THE SPACE $c_{0}(K)$

KEITH CONRAD

1. Introduction

Let $(K,|\cdot|)$ be a complete valued field. The space of sequences in K tending to 0 ,

$$
c_{0}(K)=\left\{\mathbf{a}=\left(a_{1}, a_{2}, a_{3}, \ldots\right): a_{n} \in K \text { and } a_{n} \rightarrow 0 \text { as } n \rightarrow \infty\right\},
$$

is a basic example of a "sequence space" in analysis. Sequence spaces can be defined by conditions other than the terms tending to 0 (such as being a bounded sequence or having $\sum_{n \geq 1}\left|a_{n}\right|^{2}$ be convergent), but we will stick to the simple rule $a_{n} \rightarrow 0$ here. An example of an element in $c_{0}(K)$ is a sequence whose terms eventually equal $0\left(a_{n}=0\right.$ for all large n). When $|\cdot|$ is not the trivial absolute value on K, another example of an element of $c_{0}(K)$ is a power sequence $\left(1, x, x^{2}, x^{3}, \ldots\right)$ where $0<|x|<1 .{ }^{1}$ The termwise sum ($\left.\mathbf{a}+\mathbf{b}=\left\{a_{n}+b_{n}\right\}\right)$ and a scalar multiple $\left(\alpha\left\{a_{n}\right\}=\left\{\alpha a_{n}\right\}\right)$ of a sequence in $c_{0}(K)$ are in $c_{0}(K)$, since if $a_{n} \rightarrow 0$ and $b_{n} \rightarrow 0$ then $a_{n}+b_{n} \rightarrow 0$ and $\alpha a_{n} \rightarrow 0$.

A natural way to measure the size a sequence \mathbf{a} in $c_{0}(K)$ is by the maximum absolute value of the terms in a:

$$
\|\mathbf{a}\|=\max _{n \geq 1}\left|a_{n}\right| .
$$

Trivially $\|\mathbf{a}\| \geq 0$, with equality if and only if $\mathbf{a}=\mathbf{0}$ (that is, $a_{n}=0$ for all n) and $\|\alpha \mathbf{a}\|=|\alpha|\|\mathbf{a}\|$ for $\mathbf{a} \in c_{0}(K)$ and $\alpha \in K$. In particular, $\|-\mathbf{a}\|=\|\mathbf{a}\|$. There is also a triangle inequality: $\|\mathbf{a}+\mathbf{b}\| \leq\|\mathbf{a}\|+\|\mathbf{b}\|$. Indeed, for all $n \geq 1$ we have $\left|a_{n}+b_{n}\right| \leq$ $\left|a_{n}\right|+\left|b_{n}\right| \leq\|\mathbf{a}| |+\| \mathbf{b} \|$, so taking the maximum over all n gives us $\|\mathbf{a}+\mathbf{b}\| \leq\|\mathbf{a}\|+\|\mathbf{b}\|$. If $|\cdot|$ is non-archimedean then $\|\cdot\|$ is as well, i.e., we have the strong triangle inequality $\|\mathbf{a}+\mathbf{b}\| \leq \max (\|\mathbf{a}\|,\|\mathbf{b}\|)$.

From the triangle inequality on $\|\cdot\|$ we get a metric on $c_{0}(K)$ by using the size of the difference:

$$
\begin{equation*}
d(\mathbf{a}, \mathbf{b})=\|\mathbf{a}-\mathbf{b}\| . \tag{1.1}
\end{equation*}
$$

From now on it is understood that $c_{0}(K)$ is a metric space using (1.1).
We will show that $c_{0}(K)$ is a complete metric space, and when $K=\mathbf{R}$ and $K=\mathbf{Q}_{p}$ we will describe all the continuous linear functions $c_{0}(K) \rightarrow K$ ("generalized coordinates"). This will present a nice comparison between the way series behave in \mathbf{R} and \mathbf{Q}_{p}.

2. Completeness of $c_{0}(K)$

Theorem 2.1. The space $c_{0}(K)$ is complete for the metric (1.1).

[^0]Proof. Let $\left\{\mathbf{a}_{m}\right\}$ be a Cauchy sequence in $c_{0}(K)$ (a "Cauchy sequence in a space of sequences"). To show this sequence has a limit in $c_{0}(K)$, first we will figure out what the limit should be, then we will show it lies in $c_{0}(K)$, and finally we will show it is a limit of the sequence.

Write \mathbf{a}_{m} in component form as $\left(a_{m 1}, a_{m 2}, a_{m 3}, \ldots\right)$, so $a_{m n} \in K$ and $\lim _{n \rightarrow \infty} a_{m n}=0$ for each m. It is convenient to picture the sequences stacked on top of each other as

$$
\begin{aligned}
\mathbf{a}_{1} & =\left(a_{11}, a_{12}, a_{13}, \ldots\right) \\
\mathbf{a}_{2} & =\left(a_{21}, a_{22}, a_{23}, \ldots\right) \\
\mathbf{a}_{3} & =\left(a_{31}, a_{32}, a_{33}, \ldots\right) \\
& \vdots
\end{aligned}
$$

since this suggests viewing the components all at once as an infinite matrix

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & \ldots \\
a_{21} & a_{22} & a_{23} & \ldots \\
a_{31} & a_{32} & a_{33} & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

where each row tends to 0 . We will show limits can be taken along the columns to find a limit of the \mathbf{a}_{m} 's.

Since $\left\{\mathbf{a}_{m}\right\}$ is Cauchy in $c_{0}(K)$, for all $\varepsilon>0$ there is an $M \geq 1$ such that $m, m^{\prime} \geq M \Longrightarrow$ $\left\|\mathbf{a}_{m}-\mathbf{a}_{m^{\prime}}\right\| \leq \varepsilon$. That says

$$
\begin{equation*}
m, m^{\prime} \geq M \Longrightarrow\left|a_{m n}-a_{m^{\prime} n}\right| \leq \varepsilon \text { for each } n \geq 1 \tag{2.1}
\end{equation*}
$$

Therefore when n is fixed, the numbers $\left\{a_{m n}\right\}_{m \geq 1}$ are a Cauchy sequence in K, which is complete, so we have a limit: set $a_{n}=\lim _{m \rightarrow \infty} a_{m n}$. This is the limit of the nth column of the above matrix. We get a new sequence in K using the limits of each of the columns: set $\mathbf{a}=\left(a_{1}, a_{2}, a_{3}, \ldots\right)$. We want to show $\mathbf{a} \in c_{0}(K)$ and $\left\|\mathbf{a}-\mathbf{a}_{m}\right\| \rightarrow 0$ as $m \rightarrow \infty$.
a lies in $c_{0}(K)$: For $\varepsilon>0$ we want to find an $N \geq 1$ such that $n \geq N \Rightarrow\left|a_{n}\right| \leq \varepsilon$. From the Cauchy property of $\left\{\mathbf{a}_{m}\right\}$ in $c_{0}(K)$ there is an $M \geq 1$ such that (2.1) holds. Letting $m^{\prime} \rightarrow \infty$ in (2.1) we get

$$
\begin{equation*}
m \geq M \Longrightarrow\left|a_{m n}-a_{n}\right| \leq \varepsilon \text { for each } n \geq 1 \tag{2.2}
\end{equation*}
$$

Using $m=M$ in (2.2), for each $n \geq 1$ we have

$$
\left|a_{n}\right|=\left|a_{n}-a_{M n}+a_{M n}\right| \leq\left|a_{n}-a_{M n}\right|+\left|a_{M n}\right| \leq \varepsilon+\left|a_{M n}\right| .
$$

Since $\mathbf{a}_{M} \in c_{0}(K)$ we have $a_{M n} \rightarrow 0$ as $n \rightarrow \infty$, so there is an $N \geq 1$ (depending on M) such that $n \geq N \Longrightarrow\left|a_{M n}\right| \leq \varepsilon$. Therefore

$$
\begin{equation*}
n \geq N \Longrightarrow\left|a_{n}\right| \leq \varepsilon+\left|a_{M n}\right| \leq 2 \varepsilon \tag{2.3}
\end{equation*}
$$

Running through this argument with ε replaced by $\varepsilon / 2$ so that we get $2(\varepsilon / 2)=\varepsilon$ in (2.3), we have proved $a_{n} \rightarrow 0$ in K as $n \rightarrow \infty$. Thus a $\in c_{0}(K)$.
a is the limit of the \mathbf{a}_{m} 's: For $\varepsilon>0$ there is $M \geq 1$ making (2.2) hold. For all $m \geq M$,

$$
\left|\left|\mathbf{a}_{m}-\mathbf{a} \|=\max _{n \geq 1}\right| a_{m n}-a_{n}\right| \leq \varepsilon .
$$

That proves the \mathbf{a}_{m} 's tend to a as $m \rightarrow \infty$.

Remark 2.2. The set of bounded sequences in K (that is, all (a_{1}, a_{2}, \ldots) with $a_{n} \in K$ for which there's some $B>0$ such that $\left|a_{n}\right| \leq B$ for all n) can be equipped with the same metric used on $c_{0}(K)$, except the role of a maximum on the absolute values has to be replaced by a supremum: $\|\mathbf{a}\|=\sup _{n \geq 1}\left|a_{n}\right|$ and $d(\mathbf{a}, \mathbf{b})=\|\mathbf{a}-\mathbf{b}\|=\sup _{n \geq 1}\left|a_{n}-b_{n}\right|$. This metric makes the set of all bounded sequences in K a complete metric space, and $c_{0}(K)$ is a closed subset of it. The proof of completeness is very similar to the proof of Theorem 2.1; the only difference is showing the supposed limit sequence is bounded instead of having its terms tend to 0 , and the boundedness is slightly easier to establish. Details are left to the reader.

Corollary 2.3. The set of sequences in $(K,|\cdot|)$ whose terms eventually equal 0 , equipped with the metric (1.1), has completion $c_{0}(K)$.

Proof. Every sequence in K whose terms eventually equal 0 lies in $c_{0}(K)$. Since we have proved $c_{0}(K)$ is complete, it is enough to show the sequences in K whose terms are eventually 0 are a dense subset of $c_{0}(K)$.

Fix a choice of $\mathbf{a}=\left(a_{1}, a_{2}, \ldots\right)$ in $c_{0}(K)$. Let $\mathbf{a}_{n}=\left(a_{1}, \ldots, a_{n}, 0,0, \ldots\right)$ have the first n components from a and all later components equal to 0 . Then

$$
\left\|\mathbf{a}-\mathbf{a}_{n}\right\|=\left\|\left(0, \ldots, 0, a_{n+1}, a_{n+2}, \ldots\right)\right\|=\max _{i>n}\left|a_{i}\right| .
$$

By the definition of a belonging to $c_{0}(K)$, for each $\varepsilon>0$ we have $\left|a_{i}\right| \leq \varepsilon$ for all large i, so there's some N making $\left|a_{i}\right| \leq \varepsilon$ for $i \geq N$. Thus $\left\|\mathbf{a}-\mathbf{a}_{n}\right\| \leq \varepsilon$ for $n>N$, which proves the sequences in K with terms eventually equal to 0 are dense in $c_{0}(K)$.

3. Continuous linear maps $c_{0}(\mathbf{R}) \rightarrow \mathbf{R}$ and $c_{0}\left(\mathbf{Q}_{p}\right) \rightarrow \mathbf{Q}_{p}$

For a field K, the standard coordinates on K^{d} are the functions $\left(a_{1}, \ldots, a_{d}\right) \mapsto a_{i}$ for $i=$ $1, \ldots, d$. As the vector varies, the i th coordinate can be regarded as a function $x^{i}: K^{d} \rightarrow K$ where $x^{i}\left(\left(a_{1}, \ldots, a_{d}\right)\right)=a_{i}$. Each coordinate function is K-linear:

$$
x^{i}\left(\mathbf{a}+\mathbf{a}^{\prime}\right)=x^{i}(\mathbf{a})+x^{i}\left(\mathbf{a}^{\prime}\right), \quad x^{i}(\alpha \mathbf{a})=\alpha x^{i}(\mathbf{a})
$$

for all \mathbf{a} and \mathbf{a}^{\prime} in K^{d} and $\alpha \in K$. This is just saying that the i-th coordinate of a sum is the sum of the i th coordinates and the i th coordinate of a scalar multiple is the same scalar multiple of the i th coordinate, which is obvious from how vector addition and scalar multiplication in K^{d} are defined.

Each coordinate function $x^{i}: K^{d} \rightarrow K$ is a dot product with the i th standard basis vector: $x^{i}(\mathbf{a})=\mathbf{a} \cdot e_{i}$, where e_{i} has 1 in the i th position and 0 elsewhere. More generally, for every \mathbf{b} in K^{d} the function $K^{d} \rightarrow K$ defined by $\mathbf{a} \mapsto \mathbf{a} \cdot \mathbf{b}$ is K-linear. Taking the dot product on K^{d} with a fixed vector in K^{d} can be characterized by its linearity and having values in K :
Theorem 3.1. The K-linear functions $\varphi: K^{d} \rightarrow K$ are functions of the form $\varphi(\mathbf{a})=\mathbf{a} \cdot \mathbf{b}$ for some \mathbf{b} in K^{d}, and each φ arises in this way for a unique \mathbf{b} in K^{d}.
Proof. For each $\mathbf{b} \in K^{d}$, it is easy to see that the function $\varphi_{\mathbf{b}}: K^{d} \rightarrow K$ defined by $\varphi_{\mathbf{b}}(\mathbf{a})=\mathbf{a} \cdot \mathbf{b}$ is K-linear from algebraic properties of the dot product.

Conversely, assume $\varphi: K^{d} \rightarrow K$ is K-linear. Using linearity, we have

$$
\varphi\left(\left(a_{1}, \ldots, a_{d}\right)\right)=\varphi\left(a_{1} e_{1}+\cdots+a_{d} e_{d}\right)=a_{1} \varphi\left(e_{1}\right)+\cdots+a_{d} \varphi\left(e_{d}\right) .
$$

Letting $\mathbf{a}=\left(a_{1}, \ldots, a_{d}\right)$ and $\mathbf{b}=\left(\varphi\left(e_{1}\right), \ldots, \varphi\left(e_{d}\right)\right)$, so \mathbf{b} is independent of \mathbf{a}, the above formula for φ becomes $\varphi(\mathbf{a})=\mathbf{a} \cdot \mathbf{b}$. Thus each φ is the dot product on K^{d} with a specific
vector. To prove, for each φ, that there is only one possible \mathbf{b} for which $\varphi(\mathbf{a})=\mathbf{a} \cdot \mathbf{b}$ for all \mathbf{a}, set $\mathbf{a}=e_{i}$ in this equation to get $\varphi\left(e_{i}\right)=e_{i} \cdot \mathbf{b}$. Since the dot product with e_{i} produces the i th coordinate, we see that the i th coordinate of \mathbf{b} must be $\varphi\left(e_{i}\right)$, so as i varies we conclude there is only one possible choice of \mathbf{b}, namely the d-tuple we used to define \mathbf{b} originally.

We want to extend Theorem 3.1 from the finite-dimensional spaces K^{d} to the infinitedimensional space $c_{0}(K)$ when $(K,|\cdot|)$ is a complete valued field. This is possible if we impose a continuity condition.

Theorem 3.2. Each continuous K-linear function $\varphi: c_{0}(K) \rightarrow K$ has the form $\varphi(\mathbf{a})=$ $\sum_{i \geq 1} a_{i} b_{i}$ for at most one sequence $\left(b_{1}, b_{2}, \ldots\right)$ in K.
Proof. We saw in the proof of Corollary 2.3 that each $\mathbf{a}=\left(a_{1}, a_{2}, \ldots\right)$ in $c_{0}(K)$ is $\lim _{n \rightarrow \infty} \mathbf{a}_{n}$, where $\mathbf{a}_{n}=\left(a_{1}, \ldots, a_{n}, 0,0, \ldots\right)$. Therefore if $\varphi: c_{0}(K) \rightarrow K$ is K-linear and continuous,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathbf{a}_{n}=\mathbf{a} \Longrightarrow \lim _{n \rightarrow \infty} \varphi\left(\mathbf{a}_{n}\right)=\varphi(\mathbf{a}) . \tag{3.1}
\end{equation*}
$$

Let $e_{i}=(0, \ldots, 0,1,0, \ldots)$ have 1 in its i th component and 0 in all other components. Then $e_{i} \in c_{0}(K)$ and

$$
\mathbf{a}_{n}=\left(a_{1}, \ldots, a_{n}, 0,0, \ldots\right)=a_{1} e_{1}+\cdots+a_{n} e_{n},
$$

which is a finite sum of terms, so by linearity

$$
\varphi\left(\mathbf{a}_{n}\right)=\varphi\left(a_{1} e_{1}+\cdots+a_{n} e_{n}\right)=a_{1} \varphi\left(e_{1}\right)+\cdots+a_{n} \varphi\left(e_{n}\right) .
$$

Therefore by (3.1),

$$
\varphi(\mathbf{a})=\lim _{n \rightarrow \infty} \varphi\left(\mathbf{a}_{n}\right)=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} a_{i} \varphi\left(e_{i}\right) .
$$

By the definition of an infinite series as a limit of partial sums we have

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} a_{i} \varphi\left(e_{i}\right)=\sum_{i \geq 1} a_{i} \varphi\left(e_{i}\right),
$$

and this limit exists because it is a calculation of $\varphi(\mathbf{a})$. Setting $b_{i}=\varphi\left(e_{i}\right)$, which is independent of a, we have for all \mathbf{a} in $c_{0}(K)$ that

$$
\begin{equation*}
\varphi(\mathbf{a})=\sum_{i \geq 1} a_{i} b_{i} . \tag{3.2}
\end{equation*}
$$

Substituting $\mathbf{a}=e_{j}$ into (3.2), we recover $\varphi\left(e_{j}\right)=b_{j}$ for all j, so there is at most one sequence $\left\{b_{i}\right\}$ in K making the desired formula for φ in (3.2) work out.

In this proof we used continuity of φ to calculate $\varphi(\mathbf{a})$ from $\varphi\left(\mathbf{a}_{n}\right)$ by passage to a limit.
Something is missing from Theorem 3.2: a description of necessary constraints on a sequence b_{1}, b_{2}, \ldots in K in order for the infinite-dimensional dot product

$$
\begin{equation*}
\mathbf{a} \cdot \mathbf{b}=\sum_{i \geq 1} a_{i} b_{i} \tag{3.3}
\end{equation*}
$$

to converge for every $\mathbf{a} \in c_{0}(K)$. It is not true ${ }^{2}$ that for every sequence b_{1}, b_{2}, \ldots in K that the series in (3.3) converges for all $\mathbf{a} \in c_{0}(K)$. For example, if $x \in K$ satisfies $0<|x|<1$ then $\left\{x^{n}\right\} \in c_{0}(K)$ and the series in (3.3) doesn't converge when $\mathbf{a}=\left\{x^{n}\right\}$ and $\mathbf{b}=\left\{1 / x^{n}\right\}$.

[^1]When $K=\mathbf{R}$ or $K=\mathbf{Q}_{p}$, here are sufficient conditions on the b_{i} 's for convergence of the dot products (3.3) as a runs over all of $c_{0}(K)$.

- In \mathbf{R}, if $\sum_{i \geq 1}\left|b_{i}\right|$ converges then $\sum_{i \geq 1} a_{i} b_{i}$ converges for all $\mathbf{a} \in c_{0}(\mathbf{R}):\left\{a_{i}\right\}$ is bounded, say $\left|a_{i}\right| \leq A$ for all i, so $\left|a_{i} b_{i}\right| \leq A\left|b_{i}\right|$ and therefore $\sum_{i \geq 1}\left|a_{i} b_{i}\right| \leq$ $A \sum_{i \geq 1}\left|b_{i}\right|<\infty$, so $\sum_{i \geq 1} a_{i} b_{i}$ converges (absolutely) in \mathbf{R}.
- In \mathbf{Q}_{p}, if $\left\{b_{i}\right\}$ is bounded then $\sum_{i \geq 1} a_{i} b_{i}$ converges for all $\mathbf{a} \in c_{0}\left(\mathbf{Q}_{p}\right)$: letting $\left|a_{i}\right|_{p} \leq A$ we have $\left|a_{i} b_{i}\right|_{p} \leq A\left|b_{i}\right|_{p}$, and $A\left|b_{i}\right|_{p} \rightarrow 0$ as $i \rightarrow \infty$, so $a_{i} b_{i} \rightarrow 0$ in \mathbf{Q}_{p} as $i \rightarrow \infty$. Thus $\sum_{n>1} a_{i} b_{i}$ converges in \mathbf{Q}_{p}.
Perhaps surprisingly, these sufficient conditions turn out to be necessary as well. That's what we show in the next two theorems.

Theorem 3.3. Let $\left\{b_{i}\right\}$ be a sequence in \mathbf{R} such that for all $\mathbf{a} \in c_{0}(\mathbf{R}), \sum_{i>1} a_{i} b_{i}$ converges. Then $\sum_{i \geq 1}\left|b_{i}\right|$ converges. Moreover, the function $c_{0}(\mathbf{R}) \rightarrow \mathbf{R}$ defined by $\left\{a_{i}\right\} \mapsto \sum_{i \geq 1} a_{i} b_{i}$ is continuous.

Proof. We will prove the contrapositive: if $\sum_{i \geq 1}\left|b_{i}\right|$ does not converge then there is an $\mathbf{a} \in c_{0}(\mathbf{R})$ such that $\sum_{i \geq 1} a_{i} b_{i}$ does not converge. The construction we use is one I learned from Iddo Ben-Ari.

Since $\sum_{i \geq 1}\left|b_{i}\right|$ is a series of nonnegative numbers, that it does not converge means it is ∞. Therefore letting $s_{i}=\left|b_{1}\right|+\left|b_{2}\right|+\cdots+\left|b_{i}\right|$, we have $s_{i} \leq s_{i+1}$ for all i and $s_{i} \rightarrow \infty$. Choose j minimal so that $s_{j}>0$ (maybe some initial b_{i} 's are 0). For $i \geq j$ define $a_{i}=\operatorname{sign}\left(b_{i}\right) / \sqrt{s_{i}}$, and for $i<j$ define $a_{i}=0$. Then $a_{i} \rightarrow 0$ since $s_{i} \rightarrow \infty$, and for $N \geq j$ we have

$$
\begin{aligned}
\sum_{i=1}^{N} a_{i} b_{i} & =\sum_{i=j}^{N} a_{i} b_{i} \quad \text { since } b_{i}=0 \text { for } i<j \\
& =\sum_{i=j}^{N} \frac{\operatorname{sign}\left(b_{i}\right) b_{i}}{\sqrt{s_{i}}} \\
& =\sum_{i=j}^{N} \frac{\left|b_{i}\right|}{\sqrt{s_{i}}} \\
& \geq \sum_{i=j}^{N} \frac{\left|b_{i}\right|}{\sqrt{s_{N}}} \text { since } s_{i} \leq s_{N} \text { when } i \leq N \text { and }\left|b_{i}\right| \geq 0 \\
& =\frac{1}{\sqrt{s_{N}}} \sum_{i=1}^{N}\left|b_{i}\right| \quad \text { since }\left|b_{i}\right|=0 \text { for } i<j \\
& =\frac{s_{N}}{\sqrt{s_{N}}} \\
& =\sqrt{s_{N}}
\end{aligned}
$$

which tends to ∞ as $N \rightarrow \infty$, so $\sum_{i \geq 1} a_{i} b_{i}$ does not converge.
When $\sum_{i \geq 1}\left|b_{i}\right|$ converges, let S be the value of this series. Then for a and \mathbf{a}^{\prime} in $c_{0}(\mathbf{R})$,

$$
\left|\mathbf{a} \cdot \mathbf{b}-\mathbf{a}^{\prime} \cdot \mathbf{b}\right|=\left|\sum_{i \geq 1}\left(a_{i}-a_{i}^{\prime}\right) b_{i}\right| \leq \sum_{i \geq 1}\left|a_{i}-a_{i}^{\prime}\right|\left|b_{i}\right| \leq\left\|\mathbf{a}-\mathbf{a}^{\prime}| | \sum_{i \geq 1}\left|b_{i}\right| \leq S\right\| \mathbf{a}-\mathbf{a}^{\prime}| | .
$$

That shows $\mathbf{a} \mapsto \mathbf{a} \cdot \mathbf{b}$ is a (uniformly) continuous function $c_{0}(\mathbf{R}) \rightarrow \mathbf{R}$.

Theorem 3.4. Let $\left\{b_{i}\right\}$ be a sequence in \mathbf{Q}_{p} such that for all $\mathbf{a} \in c_{0}\left(\mathbf{Q}_{p}\right), \sum_{i \geq 1} a_{i} b_{i}$ converges. Then $\left\{b_{i}\right\}$ is bounded. Moreover, the function $c_{0}\left(\mathbf{Q}_{p}\right) \rightarrow \mathbf{Q}_{p}$ defined by $\left\{a_{i}\right\} \mapsto$ $\sum_{i \geq 1} a_{i} b_{i}$ is continuous.
Proof. As in the previous proof we will prove the contrapositive: if $\left\{b_{i}\right\}$ is unbounded in \mathbf{Q}_{p} then there is an $\mathbf{a} \in c_{0}\left(\mathbf{Q}_{p}\right)$ such that $\sum_{i \geq 1} a_{i} b_{i}$ does not converge.

That $\left\{b_{i}\right\}$ is unbounded does not mean $\left|b_{i}\right|_{p} \rightarrow \infty$, but only that there is a subsequence of $\left\{b_{i}\right\}$ whose terms have absolute value tending to ∞. Thus there is a subsequence $\left\{b_{i_{k}}\right\}$ such that $\left|b_{i_{k}}\right|_{p} \geq k$ for each $k \geq 1$. Define a_{i} by $a_{i_{k}}=1 / b_{i_{k}}$ if i is some i_{k} and $a_{i}=0$ if i is not an i_{k}. Then $\left|a_{i_{k}}\right|_{p}=1 /\left|b_{i_{k}}\right|_{p} \leq 1 / k$, while $\left|a_{i}\right|=0$ if i is not an i_{k}, so $a_{i} \rightarrow 0$ as $i \rightarrow \infty$ and

$$
\sum_{i \geq 1} a_{i} b_{i}=\sum_{k \geq 1} a_{i_{k}} b_{i_{k}}=\sum_{k \geq 1} 1,
$$

which does not converge.
When $\left\{b_{i}\right\}$ is bounded in \mathbf{Q}_{p}, let $M=\max _{i \geq 1}\left|b_{i}\right|_{p}$. For a and \mathbf{a}^{\prime} in $c_{0}\left(\mathbf{Q}_{p}\right)$,

$$
\left|\mathbf{a} \cdot \mathbf{b}-\mathbf{a}^{\prime} \cdot \mathbf{b}\right|_{p}=\left|\sum_{i \geq 1}\left(a_{i}-a_{i}^{\prime}\right) b_{i}\right|_{p} \leq \max _{i \geq 1}\left|a_{i}-a_{i}^{\prime}\right|_{p}\left|b_{i}\right|_{p} \leq M \| \mathbf{a}-\mathbf{a}^{\prime}| |
$$

so $\mathbf{a} \mapsto \mathbf{a} \cdot \mathbf{b}$ is a (uniformly) continuous function $c_{0}\left(\mathbf{Q}_{p}\right) \rightarrow \mathbf{Q}_{p}$.
Let's summarize what we have shown:
(1) For every complete valued field $(K,|\cdot|)$, the continuous K-linear maps $c_{0}(K) \rightarrow K$ can all be described as taking a dot product on $c_{0}(K)$ with a unique sequence in K.
(2) The continuous \mathbf{R}-linear maps $c_{0}(\mathbf{R}) \rightarrow \mathbf{R}$ are the dot products on $c_{0}(\mathbf{R})$ with a sequence $\left\{b_{i}\right\}$ in \mathbf{R} such that $\sum_{i \geq 1}\left|b_{i}\right|$ converges.
(3) The continuous \mathbf{Q}_{p}-linear maps $c_{0}\left(\mathbf{Q}_{p}\right) \rightarrow \mathbf{Q}_{p}$ are the dot products on $c_{0}\left(\mathbf{Q}_{p}\right)$ with a bounded sequence in \mathbf{Q}_{p}.
It is left to the reader to check that the second point remains true when \mathbf{R} replaced by \mathbf{C} and the third point remains true when \mathbf{Q}_{p} is replaced by a nonarchimedean complete valued field. Since, by a theorem of Ostrowski, every complete valued field is either \mathbf{R}, \mathbf{C}, or its absolute value is non-archimedean, we have in fact described the continuous K-linear maps $c_{0}(K) \rightarrow K$ for all possible complete valued fields $(K,|\cdot|) .^{3}$

Remark 3.5. The proofs that $c_{0}(K)$ and the space $c_{b}(K)$ of bounded sequences in K are both complete metric spaces (using the same formula for the metric) are quite similar, but the proof of Theorem 3.2 does not carry over to $c_{b}(K)$ and, in fact, the space of all continuous linear mappings $c_{b}(\mathbf{R}) \rightarrow \mathbf{R}$ does not admit an elementary description in terms of dot products.

[^2]
[^0]: ${ }^{1}$ If $|\cdot|$ is the trivial absolute value, so $|x|<1 \Rightarrow x=0$, then the only elements of $c_{0}(K)$ are the sequences in K whose terms eventually equal 0 .

[^1]: ${ }^{2}$ Except when the absolute value on K is trivial, making $c_{0}(K)$ the sequences in K whose terms eventually equal 0.

[^2]: ${ }^{3}$ When K is given the trivial absolute value, $c_{0}(K)$ is the sequences in K that are eventually 0 and all sequences in K are bounded.

