4
− 1

12
+

1

24
− 1

40
+ · · · .

Accelerating (3.14) makes it

(3.15)
1

2
+

1

8
+

∞∑
n=1

(−1)n−1
(

1

4n(n+ 1)
− 1

4(n+ 1)(n+ 2)

)
=

1

2
+

1

8
+

∞∑
n=1

(−1)n−1

2n(n+ 1)(n+ 2)

and the reader should check as an exercise that the next few accelerations of (3.2) are

(3.16)
1

2
+

1

8
+

1

24
+

∞∑
n=1

(−1)n−13

4n(n+ 1)(n+ 2)(n+ 3)
,

(3.17)
1

2
+

1

8
+

1

24
+

1

64
+

∞∑
n=1

(−1)n−13

2n(n+ 1)(n+ 2)(n+ 3)(n+ 4)
,

and

(3.18)
1

2
+

1

8
+

1

24
+

1

64
+

1

160
+

∞∑
n=1

(−1)n−115

4n(n+ 1)(n+ 2)(n+ 3)(n+ 4)(n+ 5)
.

In the table below we list partial sums of (3.2) and its accelerated forms (3.14), (3.15),

(3.16), (3.17), and (3.18). The notation s
(i)
N in the first column is, by analogy with the series

for π, the ith accelerated form of (3.2), for 0 ≤ i ≤ 5, with the sum running up to n = N .

https://math.stackexchange.com/questions/1702694/why-is-the-leibniz-method-for-approximating-pi-so-inefficient
https://math.stackexchange.com/questions/1702694/why-is-the-leibniz-method-for-approximating-pi-so-inefficient


ACCELERATING CONVERGENCE OF SERIES 11

N 10 20 25 50 100 1000
sN .64563492 .66877140 .71274749 .68324716 .68817217 .69264743
s′N .69108946 .69258092 .69351673 .69305108 .69312267 .69314693
s′′N .69298340 .69312205 .69316060 .69314535 .69314694 .69314718
s′′′N .69312909 .69314557 .69314788 .69314712 .69314717 .69314718

s
(4)
N .69314470 .69314705 .69314722 .69314717 .69314718 .69314718

s
(5)
N .69314678 .69314716 .69314718 .69314718 .69314718 .69314718

Since all these series fit the alternating series test, we can bound remainders using the

first missing term. For example, from (3.18), |r(5)20 | ≤ 15/(4(216)) ≈ 4.37/108, so from the

value of s
(5)
20 we know (3.2) equals .693147. . . . By comparison, the 1000th partial sum of

(3.2) is accurate to just two digits!
Generalizing the series (3.14)–(3.18), after k accelerations

(3.19)
∞∑
n=1

(−1)n−1

n
=

k∑
j=1

1

2jj
+
∞∑
n=1

(−1)n−1k!

2kn(n+ 1) · · · (n+ k)
,

where the first sum on the right in (3.19) is 0 when k = 0, and for each k the nth term of
the second series on the right in (3.19) decays like 1/nk+1 up to a scaling factor: as n→∞,

k!

2kn(n+ 1) · · · (n+ k)
∼ k!/2k

nk+1
.

We can describe the effect of applying Euler’s transformation k times to
∞∑
n=0

(−1)nan

by using notation from the difference calculus. For a sequence a = (a0, a1, a2, . . .), its first
discrete difference is the sequence ∆a = (a1−a0, a2−a1, a3−a2, . . .), so (∆a)(n) = an+1−an.
The second discrete difference of a is ∆2a = ∆(∆a), which starts out as

((∆a)(1)− (∆a)(0), (∆a)(2)− (∆a)(1), . . .) = (a2 − 2a1 + a0, a3 − 2a2 + a1, . . .)

and in general the kth discrete difference of a is ∆ka = ∆(∆k−1a). The formula (∆2a)(n) =
an+2 − 2an+1 + an suggests a connection with binomial coefficients using alternating signs.
Indeed, for k ≥ 0 we have

(∆ka)(n) =

k∑
j=0

(−1)k−j
(
k

j

)
an+j

for each n ≥ 0. In particular, (∆ka)(0) =

k∑
j=0

(−1)k−j
(
k

j

)
aj = ak − kak−1 + · · ·+ (−1)ka0.

With this notation, Euler’s transformation in (3.4) consists of rewriting

∞∑
n=0

(−1)nan as

(3.20)
a0
2

+

∞∑
n=0

(−1)n
an − an+1

2
=
a0
2
− 1

2

∞∑
n=0

(−1)n(an+1−an) =
a0
2
− 1

2

∞∑
n=0

(−1)n(∆a)(n).

Apply Euler’s transformation to the series on the right in (3.20) gives us

∞∑
n=0

(−1)n(∆a)(n) =
(∆a)(0)

2
− 1

2

∞∑
n=0

(−1)n(∆(∆a))(n) =
a1 − a0

2
− 1

2

∞∑
n=0

(−1)n(∆2a)(n),
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and feeding this into (3.20) shows

∞∑
n=0

(−1)nan is

a0
2
− 1

2

(
a1 − a0

2
− 1

2

∞∑
n=0

(−1)n(∆2a)(n)

)
=
a0
2
− (∆a)(1)

4
+

1

4

∞∑
n=0

(−1)n(∆2a)(n).

In general, applying Euler’s transformation k times leads to the acceleration formula

(3.21)
∞∑
n=0

(−1)nan =
k−1∑
j=0

(−1)j

2j+1
(∆ja)(0) +

(
−1

2

)k ∞∑
n=0

(−1)n(∆ka)(n),

where the first (finite) series on the right is 0 at k = 0.

Remark 3.3. While we are interested in examples where Euler’s transformation speeds up
convergence, it does not always have such an effect. For example, if an = rn with |r| < 1
then (∆a)(n) = rn+1−rn = (r−1)rn = (r−1)an, so Euler’s transformation on a geometric
series leads to no improvement:

∞∑
n=0

(−1)nrn =
1

2
− r − 1

2

∞∑
n=0

(−1)nrn.

A version of Euler’s transformation can be applied to any convergent series that can be

written as a power series
∞∑
n=0

anc
n for some c in [−1, 1), not just for alternating series (the

case c = −1):

∞∑
n=0

anc
n = a0 + a1c+ a2c

2 + a3c
3 + · · ·

= a0
1− c
1− c

+ a1
c− c2

1− c
+ a2

c2 − c3

1− c
+ a3

c3 − c4

1− c
+ · · ·

=
a0

1− c
+
−a0 + a1

1− c
c+
−a1 + a2

1− c
c2 +

−a2 + a3
1− c

c3 + · · ·

=
a0

1− c
+
a1 − a0
1− c

c+
a2 − a1
1− c

c2 +
a3 − a2
1− c

c3 + · · ·

=
a0

1− c
+

c

1− c

∞∑
n=0

(an+1 − an)cn

=
a0

1− c
+

c

1− c

∞∑
n=0

(∆a)(n)cn.

When c = −1 this is (3.20), and in case the result seems like a trick it could also be derived
using summation by parts with un = an and vn = cn+1/(c − 1). Repeating this process k
times for k ≥ 0,

∞∑
n=0

anc
n =

k−1∑
j=0

cj

(1− c)j+1
(∆ja)(0) +

ck

(1− c)k
∞∑
n=0

(∆ka)(n)cn,

where the first sum on the right is 0 at k = 0. At c = −1 the above formula is (3.21).
For more on this, see [3] and [4, Sect. 33, 35], but watch out: in [4], (∆a)(n) = an−an+1.

That is the negative of our convention, so ∆n in [4] is our (−1)n∆n.
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4. More speed-up methods

We briefly mention two further techniques for accelerating convergence of series.

(1) The Shanks transformation is applied to the partial sums of a series, not to the
terms of the series. If S =

∑
n≥1 an has partial sums sN for N ≥ 1 then the Shanks

transformation of the partial sums is the new sequence s′N where

s′N = sN+2 −
(sN+2 − sN+1)

2

sN+2 − 2sN+1 + sN

provided the denominators are not 0. For example, if S = ln 2 = .69314718 . . . =∑
n≥1(−1)n−1/n then s100 = .688172 . . . is only accurate to one digit while s′10 =

.693065 . . . is accurate to 3 digits and s′50 = .693146 . . . is accurate to 5 digits.
Check as an exercise that if S =

∑
n≥1 ar

n−1 is a geometric series with |r| < 1

and a 6= 0, and sN = a+ ar + · · ·+ arN−1 then s′N = a/(1− r) for all N . Thus the
Shanks transformation accelerates every partial sum of geometric series directly to
the full series in one step.

(2) The discrete Fourier transform of a sequence a0, a1, . . . , am−1 in C is the new se-

quence â0, â1, . . . , âm−1 where âk =
∑m−1

j=0 ake
−2πijk/m. Calculating all of these

(finite) series rapidly is an important task. To compute each âk from its definition
requires m multiplications, so computing every âk requires m ·m = m2 multiplica-
tions. The fast Fourier transform (FFT) is an alternate approach to computing the
discrete Fourier transform that requires something on the order of at most m lnm
operations, which is a big improvement on the naive approach directly from the
definitions.
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