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1. Introduction

Let (K, | · |) be a complete valued field. The space of sequences in K tending to 0,

c0(K) = {a = (a1, a2, a3, . . .) : an ∈ K and an → 0 as n→∞},

is a basic example of a “sequence space” in analysis. Sequence spaces can be defined by
conditions other than the terms tending to 0 (such as being a bounded sequence or having∑

n≥1 |an|2 be convergent), but we will stick to the simple rule an → 0 here. An example of

an element in c0(K) is a sequence whose terms eventually equal 0 (an = 0 for all large n).
When | · | is not the trivial absolute value on K, another example of an element of c0(K) is a
power sequence (1, x, x2, x3, . . .) where 0 < |x| < 1.1 The termwise sum (a+b = {an + bn})
and a scalar multiple (α{an} = {αan}) of a sequence in c0(K) are in c0(K), since if an → 0
and bn → 0 then an + bn → 0 and αan → 0.

A natural way to measure the size a sequence a in c0(K) is by the maximum absolute
value of the terms in a:

||a|| = max
n≥1
|an|.

Trivially ||a|| ≥ 0, with equality if and only if a = 0 (that is, an = 0 for all n) and
||αa|| = |α|||a|| for a ∈ c0(K) and α ∈ K. In particular, || − a|| = ||a||. There is also
a triangle inequality: ||a + b|| ≤ ||a|| + ||b||. Indeed, for all n ≥ 1 we have |an + bn| ≤
|an|+ |bn| ≤ ||a||+ ||b||, so taking the maximum over all n gives us ||a + b|| ≤ ||a||+ ||b||.
If | · | is non-archimedean then || · || is as well, i.e., we have the strong triangle inequality
||a + b|| ≤ max(||a||, ||b||).

From the triangle inequality on || · || we get a metric on c0(K) by using the size of the
difference:

(1.1) d(a,b) = ||a− b||.

From now on it is understood that c0(K) is a metric space using (1.1).
We will show that c0(K) is a complete metric space, and when K = R and K = Qp we

will describe all the continuous linear functions c0(K) → K (“generalized coordinates”).
This will present a nice comparison between the way series behave in R and Qp.

2. Completeness of c0(K)

Theorem 2.1. The space c0(K) is complete for the metric (1.1).

1If | · | is the trivial absolute value, so |x| < 1⇒ x = 0, then the only elements of c0(K) are the sequences
in K whose terms eventually equal 0.
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Proof. Let {am} be a Cauchy sequence in c0(K) (a “Cauchy sequence in a space of se-
quences”). To show this sequence has a limit in c0(K), first we will figure out what the
limit should be, then we will show it lies in c0(K), and finally we will show it is a limit of
the sequence.

Write am in component form as (am1, am2, am3, . . .), so amn ∈ K and limn→∞ amn = 0
for each m. It is convenient to picture the sequences stacked on top of each other as

a1 = (a11, a12, a13, . . .)

a2 = (a21, a22, a23, . . .)

a3 = (a31, a32, a33, . . .)

...

since this suggests viewing the components all at once as an infinite matrix
a11 a12 a13 . . .
a21 a22 a23 . . .
a31 a32 a33 . . .
...

...
...

. . .


where each row tends to 0. We will show limits can be taken along the columns to find a
limit of the am’s.

Since {am} is Cauchy in c0(K), for all ε > 0 there is an M ≥ 1 such that m,m′ ≥M =⇒
||am − am′ || ≤ ε. That says

(2.1) m,m′ ≥M =⇒ |amn − am′n| ≤ ε for each n ≥ 1.

Therefore when n is fixed, the numbers {amn}m≥1 are a Cauchy sequence in K, which is
complete, so we have a limit: set an = limm→∞ amn. This is the limit of the nth column of
the above matrix. We get a new sequence in K using the limits of each of the columns: set
a = (a1, a2, a3, . . .). We want to show a ∈ c0(K) and ||a− am|| → 0 as m→∞.

a lies in c0(K): For ε > 0 we want to find an N ≥ 1 such that n ≥ N ⇒ |an| ≤ ε. From

the Cauchy property of {am} in c0(K) there is an M ≥ 1 such that (2.1) holds. Letting
m′ →∞ in (2.1) we get

(2.2) m ≥M =⇒ |amn − an| ≤ ε for each n ≥ 1.

Using m = M in (2.2), for each n ≥ 1 we have

|an| = |an − aMn + aMn| ≤ |an − aMn|+ |aMn| ≤ ε+ |aMn|.
Since aM ∈ c0(K) we have aMn → 0 as n → ∞, so there is an N ≥ 1 (depending on M)
such that n ≥ N =⇒ |aMn| ≤ ε. Therefore

(2.3) n ≥ N =⇒ |an| ≤ ε+ |aMn| ≤ 2ε.

Running through this argument with ε replaced by ε/2 so that we get 2(ε/2) = ε in (2.3),
we have proved an → 0 in K as n→∞. Thus a ∈ c0(K).

a is the limit of the am’s: For ε > 0 there is M ≥ 1 making (2.2) hold. For all m ≥M ,

||am − a|| = max
n≥1
|amn − an| ≤ ε.

That proves the am’s tend to a as m→∞. �
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Remark 2.2. The set of bounded sequences in K (that is, all (a1, a2, . . .) with an ∈ K
for which there’s some B > 0 such that |an| ≤ B for all n) can be equipped with the
same metric used on c0(K), except the role of a maximum on the absolute values has to be
replaced by a supremum: ||a|| = supn≥1 |an| and d(a,b) = ||a−b|| = supn≥1 |an−bn|. This
metric makes the set of all bounded sequences in K a complete metric space, and c0(K) is
a closed subset of it. The proof of completeness is very similar to the proof of Theorem 2.1;
the only difference is showing the supposed limit sequence is bounded instead of having its
terms tend to 0, and the boundedness is slightly easier to establish. Details are left to the
reader.

Corollary 2.3. The set of sequences in (K, | · |) whose terms eventually equal 0, equipped
with the metric (1.1), has completion c0(K).

Proof. Every sequence in K whose terms eventually equal 0 lies in c0(K). Since we have
proved c0(K) is complete, it is enough to show the sequences inK whose terms are eventually
0 are a dense subset of c0(K).

Fix a choice of a = (a1, a2, . . .) in c0(K). Let an = (a1, . . . , an, 0, 0, . . .) have the first n
components from a and all later components equal to 0. Then

||a− an|| = ||(0, . . . , 0, an+1, an+2, . . .)|| = max
i>n
|ai|.

By the definition of a belonging to c0(K), for each ε > 0 we have |ai| ≤ ε for all large i, so
there’s some N making |ai| ≤ ε for i ≥ N . Thus ||a− an|| ≤ ε for n > N , which proves the
sequences in K with terms eventually equal to 0 are dense in c0(K). �

3. Continuous linear maps c0(R)→ R and c0(Qp)→ Qp

For a field K, the standard coordinates on Kd are the functions (a1, . . . , ad) 7→ ai for i =
1, . . . , d. As the vector varies, the ith coordinate can be regarded as a function xi : Kd → K
where xi((a1, . . . , ad)) = ai. Each coordinate function is K-linear:

xi(a + a′) = xi(a) + xi(a′), xi(αa) = αxi(a)

for all a and a′ in Kd and α ∈ K. This is just saying that the i-th coordinate of a sum
is the sum of the ith coordinates and the ith coordinate of a scalar multiple is the same
scalar multiple of the ith coordinate, which is obvious from how vector addition and scalar
multiplication in Kd are defined.

Each coordinate function xi : Kd → K is a dot product with the ith standard basis vector:
xi(a) = a · ei, where ei has 1 in the ith position and 0 elsewhere. More generally, for every
b in Kd the function Kd → K defined by a 7→ a ·b is K-linear. Taking the dot product on
Kd with a fixed vector in Kd can be characterized by its linearity and having values in K:

Theorem 3.1. The K-linear functions ϕ : Kd → K are the functions of the form ϕ(a) =
a · b, and each ϕ arises in this way for a unique b in Kd.

Proof. For each b ∈ Kd, it is easy to see that the function ϕb : Kd → K defined by
ϕb(a) = a · b is K-linear from algebraic properties of the dot product.

Conversely, assume ϕ : Kd → K is K-linear. Using linearity, we have

ϕ((a1, . . . , ad)) = ϕ(a1e1 + · · ·+ aded) = a1ϕ(e1) + · · ·+ adϕ(ed).

Letting a = (a1, . . . , ad) and b = (ϕ(e1), . . . , ϕ(ed)), so b is independent of a, the above
formula for ϕ becomes ϕ(a) = a · b. Thus each ϕ is the dot product on Kd with a specific
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vector. To prove, for each ϕ, that there is only one possible b for which ϕ(a) = a·b for all a,
set a = ei in this equation to get ϕ(ei) = ei ·b. Since the dot product with ei produces the
ith coordinate, we see that the ith coordinate of b must be ϕ(ei), so as i varies we conclude
there is only one possible choice of b, namely the d-tuple we used to define b originally. �

We want to extend Theorem 3.1 from the finite-dimensional spaces Kd to the infinite-
dimensional space c0(K) when (K, | · |) is a complete valued field. This is possible if we
impose a continuity condition.

Theorem 3.2. Each continuous K-linear function ϕ : c0(K) → K has the form ϕ(a) =∑
i≥1 aibi for at most one sequence (b1, b2, . . .) in K.

Proof. We saw in the proof of Corollary 2.3 that each a = (a1, a2, . . .) in c0(K) is limn→∞ an,
where an = (a1, . . . , an, 0, 0, . . .). Therefore if ϕ : c0(K)→ K is K-linear and continuous,

(3.1) lim
n→∞

an = a =⇒ lim
n→∞

ϕ(an) = ϕ(a).

Let ei = (0, . . . , 0, 1, 0, . . .) have 1 in its ith component and 0 in all other components. Then
ei ∈ c0(K) and

an = (a1, . . . , an, 0, 0, . . .) = a1e1 + · · ·+ anen,

which is a finite sum of terms, so by linearity

ϕ(an) = ϕ(a1e1 + · · ·+ anen) = a1ϕ(e1) + · · ·+ anϕ(en).

Therefore by (3.1),

ϕ(a) = lim
n→∞

ϕ(an) = lim
n→∞

n∑
i=1

aiϕ(ei).

By the definition of an infinite series as a limit of partial sums we have

lim
n→∞

n∑
i=1

aiϕ(ei) =
∑
i≥1

aiϕ(ei),

and this limit exists because it is a calculation of ϕ(a). Setting bi = ϕ(ei), which is
independent of a, we have for all a in c0(K) that

(3.2) ϕ(a) =
∑
i≥1

aibi.

Substituting a = ej into (3.2), we recover ϕ(ej) = bj for all j, so there is at most one
sequence {bi} in K making the desired formula for ϕ in (3.2) work out. �

In this proof we used continuity of ϕ to calculate ϕ(a) from ϕ(an) by passage to a limit.
Something is missing from Theorem 3.2: a description of necessary constraints on a

sequence b1, b2, . . . in K in order for the infinite-dimensional dot product

(3.3) a · b =
∑
i≥1

aibi

to converge for every a ∈ c0(K). It is not true2 that for every sequence b1, b2, . . . in K that
this dot product makes sense for all a ∈ c0(K): the series may fail to converge. For example,

2Except when the absolute value on K is trivial, making c0(K) the sequences in K whose terms eventually
equal 0.



THE SPACE c0(K) 5

if x ∈ K satisfies 0 < |x| < 1 then {xn} ∈ c0(K) and the dot product won’t converge when
a = {xn} and bi = 1/xi.

When K = R or K = Qp, here are sufficient conditions on the bi’s for convergence of the
dot products (3.3) as a runs over all of c0(K).

• In R, if
∑

i≥1 |bi| converges then
∑

i≥1 aibi converges for all a ∈ c0(R): {ai} is

bounded, say |ai| ≤ A for all i, so |aibi| ≤ A|bi| and therefore
∑

i≥1 |aibi| ≤
A
∑

i≥1 |bi| <∞, so
∑

i≥1 aibi converges (absolutely) in R.

• In Qp, if {bi} is bounded then
∑

i≥1 aibi converges for all a ∈ c0(Qp): letting

|ai|p ≤ A we have |aibi|p ≤ A|bi|p, and A|bi|p → 0 as i → ∞, so aibi → 0 in Qp as
i→∞. Thus

∑
n≥1 aibi converges in Qp.

Perhaps surprisingly, these sufficient conditions turn out to be necessary as well. That’s
what we show in the next two theorems.

Theorem 3.3. Let {bi} be a sequence in R such that for all a ∈ c0(R),
∑

i≥1 aibi converges.

Then
∑

i≥1 |bi| converges. Moreover, the function c0(R)→ R defined by {ai} 7→
∑

i≥1 aibi
is continuous.

Proof. We will prove the contrapositive: if
∑

i≥1 |bi| does not converge then there is an

a ∈ c0(R) such that
∑

i≥1 aibi does not converge. The construction we use is one I learned
from Iddo Ben-Ari.

Since
∑

i≥1 |bi| is a series of nonnegative numbers, that it does not converge means it is∞.

Therefore letting si = |b1|+ |b2|+ · · ·+ |bi|, we have si ≤ si+1 for all i and si →∞. Choose
j minimal so that sj > 0 (maybe some initial bi’s are 0). For i ≥ j define ai = sign(bi)/

√
si,

and for i < j define ai = 0. Then ai → 0 since si →∞, and for N ≥ j we have

N∑
i=1

aibi =

N∑
i=j

aibi since bi = 0 for i < j

=
N∑
i=j

sign(bi)bi√
si

=

N∑
i=j

|bi|√
si

≥
N∑
i=j

|bi|√
sN

since si ≤ sN when i ≤ N and |bi| ≥ 0

=
1
√
sN

N∑
i=1

|bi| since |bi| = 0 for i < j

=
sN√
sN

=
√
sN ,

which tends to ∞ as N →∞, so
∑

i≥1 aibi does not converge.
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When
∑

i≥1 |bi| converges, let S be the value of this series. Then for a and a′ in c0(R),

∣∣a · b− a′ · b
∣∣ =

∣∣∣∣∣∣
∑
i≥1

(ai − a′i)bi

∣∣∣∣∣∣ ≤
∑
i≥1
|ai − a′i||bi| ≤ ||a− a′||

∑
i≥1
|bi| ≤ S||a− a′||.

That shows a 7→ a · b is a (uniformly) continuous function c0(R)→ R.
�

Theorem 3.4. Let {bi} be a sequence in Qp such that for all a ∈ c0(Qp),
∑

i≥1 aibi con-

verges. Then {bi} is bounded. Moreover, the function c0(Qp) → Qp defined by {ai} 7→∑
i≥1 aibi is continuous.

Proof. As in the previous proof we will prove the contrapositive: if {bi} is unbounded in
Qp then there is an a ∈ c0(Qp) such that

∑
i≥1 aibi does not converge.

That {bi} is unbounded does not mean |bi|p → ∞, but only that there is a subsequence
of {bi} whose terms have absolute value tending to ∞. Thus there is a subsequence {bik}
such that |bik |p ≥ k for each k ≥ 1. Define ai by aik = 1/bik if i is some ik and ai = 0 if i is
not an ik. Then |aik |p = 1/|bik |p ≤ 1/k, while |ai| = 0 if i is not an ik, so ai → 0 as i→∞
and ∑

i≥1
aibi =

∑
k≥1

aikbik =
∑
k≥1

1,

which does not converge.
When {bi} is bounded in Qp, let M = maxi≥1 |bi|p. For a and a′ in c0(Qp),∣∣a · b− a′ · b

∣∣
p

=

∣∣∣∣∣∣
∑
i≥1

(ai − a′i)bi

∣∣∣∣∣∣
p

≤ max
i≥1
|ai − a′i|p|bi|p ≤M ||a− a′||,

so a 7→ a · b is a (uniformly) continuous function c0(Qp)→ Qp. �

Let’s summarize what we have shown:

(1) For every complete valued field (K, | · |), the continuous K-linear maps c0(K)→ K
can all be described as taking the infinite-dimensional dot product on c0(K) with a
unique sequence in K.

(2) The continuous R-linear maps c0(R) → R are the dot products on c0(R) with a
sequence {bi} in R such that

∑
i≥1 |bi| converges.

(3) The continuous Qp-linear maps c0(Qp)→ Qp are the dot products on c0(Qp) with
a bounded sequence in Qp.

It is left to the reader to check that the second point remains true when R replaced by
C and the third point remains true when Qp is replaced by a nonarchimedean complete
valued field. Since, by a theorem of Ostrowski, every complete valued field is either R, C,
or its absolute value is non-archimedean, we have in fact described the continuous K-linear
maps c0(K)→ K for all possible complete valued fields (K, | · |).

Remark 3.5. The proofs that c0(K) and the space cb(K) of bounded sequences in K
are both complete metric spaces (using the same formula for the metric) are quite similar,
but the proof of Theorem 3.2 does not carry over to cb(K) and, in fact, the space of all
continuous linear mappings cb(R)→ R does not admit an elementary description in terms
of suitable infinite dot products.
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