
DIFFERENTIATING UNDER THE INTEGRAL SIGN

KEITH CONRAD

I had learned to do integrals by various methods shown in a book1 that my high
school physics teacher Mr. Bader had given me. [It] showed how to differentiate
parameters under the integral sign – it’s a certain operation. It turns out that’s
not taught very much in the universities; they don’t emphasize it. But I caught on
how to use that method, and I used that one damn tool again and again. [If] guys
at MIT or Princeton had trouble doing a certain integral, [then] I come along and
try differentiating under the integral sign, and often it worked. So I got a great
reputation for doing integrals, only because my box of tools was different from
everybody else’s, and they had tried all their tools on it before giving the problem
to me.2 Richard Feynman [5, pp. 71–72]3

1. Introduction

The method of differentiation under the integral sign, due to Leibniz in 1697 [4], concerns integrals

depending on a parameter, such as
∫ 1
0 x

2e−tx dx. Here t is the extra parameter. (Since x is the
variable of integration, x is not a parameter.) In general, we might write such an integral as

(1.1)

∫ b

a
f(x, t) dx,

where f(x, t) is a function of two variables like f(x, t) = x2e−tx.

Example 1.1. Let f(x, t) = (2x+ t3)2. Then

∫ 1

0
f(x, t) dx =

∫ 1

0
(2x+ t3)2 dx. An anti-derivative

of (2x+ t3)2 with respect to x is 1
6(2x+ t3)3, so∫ 1

0
(2x+ t3)2 dx =

(2x+ t3)3

6

∣∣∣∣x=1

x=0

=
(2 + t3)3 − t9

6
=

4

3
+ 2t3 + t6.

This answer is a function of t, which makes sense since the integrand depends on t. We integrate
over x and are left with something that depends only on t, not x.

An integral like
∫ b
a f(x, t) dx is a function of t, so we can ask about its t-derivative, assuming

that f(x, t) is nicely behaved. The rule, called differentiation under the integral sign, is that the
t-derivative of the integral of f(x, t) is the integral of the t-derivative of f(x, t):

(1.2)
d

dt

∫ b

a
f(x, t) dx =

∫ b

a

∂

∂t
f(x, t) dx.

1The book Feynman read was Advanced Calculus by Woods [16]. See Appendix B for an excerpt.
2See https://scientistseessquirrel.wordpress.com/2016/02/09/do-biology-students-need-calculus/ for

a similar story with integration by parts in the first footnote.
3Just before this quote, Feynman wrote “One thing I never did learn was contour integration.” Perhaps he meant

that he never felt he learned it well, since he did know it. See [6, Lect. 14, 15, 17, 19], [7, p. 92], and [8, pp. 47–49].
A challenge he gave in [5, p. 176] suggests he didn’t like contour integration.
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If you are used to thinking mostly about functions with one variable, not two, keep in mind that
(1.2) involves integrals and derivatives with respect to separate variables: integration with respect
to x and differentiation with respect to t.

Example 1.2. We saw in Example 1.1 that
∫ 1
0 (2x+ t3)2 dx = 4/3 + 2t3 + t6, whose t-derivative is

6t2 + 6t5. According to (1.2), we can also compute the t-derivative of the integral like this:

d

dt

∫ 1

0
(2x+ t3)2 dx =

∫ 1

0

∂

∂t
(2x+ t3)2 dx

=

∫ 1

0
2(2x+ t3)(3t2) dx

=

∫ 1

0
(12t2x+ 6t5) dx

= 6t2x2 + 6t5x

∣∣∣∣x=1

x=0

= 6t2 + 6t5.

The answer agrees with our first, more direct, calculation.

We will apply (1.2) in many examples, and Section 12 presents a justification. It is also used to
prove theorems: see Sections 11 and 13 and a proof of the Cramér–Rao bound in statistics.

2. Euler’s factorial integral in a new light

For integers n ≥ 0, Euler’s integral formula for n! is

(2.1)

∫ ∞
0

xne−x dx = n!,

which can be obtained by repeated integration by parts starting from the formula

(2.2)

∫ ∞
0

e−x dx = 1

when n = 0. Now we are going to derive Euler’s formula in another way, by repeated differentiation
after introducing a parameter t into (2.2).

For t > 0, let x = tu. Then dx = tdu and (2.2) becomes∫ ∞
0

te−tu du = 1.

Dividing by t and writing u as x (why is this not a problem?), we get

(2.3)

∫ ∞
0

e−tx dx =
1

t
.

This is a parametric form of (2.2), where both sides are now functions of t. We need t > 0 in order
that e−tx is integrable over the region x ≥ 0.

Now we bring in differentiation under the integral sign. Differentiate both sides of (2.3) with
respect to t, using (1.2) to treat the left side. We obtain∫ ∞

0
−xe−tx dx = − 1

t2
,
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so

(2.4)

∫ ∞
0

xe−tx dx =
1

t2
.

Differentiate both sides of (2.4) with respect to t, again using (1.2) to handle the left side. We get∫ ∞
0
−x2e−tx dx = − 2

t3
.

Taking out the sign on both sides,

(2.5)

∫ ∞
0

x2e−tx dx =
2

t3
.

If we continue to differentiate each new equation with respect to t a few more times, we obtain∫ ∞
0

x3e−tx dx =
6

t4
,∫ ∞

0
x4e−tx dx =

24

t5
,

and ∫ ∞
0

x5e−tx dx =
120

t6
.

Do you see the pattern? It is

(2.6)

∫ ∞
0

xne−tx dx =
n!

tn+1
.

We have used the presence of the extra variable t to get these equations by repeatedly applying
d/dt. Now specialize t to 1 in (2.6). We obtain∫ ∞

0
xne−x dx = n!,

which is our old friend (2.1). Voilá!
The idea that made this work is introducing a parameter t, using calculus on t, and then setting

t to a particular value so it disappears from the final formula. In other words, sometimes to solve
a problem it is useful to solve a more general problem. Compare (2.1) to (2.6).

3. A damped sine integral

We are going to use differentiation under the integral sign to prove

(3.1)

∫ ∞
0

e−tx
sinx

x
dx =

π

2
− arctan t

for t > 0.
Call this integral F (t) and set f(x, t) = e−tx(sinx)/x, so (∂/∂t)f(x, t) = −e−tx sinx. Then

F ′(t) = −
∫ ∞
0

e−tx(sinx) dx.

The integrand e−tx sinx, as a function of x, can be integrated by parts:∫
eax sinx dx =

(a sinx− cosx)

1 + a2
eax.
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Applying this with a = −t and turning the indefinite integral into a definite integral,

F ′(t) = −
∫ ∞
0

e−tx(sinx) dx =
(t sinx+ cosx)

1 + t2
e−tx

∣∣∣∣x=∞
x=0

.

As x→∞, t sinx+ cosx oscillates a lot, but in a bounded way (since sinx and cosx are bounded
functions), while the term e−tx decays exponentially to 0 since t > 0. So the value at x =∞ is 0.
Therefore

F ′(t) = −
∫ ∞
0

e−tx(sinx) dx = − 1

1 + t2
.

We know an explicit antiderivative of 1/(1 + t2), namely arctan t. Since F (t) has the same
t-derivative as − arctan t, they differ by a constant: for some number C,

(3.2)

∫ ∞
0

e−tx
sinx

x
dx = − arctan t+ C for t > 0.

We’ve computed the integral, up to an additive constant, without finding an antiderivative of
e−tx(sinx)/x.

To compute C in (3.2), let t → ∞ on both sides. Since |(sinx)/x| ≤ 1, the absolute value of
the integral on the left is bounded from above by

∫∞
0 e−tx dx = 1/t, so the integral on the left in

(3.2) tends to 0 as t → ∞. Since arctan t → π/2 as t → ∞, equation (3.2) as t → ∞ becomes
0 = −π

2 + C, so C = π/2. Feeding this back into (3.2),

(3.3)

∫ ∞
0

e−tx
sinx

x
dx =

π

2
− arctan t for t > 0.

If we let t→ 0+ in (3.3), this equation suggests that

(3.4)

∫ ∞
0

sinx

x
dx =

π

2
,

which is true and it is important in signal processing and Fourier analysis. It is a delicate matter to
derive (3.4) from (3.3) since the integral in (3.4) is not absolutely convergent. Details are provided
in Appendix A.

4. The Gaussian integral

The improper integral formula

(4.1)

∫ ∞
−∞

e−x
2/2 dx =

√
2π

is fundamental to probability theory and Fourier analysis. The function 1√
2π
e−x

2/2 is called a

Gaussian, and (4.1) says the integral of the Gaussian over the whole real line is 1.
The physicist Lord Kelvin (after whom the Kelvin temperature scale is named) once wrote (4.1)

on the board in a class and said “A mathematician is one to whom that [pointing at the formula] is
as obvious as twice two makes four is to you.” We will prove (4.1) using differentiation under the
integral sign. The method will not make (4.1) as obvious as 2 · 2 = 4. If you take further courses
you may learn more natural derivations of (4.1) so that the result really does become obvious. For
now, just try to follow the argument here step-by-step.

We are going to aim not at (4.1), but at an equivalent formula over the range x ≥ 0:

(4.2)

∫ ∞
0

e−x
2/2 dx =

√
2π

2
=

√
π

2
.
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Call the integral on the left I.
For t ∈ R, set

F (t) =

∫ ∞
0

e−t
2(1+x2)/2

1 + x2
dx.

Then F (0) =
∫∞
0 dx/(1 + x2) = π/2 and F (∞) = 0. Differentiating under the integral sign,

F ′(t) =

∫ ∞
0
−te−t2(1+x2)/2 dx = −te−t2/2

∫ ∞
0

e−(tx)
2/2 dx.

Make the substitution y = tx, with dy = tdx, so

F ′(t) = −e−t2/2
∫ ∞
0

e−y
2/2 dy = −Ie−t2/2.

For b > 0, integrate both sides from 0 to b and use the Fundamental Theorem of Calculus:∫ b

0
F ′(t) dt = −I

∫ b

0
e−t

2/2 dt =⇒ F (b)− F (0) = −I
∫ b

0
e−t

2/2 dt.

Letting b→∞,

0− π

2
= −I2 =⇒ I2 =

π

2
=⇒ I =

√
π

2
.

I learned this from Michael Rozman [12], who modified an idea on a Math Stackexchange question
[3], and in a slightly less elegant form it appeared much earlier in [17].

5. Higher moments of the Gaussian

For every integer n ≥ 0 we want to compute a formula for

(5.1)

∫ ∞
−∞

xne−x
2/2 dx.

(Integrals of the type
∫
xnf(x) dx for n = 0, 1, 2, . . . are called the moments of f(x), so (5.1) is the

n-th moment of the Gaussian.) When n is odd, (5.1) vanishes since xne−x
2/2 is an odd function.

What if n = 0, 2, 4, . . . is even?
The first case, n = 0, is the Gaussian integral (4.1):

(5.2)

∫ ∞
−∞

e−x
2/2 dx =

√
2π.

To get formulas for (5.1) when n 6= 0, we follow the same strategy as our treatment of the factorial

integral in Section 2: stick a t into the exponent of e−x
2/2 and then differentiate repeatedly with

respect to t.
For t > 0, replacing x with

√
tx in (5.2) gives

(5.3)

∫ ∞
−∞

e−tx
2/2 dx =

√
2π√
t
.

Differentiate both sides of (5.3) with respect to t, using differentiation under the integral sign on
the left: ∫ ∞

−∞
−x

2

2
e−tx

2/2 dx = −
√

2π

2t3/2
,

so

(5.4)

∫ ∞
−∞

x2e−tx
2/2 dx =

√
2π

t3/2
.
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Differentiate both sides of (5.4) with respect to t. After removing a common factor of −1/2 on
both sides, we get

(5.5)

∫ ∞
−∞

x4e−tx
2/2 dx =

3
√

2π

t5/2
.

Differentiating both sides of (5.5) with respect to t a few more times, we get∫ ∞
−∞

x6e−tx
2/2 dx =

3 · 5
√

2π

t7/2
,

∫ ∞
−∞

x8e−tx
2/2 dx =

3 · 5 · 7
√

2π

t9/2
,

and ∫ ∞
−∞

x10e−tx
2/2 dx =

3 · 5 · 7 · 9
√

2π

t11/2
.

Quite generally, when n is even∫ ∞
−∞

xne−tx
2/2 dx =

1 · 3 · 5 · · · (n− 1)

t(n+1)/2

√
2π,

where the numerator is the product of the positive odd integers from 1 to n− 1 (understood to be
the empty product 1 when n = 0).

In particular, taking t = 1 we have computed (5.1):∫ ∞
−∞

xne−x
2/2 dx = 1 · 3 · 5 · · · (n− 1)

√
2π.

As an application of (5.4), we now compute (12)! :=
∫∞
0 x1/2e−x dx, where the notation (12)! and

its definition are inspired by Euler’s integral formula (2.1) for n! when n is a nonnegative integer.

Using the substitution u = x1/2 in
∫∞
0 x1/2e−x dx, we have(

1

2

)
! =

∫ ∞
0

x1/2e−x dx

=

∫ ∞
0

ue−u
2
(2u) du

= 2

∫ ∞
0

u2e−u
2

du

=

∫ ∞
−∞

u2e−u
2

du

=

√
2π

23/2
by (5.4) at t = 2

=

√
π

2
.

6. A cosine transform of the Gaussian

We are going to compute

F (t) =

∫ ∞
0

cos(tx)e−x
2/2 dx
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by looking at its t-derivative:

(6.1) F ′(t) =

∫ ∞
0
−x sin(tx)e−x

2/2 dx.

This is good from the viewpoint of integration by parts since −xe−x2/2 is the derivative of e−x
2/2.

So we apply integration by parts to (6.1):

u = sin(tx), dv = −xe−x2 dx

and

du = t cos(tx) dx, v = e−x
2/2.

Then

F ′(t) =

∫ ∞
0

udv

= uv

∣∣∣∣∞
0

−
∫ ∞
0

v du

=
sin(tx)

ex2/2

∣∣∣∣x=∞
x=0

− t
∫ ∞
0

cos(tx)e−x
2/2 dx

=
sin(tx)

ex2/2

∣∣∣∣x=∞
x=0

− tF (t).

As x→∞, ex
2/2 blows up while sin(tx) stays bounded, so sin(tx)/ex

2/2 goes to 0. Therefore

F ′(t) = −tF (t).

We know the solutions to this differential equation: constant multiples of e−t
2/2. So∫ ∞

0
cos(tx)e−x

2/2 dx = Ce−t
2/2

for some constant C. To find C, set t = 0. The left side is
∫∞
0 e−x

2/2 dx, which is
√
π/2 by (4.2).

The right side is C. Thus C =
√
π/2, so we are done: for all real t,∫ ∞
0

cos(tx)e−x
2/2 dx =

√
π

2
e−t

2/2.

Remark 6.1. If we want to compute G(t) =
∫∞
0 sin(tx)e−x

2/2 dx, with sin(tx) in place of cos(tx),
then in place of F ′(t) = −tF (t) we have G′(t) = 1−tG(t), and G(0) = 0. From the differential equa-

tion, (et
2/2G(t))′ = et

2/2, so G(t) = e−t
2/2
∫ t
0 e

x2/2 dx. So while
∫∞
0 cos(tx)e−x

2/2 dx =
√

π
2 e
−t2/2,

the integral
∫∞
0 sin(tx)e−x

2/2 dx is impossible to express in terms of elementary functions.

7. The Gaussian times a logarithm

We will compute ∫ ∞
0

(log x)e−x
2

dx.

Integrability at ∞ follows from rapid decay of e−x
2

at ∞, and integrability near x = 0 follows from
the integrand there being nearly log x, which is integrable on [0, 1], so the integral makes sense.
(This example was brought to my attention by Harald Helfgott.)
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We already know
∫∞
0 e−x

2
dx =

√
π/2, but how do we find the integral when a factor of log x is

inserted into the integrand? Replacing x with
√
x in the integral,

(7.1)

∫ ∞
0

(log x)e−x
2

dx =
1

4

∫ ∞
0

log x√
x
e−x dx.

To compute this last integral, the key idea is that (d/dt)(xt) = xt log x, so we get a factor of
log x in an integral after differentiation under the integral sign if the integrand has an exponential
parameter: for t > −1 set

F (t) =

∫ ∞
0

xte−x dx.

(This is integrable for x near 0 since for small x, xte−x ≈ xt, which is integrable near 0 since
t > −1.) Differentiating both sides with respect to t,

F ′(t) =

∫ ∞
0

xt(log x)e−x dx,

so (7.1) tells us the number we are interested in is F ′(−1/2)/4.
The function F (t) is well-known under a different name: for s > 0, the Γ-function at s is defined

by

Γ(s) =

∫ ∞
0

xs−1e−x dx,

so Γ(s) = F (s − 1). Therefore Γ′(s) = F ′(s − 1), so F ′(−1/2)/4 = Γ′(1/2)/4. For the rest of this
section we work out a formula for Γ′(1/2)/4 using properties of the Γ-function; there is no more
differentiation under the integral sign.

We need two standard identities for the Γ-function:

(7.2) Γ(s+ 1) = sΓ(s), Γ(s)Γ

(
s+

1

2

)
= 21−2s

√
πΓ(2s).

The first identity follows from integration by parts. Since Γ(1) =
∫∞
0 e−x dx = 1, the first identity

implies Γ(n) = (n − 1)! for every positive integer n. The second identity, called the duplication
formula, is subtle. For example, at s = 1/2 it says Γ(1/2) =

√
π. A proof of the duplication formula

can be found in many complex analysis textbooks. (The integral defining Γ(s) makes sense not just
for real s > 0, but also for complex s with Re(s) > 0, and the Γ-function is usually regarded as a
function of a complex, rather than real, variable.)

Differentiating the first identity in (7.2),

(7.3) Γ′(s+ 1) = sΓ′(s) + Γ(s),

so at s = 1/2

(7.4) Γ′
(

3

2

)
=

1

2
Γ′
(

1

2

)
+ Γ

(
1

2

)
=

1

2
Γ′
(

1

2

)
+
√
π =⇒ Γ′

(
1

2

)
= 2

(
Γ′
(

3

2

)
−
√
π

)
.

Differentiating the second identity in (7.2),

(7.5) Γ(s)Γ′
(
s+

1

2

)
+ Γ′(s)Γ

(
s+

1

2

)
= 21−2s(− log 4)

√
πΓ(2s) + 21−2s

√
π2Γ′(2s).

Setting s = 1 here and using Γ(1) = Γ(2) = 1,

(7.6) Γ′
(

3

2

)
+ Γ′(1)Γ

(
3

2

)
= (− log 2)

√
π +
√
πΓ′(2).
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We compute Γ(3/2) by the first identity in (7.2) at s = 1/2: Γ(3/2) = (1/2)Γ(1/2) =
√
π/2 (we

already computed this at the end of Section 5). We compute Γ′(2) by (7.3) at s = 1: Γ′(2) =
Γ′(1) + 1. Thus (7.6) says

Γ′
(

3

2

)
+ Γ′(1)

√
π

2
= (− log 2)

√
π +
√
π(Γ′(1) + 1) =⇒ Γ′

(
3

2

)
=
√
π

(
− log 2 +

Γ′(1)

2

)
+
√
π.

Feeding this formula for Γ′(3/2) into (7.4),

Γ′
(

1

2

)
=
√
π(−2 log 2 + Γ′(1)).

It turns out that Γ′(1) = −γ, where γ ≈ .577 is Euler’s constant. Thus, at last,∫ ∞
0

(log x)e−x
2

dx =
Γ′(1/2)

4
= −
√
π

4
(2 log 2 + γ).

8. Logs in the denominator, part I

Consider the following integral over [0, 1], where t > 0:∫ 1

0

xt − 1

log x
dx.

Since 1/ log x → 0 as x → 0+, the integrand vanishes at x = 0. As x → 1−, (xt − 1)/ log x → t.
Therefore when t is fixed the integrand is a continuous function of x on [0, 1], so the integral is not
an improper integral.

The t-derivative of this integral is∫ 1

0

xt log x

log x
dx =

∫ 1

0
xt dx =

1

t+ 1
,

which we recognize as the t-derivative of log(t+ 1). Therefore∫ 1

0

xt − 1

log x
dx = log(t+ 1) + C

for some C. To find C, let t → 0+. On the right side, log(1 + t) tends to 0. On the left side, the
integrand tends to 0: |(xt − 1)/ log x| = |(et log x − 1)/ log x| ≤ t because |ea − 1| ≤ |a| when a ≤ 0.
Therefore the integral on the left tends to 0 as t→ 0+. So C = 0, which implies

(8.1)

∫ 1

0

xt − 1

log x
dx = log(t+ 1)

for all t > 0, and it’s obviously also true for t = 0. Another way to compute this integral is to write
xt = et log x as a power series and integrate term by term, which is valid for −1 < t < 1.

Under the change of variables x = e−y, (8.1) becomes

(8.2)

∫ ∞
0

(
e−y − e−(t+1)y

) dy

y
= log(t+ 1).
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9. Logs in the denominator, part II

We now consider the integral

F (t) =

∫ ∞
2

dx

xt log x

for t > 1. The integral converges by comparison with
∫∞
2 dx/xt. We know that “at t = 1” the

integral diverges to ∞: ∫ ∞
2

dx

x log x
= lim

b→∞

∫ b

2

dx

x log x

= lim
b→∞

log log x

∣∣∣∣b
2

= lim
b→∞

log log b− log log 2

= ∞.

So we expect that as t→ 1+, F (t) should blow up. But how does it blow up? By analyzing F ′(t)
and then integrating back, we are going to show F (t) behaves essentially like − log(t−1) as t→ 1+.

Using differentiation under the integral sign, for t > 1

F ′(t) =

∫ ∞
2

∂

∂t

(
1

xt log x

)
dx

=

∫ ∞
2

x−t(− log x)

log x
dx

= −
∫ ∞
2

dx

xt

= − x−t+1

−t+ 1

∣∣∣∣x=∞
x=2

=
21−t

1− t
.

We want to bound this derivative from above and below when t > 1. Then we will integrate to get
bounds on the size of F (t).

For t > 1, the difference 1− t is negative, so 21−t < 1. Dividing both sides of this by 1− t, which
is negative, reverses the sense of the inequality and gives

21−t

1− t
>

1

1− t
.

This is a lower bound on F ′(t). To get an upper bound on F ′(t), we want to use a lower bound
on 21−t. Since ea ≥ a + 1 for all a (the graph of y = ex lies on or above its tangent line at x = 0,
which is y = x+ 1),

2x = ex log 2 ≥ (log 2)x+ 1

for all x. Taking x = 1− t,

(9.1) 21−t ≥ (log 2)(1− t) + 1.

When t > 1, 1− t is negative, so dividing (9.1) by 1− t reverses the sense of the inequality:

21−t

1− t
≤ log 2 +

1

1− t
.
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This is an upper bound on F ′(t). Putting the upper and lower bounds on F ′(t) together,

(9.2)
1

1− t
< F ′(t) ≤ log 2 +

1

1− t
for all t > 1.

We are concerned with the behavior of F (t) as t→ 1+. Let’s integrate (9.2) from a to 2, where
1 < a < 2: ∫ 2

a

dt

1− t
<

∫ 2

a
F ′(t) dt ≤

∫ 2

a

(
log 2 +

1

1− t

)
dt.

Using the Fundamental Theorem of Calculus,

− log(t− 1)

∣∣∣∣2
a

< F (t)

∣∣∣∣2
a

≤ ((log 2)t− log(t− 1))

∣∣∣∣2
a

,

so

log(a− 1) < F (2)− F (a) ≤ (log 2)(2− a) + log(a− 1).

Manipulating to get inequalities on F (a), we have

(log 2)(a− 2)− log(a− 1) + F (2) ≤ F (a) < − log(a− 1) + F (2)

Since a− 2 > −1 for 1 < a < 2, (log 2)(a− 2) is greater than − log 2. This gives the bounds

− log(a− 1) + F (2)− log 2 ≤ F (a) < − log(a− 1) + F (2)

Writing a as t, we get

− log(t− 1) + F (2)− log 2 ≤ F (t) < − log(t− 1) + F (2),

so F (t) is a bounded distance from − log(t−1) when 1 < t < 2. In particular, F (t)→∞ as t→ 1+.

10. A trigonometric integral

For positive numbers a and b, the arithmetic-geometric mean inequality says (a + b)/2 ≥
√
ab

(with equality if and only if a = b). Let’s iterate the two types of means: for k ≥ 0, define {ak}
and {bk} by a0 = a, b0 = b, and

ak =
ak−1 + bk−1

2
, bk =

√
ak−1bk−1

for k ≥ 1.

Example 10.1. If a0 = 1 and b0 = 2, then Table 2 gives ak and bk to 16 digits after the decimal
point. Notice how rapidly they are getting close to each other!

k ak bk
0 1 2
1 1.5 1.4142135623730950
2 1.4571067811865475 1.4564753151219702
3 1.4567910481542588 1.4567910139395549
4 1.4567910310469069 1.4567910310469068

Table 1. Iteration of arithmetic and geometric means.
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Gauss showed that for every choice of a and b, the sequences {ak} and {bk} converge very rapidly
to a common limit, which he called the arithmetic-geometric mean of x and y and wrote this as
M(a, b). For example, M(1, 2) ≈ 1.456791031046906. Gauss discovered an integral formula for the
reciprocal 1/M(a, b):

1

M(a, b)
=

2

π

∫ π/2

0

dx√
a2 cos2 x+ b2 sin2 x

.

There is no elementary formula for this integral, but if we change the exponent 1/2 in the square
root to a positive integer n then we can work out all the integrals

Fn(a, b) =
2

π

∫ π/2

0

dx

(a2 cos2 x+ b2 sin2 x)n

using repeated differentiation under the integral sign with respect to both a and b. (This example,
with a different normalization and no context for where the integral comes from, is Example 4 on
the Wikipedia page for the Leibniz integral rule.)

For n = 1 we can do a direct integration:

F1(a, b) =
2

π

∫ π/2

0

dx

a2 cos2 x+ b2 sin2 x

=
2

π

∫ π/2

0

sec2 x

a2 + b2 tan2 x
dx

=
2

π

∫ ∞
0

du

a2 + b2u2
where u = tanx

=
2

πa2

∫ ∞
0

du

1 + (b/a)2u2

=
2

πab

∫ ∞
0

dv

1 + v2
where v = (b/a)u

=
1

ab
.

Now let’s differentiate F1(a, b) with respect to a and with respect to b, both by its integral
definition and by the formula we just computed for it:

∂F1

∂a
=

2

π

∫ π/2

0

−2a cos2 x

(a2 cos2 x+ b2 sin2 x)2
dx,

∂F1

∂a
= − 1

a2b

and
∂F1

∂b
=

2

π

∫ π/2

0

−2b sin2 x

(a2 cos2 x+ b2 sin2 x)2
dx,

∂F1

∂b
= − 1

ab2
.

Since sin2 x+ cos2 x = 1, by a little algebra we can get a formula for F2(a, b):

F2(a, b) =
2

π

∫ π/2

0

dx

(a2 cos2 x+ b2 sin2 x)2

= − 1

2a

∂F1

∂a
− 1

2b

∂F1

∂b

=
1

2a3b
+

1

2ab3

=
a2 + b2

2a3b3
.
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We can get a recursion expressing Fn(a, b) in terms of ∂Fn−1/∂a and ∂Fn−1/∂b in general: for
n ≥ 2,

∂Fn−1
∂a

=
2

π

∫ π/2

0

−2(n− 1)a cos2 x

(a2 cos2 x+ b2 sin2 x)n
dx,

∂Fn−1
∂b

=
2

π

∫ π/2

0

−2(n− 1)b sin2 x

(a2 cos2 x+ b2 sin2 x)n
dx,

so

Fn(a, b) = − 1

2(n− 1)a

∂Fn−1
∂a

− 1

2(n− 1)b

∂Fn−1
∂b

= − 1

2(n− 1)

(
1

a

∂Fn−1
∂a

+
1

b

∂Fn−1
∂b

)
.

A few sample calculations of Fn(a, b) using this, starting from F1(a, b) = 1/(ab), are

F2(a, b) =
a2 + b2

2a3b3
, F3(a, b) =

3a4 + 2a2b2 + 3b4

6a5b5
, F4(a, b) =

5a6 + 3a4b2 + 3a2b4 + 5b6

12a7b7
.

11. Smoothly dividing by t

Let h : R→ R be smooth (that is, infinitely differentiable) such that h(0) = 0. The ratio h(t)/t
makes sense for t 6= 0, and it also can be given a reasonable meaning at t = 0: from the definition
of the derivative, when t→ 0 we have

h(t)

t
=
h(t)− h(0)

t− 0
→ h′(0).

Therefore the function

(11.1) r(t) =

{
h(t)/t, if t 6= 0,

h′(0), if t = 0

is continuous for all t. At t 6= 0, r(t) is smooth by the definition of r(t), the quotient rule, and
induction. What about at t = 0?

Theorem 11.1. When h : R → R is smooth and h(0) = 0, the function r(t) in (11.1) is smooth
at t = 0.

Remark 11.2. This is easy to prove when h(t) has a power series representation around t = 0, so
the significance of the theorem is that it holds only assuming h(t) is smooth, without being locally

expressible by power series. An example of such a function is h(t) = e−1/t
2

for t 6= 0 and h(0) = 0.

Proof. To analyze r(t) near t = 0, we will find a different formula for it that avoids taking separate
cases at t 6= 0 and t = 0 by writing h(t) in a clever way with differentiation under the integral sign.
Start from

h(t) =

∫ t

0
h′(u) du.

(This is correct since h(0) = 0.) For t 6= 0, introduce the change of variables u = tx, so du = tdx.
At the boundary, if u = 0 then x = 0. If u = t then x = 1 (we can divide the equation t = tx by t
because t 6= 0). Therefore

h(t) =

∫ 1

0
h′(tx)t dx = t

∫ 1

0
h′(tx) dx.

Dividing by t when t 6= 0, we get

r(t) =
h(t)

t
=

∫ 1

0
h′(tx) dx.
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The left and right sides don’t have t in the denominator. Are they equal at t = 0 too? The left

side at t = 0 is r(0) = h′(0). The right side is
∫ 1
0 h
′(0) dx = h′(0) too, so

(11.2) r(t) =

∫ 1

0
h′(tx) dx

for all t, including t = 0. This is a formula for h(t)/t where there is no longer a t being divided!
Now we’re set to use differentiation under the integral sign. The way we have set things up

here, we want to differentiate with respect to t; the integration variable on the right is x. We can
use differentiation under the integral sign on (11.2) when the integrand is differentiable. Since the
integrand is infinitely differentiable, r(t) is infinitely differentiable!

Explicitly,

r′(t) =

∫ 1

0
xh′′(tx) dx

and

r′′(t) =

∫ 1

0
x2h′′′(tx) dx

and more generally

r(k)(t) =

∫ 1

0
xkh(k+1)(tx) dx

for all k ≥ 0. In particular, r(k)(0) =
∫ 1
0 x

kh(k+1)(0) dx = h(k+1)(0)/(k + 1). �

Remark 11.3. Whitney [15]4 proved that every smooth even function h : R → R is a smooth
function of t2: h(t) = g(t2) where g : R → R is smooth. This is straightforward when h is locally
expressible by power series around 0 (an even power series at 0 has no odd powers of t, and thus is
a power series in t2), but without such an assumption it is more subtle.

12. Counterexamples and justification

We have seen many examples where differentiation under the integral sign can be carried out
with interesting results, but we have not actually stated conditions under which (1.2) is valid.
Something does need to be checked. In [14], an incorrect use of differentiation under the integral
sign due to Cauchy is discussed, where a divergent integral is evaluated as a finite expression. Here
are two other examples where differentiation under the integral sign does not work.

Example 12.1. It is pointed out in [9, Example 6] that the formula∫ ∞
0

sinx

x
dx =

π

2
,

which we discussed at the end of Section 3, leads to an erroneous instance of differentiation under
the integral sign. Rewrite the formula as

(12.1)

∫ ∞
0

sin(ty)

y
dy =

π

2

for t > 0 by the change of variables x = ty. Then differentiation under the integral sign implies∫ ∞
0

cos(ty) dy = 0,

but the left side doesn’t make sense.

4Or see https://mathoverflow.net/questions/72497/.

https://mathoverflow.net/questions/72497/
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The next example shows that even if both sides of (1.2) make sense, they need not be equal.

Example 12.2. For real numbers x and t, let

f(x, t) =


xt3

(x2 + t2)2
, if x 6= 0 or t 6= 0,

0, if x = 0 and t = 0.

Note f(x, 0) = 0 for all x. Let

F (t) =

∫ 1

0
f(x, t) dx.

When t 6= 0,

F (t) =

∫ 1

0

xt3

(x2 + t2)2
dx

=

∫ 1+t2

t2

t3

2u2
du (where u = x2 + t2)

= − t
3

2u

∣∣∣∣u=1+t2

u=t2

= − t3

2(1 + t2)
+

t3

2t2

=
t

2(1 + t2)
.

This is true when t = 0 too: F (0) =
∫ 1
0 f(x, 0) dx =

∫ 1
0 0 dx = 0, so F (t) = t/(2(1 + t2)) for all t.

Therefore F (t) is differentiable and

F ′(t) =
1− t2

2(1 + t2)2

for all t. In particular, F ′(0) = 1
2 .

Now we compute ∂
∂tf(x, t) and then

∫ 1
0

∂
∂tf(x, t) dx. Since f(0, t) = 0 for all t, f(0, t) is differen-

tiable in t and ∂
∂tf(0, t) = 0. For x 6= 0, f(x, t) is differentiable in t and

∂

∂t
f(x, t) =

(x2 + t2)2(3xt2)− xt3 · 2(x2 + t2)2t

(x2 + t2)4

=
xt2(x2 + t2)(3(x2 + t2)− 4t2)

(x2 + t2)4

=
xt2(3x2 − t2)

(x2 + t2)3
.

Combining both cases (x = 0 and x 6= 0),

(12.2)
∂

∂t
f(x, t) =

{
xt2(3x2−t2)
(x2+t2)3

, if x 6= 0,

0, if x = 0.

In particular ∂
∂t

∣∣
t=0

f(x, t) = 0. Therefore at t = 0 the left side of the “formula”

d

dt

∫ 1

0
f(x, t) dx =

∫ 1

0

∂

∂t
f(x, t) dx.
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is F ′(0) = 1/2 and the right side is
∫ 1
0

∂
∂t

∣∣
t=0

f(x, t) dx = 0. The two sides are unequal!

The problem in this example is that ∂
∂tf(x, t) is not a continuous function of (x, t). Indeed, the

denominator in the formula in (12.2) is (x2 + t2)3, which has a problem near (0, 0). Specifically,
while this derivative vanishes at (0, 0), if we let (x, t) → (0, 0) along the line x = t, then on this
line ∂

∂tf(x, t) has the value 1/(4x), which does not tend to 0 as (x, t)→ (0, 0).

Theorem 12.3. The equation

d

dt

∫ b

a
f(x, t) dx =

∫ b

a

∂

∂t
f(x, t) dx,

where a could be −∞ and b could be ∞, is valid at a real number t = t0 in the sense that both sides
exist and are equal, provided the following two conditions hold:

• f(x, t) and ∂
∂tf(x, t) are continuous functions of two variables when x is in the range of

integration and t is in some interval around t0,
• for t in some interval around t0 there are upper bounds |f(x, t)| ≤ A(x) and | ∂∂tf(x, t)| ≤
B(x), both bounds being independent of t, such that

∫ b
a A(x) dx and

∫ b
a B(x) dx exist.

Proof. See [10, pp. 337–339], which uses the definition of the derivative and the Mean Value The-

orem. If the interval of integration is infinite,
∫ b
a A(x) dx and

∫ b
a B(x) dx are improper. A second

proof [10, p. 340] obtains the theorem from the Fundamental Theorem of Calculus and swapping
the order of a double integral.5 �

In Table 2 we include choices for A(x) and B(x) for the functions we have treated. Since the
calculation of a derivative at a point only depends on an interval around the point, we have replaced
a t-range such as t > 0 with t ≥ c > 0 in some cases to obtain choices for A(x) and B(x).

Section f(x, t) x range t range t we want A(x) B(x)

2 xne−tx [0,∞) t ≥ c > 0 1 xne−cx xn+1e−cx

3 e−tx
sinx

x
(0,∞) t ≥ c > 0 0 e−cx e−cx

4 1
1+x2

e−t
2(1+x2)/2 [0,∞) t ≥ c > 0 all t ≥ 0 1

1+x2
1√
e
e−c

2x2/2

5 xne−tx
2

R t ≥ c > 0 1 xne−cx
2

xn+2e−cx
2

6 cos(tx)e−x
2/2 [0,∞) R all t e−x

2/2 |x|e−x2/2
7 xt−1e−x (0,∞) 0 < t ≤ c 1/2, 1, 3/2, 2 xc−1e−x xc−1| log x|e−x

8
xt − 1

log x
(0, 1] 0 < t < c 1 1−xc

log x 1

9
1

xt log x
[2,∞) t ≥ c > 1 t > 1 1

x2 log x
1
xc

11 xkh(k+1)(tx) [0, 1] |t| < c 0 max
|y|≤c
|h(k+1)(y)| max

|y|≤c
|h(k+2)(y)|

Table 2. Summary

We did not put the function from Section 10 in the table since it would make the width too long
and it depends on two parameters. Putting the parameter into the coefficient of cos2 x in Section 10,
we can take f(x, t) = 1/(t2 cos2 x+b2 sin2 x)n for x ∈ [0, π/2], 0 < c ≤ t ≤ c′ (that is, keep t bounded
away from 0 and ∞), A(x) = 1/(c2 cos2 x+ b2 sin2 x)n and B(x) = 2c′n/(c2 cos2 x+ b2 sin2 x)n+1.

5This second proof is written with b =∞, but the argument can be adapted to finite b.
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Corollary 12.4. If a(t) and b(t) are both differentiable on an open interval (c1, c2), then

d

dt

∫ b(t)

a(t)
f(x, t) dx =

∫ b(t)

a(t)

∂

∂t
f(x, t) dx+ f(b(t), t)b′(t)− f(a(t), t)a′(t)

for (x, t) ∈ [α, β]× (c1, c2), where α < β and the following conditions are satisfied:

• f(x, t) and ∂
∂tf(x, t) are continuous on [α, β]× (c1, c2),

• for all t ∈ (c1, c2), a(t) ∈ [α, β] and b(t) ∈ [α, β],
• for (x, t) ∈ [α, β] × (c1, c2), there are upper bounds |f(x, t)| ≤ A(x) and | ∂∂tf(x, t)| ≤ B(x)

such that
∫ β
α A(x) dx and

∫ β
α B(x) dx exist.

Proof. This is a consequence of Theorem 12.3 and the chain rule for multivariable functions. Set a
function of three variables

I(t, a, b) =

∫ b

a
f(x, t) dx

for (t, a, b) ∈ (c1, c2)× [α, β]× [α, β]. (Here a and b are not functions of t, but variables.) Then

(12.3)
∂I

∂t
(t, a, b) =

∫ b

a

∂

∂t
f(x, t) dx,

∂I

∂a
(t, a, b) = −f(a, t),

∂I

∂b
(t, a, b) = f(b, t),

where the first formula follows from Theorem 12.3 (its hypotheses are satisfied for each a and
b in [α, β]) and the second and third formulas are the Fundamental Theorem of Calculus. For
differentiable functions a(t) and b(t) with values in [α, β] for c1 < t < c2, by the chain rule

d

dt

∫ b(t)

a(t)
f(x, t) dx =

d

dt
I(t, a(t), b(t))

=
∂I

∂t
(t, a(t), b(t))

dt

dt
+
∂I

∂a
(t, a(t), b(t))

da

dt
+
∂I

∂b
(t, a(t), b(t))

db

dt

=

∫ b(t)

a(t)

∂f

∂t
(x, t) dx− f(a(t), t)a′(t) + f(b(t), t)b′(t) by (12.3).

�

A version of differentiation under the integral sign for t a complex variable is in [11, pp. 392–393].

Example 12.5. For a parametric integral
∫ t
a f(x, t) dx, where a is fixed, Corollary 12.4 tells us

that

(12.4)
d

dt

∫ t

a
f(x, t) dx =

∫ t

a

∂

∂t
f(x, t) dx+ f(t, t)

for (x, t) ∈ [α, β]× (c1, c2) provided that (i) f and ∂f/∂t are continuous for (x, t) ∈ [α, β]× (c1, c2),
(ii) α ≤ a ≤ β and (c1, c2) ⊂ [α, β], and (iii) there are bounds |f(x, t)| ≤ A(x) and | ∂∂tf(x, t)| ≤ B(x)

for (x, t) ∈ [α, β]× (c1, c2) such that the integrals
∫ β
α A(x) dx and

∫ β
α B(x) dx both exist.

We want to apply this to the integral

F (t) =

∫ t

0

log(1 + tx)

1 + x2
dx

for t ≥ 0. Obviously F (0) = 0. Here f(x, t) = log(1 + tx)/(1 + x2) and ∂
∂tf(x, t) = x

(1+tx)(1+x2)
. To

include t = 0 in the setting of Corollary 12.4, the open t-interval should include 0. Therefore we’re
going to consider F (t) for small negative t too.
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Use (x, t) ∈ [−δ, 1/(2ε)] × (−ε, 1/(2δ)) for small ε and δ (between 0 and 1/2). In the notation
of Corollary 12.4, α = −δ, β = 1/(2ε), c1 = −ε, and c2 = 1/(2δ). To have (c1, c2) ⊂ [α, β] is
equivalent to requiring ε < δ (e.g., ε = δ/2). We chose the bounds on x and t to keep 1 + xt
away from 0: −1/2 < xt < 1/(4εδ), so 1/2 < 1 + xt < 1 + 1/(4εδ).6 That makes | log(1 + xt)|
bounded above and 1 + tx bounded below, so |f | and |∂f/∂t| are both bounded above by constants
(depending on ε and δ), so (12.4) is justified with A(x) and B(x) being constant functions for
x ∈ [α, β]. Thus when 0 < ε < δ < 1 and −ε < t < 1/(2δ),

F ′(t) =

∫ t

0

x

(1 + tx)(1 + x2)
dx+

log(1 + t2)

1 + t2

=

∫ t

0

1

1 + t2

(
−t

1 + tx
+

t

1 + x2
+

x

1 + x2

)
dx+

log(1 + t2)

1 + t2
.

After antidifferentiating the three terms in the integral with respect to x,

F ′(t) =

(
−1

1 + t2
log(1 + tx) +

t

1 + t2
arctan(x) +

log(1 + x2)

2(1 + t2)

)∣∣∣∣t
0

+
log(1 + t2)

1 + t2

=
− log(1 + t2)

1 + t2
+
t arctan(t)

1 + t2
+

log(1 + t2)

2(1 + t2)
+

log(1 + t2)

1 + t2

=
t arctan(t)

1 + t2
+

log(1 + t2)

2(1 + t2)
.(12.5)

Letting δ → 0+ shows (12.5) holds for all t ≥ 0. Since F (0) = 0, by the Fundamental Theorem of
Calculus

F (t) =

∫ t

0
F ′(y) dy =

∫ t

0

(
y arctan(y)

1 + y2
+

log(1 + y2)

2(1 + y2)

)
dy.

Using integration by parts on the first integrand with u = arctan(y) and dv = y
1+y2

dy,

F (t) = uv

∣∣∣∣t
0

−
∫ t

0
v du+

∫ t

0

log(1 + y2)

2(1 + y2)
dy

= arctan(y)
log(1 + y2)

2

∣∣∣∣t
0

−
∫ t

0

log(1 + y2)

2(1 + y2)
dy +

∫ t

0

log(1 + y2)

2(1 + y2)
dy

=
1

2
arctan(t) log(1 + t2),

so

(12.6)

∫ t

0

log(1 + tx)

1 + x2
dx =

1

2
arctan(t) log(1 + t2).

for t ≥ 0. Both sides are odd functions of t, so (12.6) holds for all t. Setting t = 1,

(12.7)

∫ 1

0

log(1 + x)

1 + x2
dx =

1

2
arctan(1) log 2 =

π log 2

8
.

6Since −δ ≤ x ≤ 1/(2ε) and −ε < t < 1/(2δ), xt < max(εδ, 1/(4εδ)), and the maximum is 1/(4εδ) when ε, δ < 1/2.
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13. The Fundamental Theorem of Algebra

By differentiating under the integral sign we will prove the fundamental theorem of algebra: each
nonconstant polynomial p(z) with coefficients in C has a root in C. The proof is by Schep [13].

Arguing by contradiction, assume p(z) 6= 0 for all z ∈ C. For r ≥ 0, consider the following
integral around a circle of radius r centered at the origin:

I(r) =

∫ 2π

0

dθ

p(reiθ)
.

This integral makes sense since the denominator is never 0, so 1/p(z) is continuous on C. Let

f(θ, r) = 1/p(reiθ), so I(r) =
∫ 2π
0 f(θ, r) dθ.

We will prove three properties of I(r):

(1) Theorem 12.3 can be applied to I(r) for r > 0,
(2) I(r)→ 0 as r →∞,
(3) I(r)→ I(0) as r → 0+ (continuity at r = 0).

Taking these for granted, let’s see how a contradiction occurs. For r > 0,

I ′(r) =

∫ 2π

0

∂

∂r
f(θ, r) dθ =

∫ 2π

0

−p′(reiθ)eiθ

p(reiθ)2
dθ.

Since
∂

∂θ
f(θ, r) =

−p′(reiθ)
p(reiθ)2

ireiθ = ir
∂

∂r
f(θ, r),

for r > 0 we have

I ′(r) =

∫ 2π

0

∂

∂r
f(θ, r) dθ =

∫ 2π

0

1

ir

∂

∂θ
f(θ, r) dθ =

1

ir
f(θ, r)

∣∣∣∣θ=2π

θ=0

=
1

ir

(
1

p(r)
− 1

p(r)

)
= 0.

Thus I(r) is constant for r > 0. Since I(r)→ 0 as r →∞, the constant is zero: I(r) = 0 for r > 0.
Since I(r)→ I(0) as r → 0+ we get I(0) = 0, which is false since I(0) = 2π/p(0) 6= 0.

It remains to prove the three properties of I(r).
(1) Theorem 12.3 can be applied to I(r) for r > 0:

Since p(z) and p′(z) are both continuous on C, the functions f(θ, r) and (∂/∂r)f(θ, r) are
continuous for θ ∈ [0, 2π] and all r ≥ 0. This confirms the first condition in Theorem 12.3.

For each r0 > 0 the set {(θ, r) : θ ∈ [0, 2π], r ∈ [0, 2r0] is closed and bounded, so the functions
f(θ, r) and (∂/∂r)f(θ, r) are both bounded above by a constant (independent of r and θ) on this
set. The range of integration [0, 2π] is finite, so the second condition in Theorem 12.3 is satisfied
using constants for A(θ) and B(θ).

(2) I(r)→ 0 as r →∞: Let p(z) have leading term czd, with d = deg p(z) ≥ 1. As r → ∞,

|p(reiθ)|/|reiθ|d → |c| > 0, so for all large r we have |p(reiθ)| ≥ |c|rd/2. For such large r,

|I(r)| ≤
∫ 2π

0

dθ

|p(reiθ)|
≤
∫ 2π

0

dθ

|c|rd/2
=

4π

|c|rd
,

and the upper bound tends to 0 as r →∞ since d > 0, so I(r)→ 0 as r →∞.
(3) I(r)→ I(0) as r → 0+: For r > 0,

(13.1) I(r)− I(0) =

∫ 2π

0

(
1

p(reiθ)
− 1

p(0)

)
dθ =⇒ |I(r)− I(0)| ≤

∫ 2π

0

∣∣∣∣ 1

p(reiθ)
− 1

p(0)

∣∣∣∣ dθ.

Since 1/p(z) is continuous at 0, for ε > 0 there is δ > 0 such that |z| < δ ⇒ |1/p(z)− 1/p(0)| < ε.

Therefore if 0 < r < δ, (13.1) implies |I(r)− I(0)| ≤
∫ 2π
0 εdθ = 2πε. Let ε→ 0+ and we’re done.
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14. An example needing a change of variables

Our next example is taken from [1, pp. 78, 84-86]. For all t ∈ R, we will show by differentiation
under the integral sign that

(14.1)

∫
R

cos(tx)

1 + x2
dx = πe−|t|.

For example,∫
R

cosx

1 + x2
dx =

π

e
,

∫
R

cos(2x)

1 + x2
dx =

π

e2
,

∫
R

cosx

4 + x2
dx =

1

2

∫
R

cos(2x)

1 + x2
dx =

π

2e2
.

In (14.1), set f(x, t) = cos(tx)/(1+x2). Since f(x, t) is continuous and |f(x, t)| ≤ 1/(1+x2), the

integral in (14.1) exists for all t. A graph of πe−|t| is in Figure 1. Note πe−|t| is not differentiable
at 0, so we shouldn’t expect to prove (14.1) at t = 0 by differentiation under the integral sign.

Figure 1. Graph of y = πe−|t|.

We’ll verify (14.1) at t = 0 using elementary calculus:

(14.2)

∫
R

dx

1 + x2
= arctanx

∣∣∣∣∞
−∞

=
π

2
− −π

2
= π.

Since the integral in (14.1) is an even function of t, to compute the integral for t 6= 0 it suffices to
treat the case t > 0.7

Set

F (t) =

∫
R

cos(tx)

1 + x2
dx.

If we try to compute F ′(t) for t > 0 using differentiation under the integral sign, we get

(14.3) F ′(t)
?
=

∫
R

∂

∂t

(
cos(tx)

1 + x2

)
dx = −

∫
R

x sin(tx)

1 + x2
dx.

No upper bound | ∂∂tf(x, t)| ≤ B(x) for t > 0 in Theorem 12.3 justifies differentiating F (t) under
the integral sign or that even implies F (t) is differentiable for t > 0. Indeed, for x near a large
odd multiple of (π/2)/t, the integrand in (14.3) is approximately x/(1 + x2) ≈ 1/x, which is not
integrable for large x. That does not mean (14.3) is false, but if we did not see (14.1) already then
we might think F (t) is differentiable for all t even though F (t) is not differentiable at t = 0.

7If you know complex analysis, you can get (14.1) for t > 0 from the residue theorem, viewing cos(tx) as the real

part of eitx. If you know Fourier analysis, you can interpret (14.1) as saying 1/(1 + x2) has Fourier transform πe−|t|,

where a function f(x) has Fourier transform f̂(t) =
∫
R
f(x)e−ixt dx.
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Even though we raised suspicions about (14.3), let’s use it without focusing on rigor for now:

F ′(t) = −
∫
R

x sin(tx)

1 + x2
dx(14.4)

= −
∫
R

x2 sin(tx)

x(1 + x2)
dx

= −
∫
R

(1 + x2 − 1) sin(tx)

x(1 + x2)
dx

= −
∫
R

sin(tx)

x
dx+

∫
R

sin(tx)

x(1 + x2)
dx.

Making the change of variables u = tx in the first integral, since t > 0 we get

F ′(t) = −
∫
R

sin(u)

u
du+

∫
R

sin(tx)

x(1 + x2)
dx.(14.5)

The first integral is a constant (it’s π by (A.2), but that’s irrelevant), and it goes away if we
differentiate both sides with respect to t and once more use differentiation under the integral sign
without justifying that:

F ′′(t) =

∫
R

x cos(tx)

x(1 + x2)
dx =

∫
R

cos(tx)

1 + x2
dx = F (t).

Each solution of F ′′(t) = F (t) on R has the form aet + be−t. Since F (0) = π by (14.2), a+ b = π.
(This hides errors: the ODE for F (t) was never shown at t = 0, and (14.4) and (14.5) are inconsistent
about the value of F ′(0), with the first saying F ′(0) = 0 and the second saying F ′(0) 6= 0.) Thus

(14.6) F (t) :=

∫
R

cos(tx)

1 + x2
dx = aet + (π − a)e−t = a(et − e−t) + πe−t.

To determine a, let t → ∞ in (14.6). The integral there tends to 0 by the Riemann–Lebesgue
lemma from Fourier analysis, but we can also explain it directly with integration by parts: letting
u = 1/(1 + x2) and dv = cos(tx) dx, so du = −2x/(1 + x2)2 dx and v = sin(tx)/t,

F (t) =

∫
R

cos(tx)

1 + x2
dx =

sin(tx)

t(1 + x2)

∣∣∣∣x=∞
x=−∞

+
2

t

∫
R

x sin(tx)

(1 + x2)2
dx =

2

t

∫
R

x sin(tx)

(1 + x2)2
dx.

Since | sin(tx)| ≤ 1, |F (t)| ≤ C/t for a constant C that’s independent of t, so F (t)→ 0 as t→∞.

Thus a(et+e−t)+πe−t → 0 as t→∞. This implies a = 0, so F (t) = πe−t for t > 0, as in (14.1).8

That derivation of (14.1) when t > 0 had several invalid steps. To derive it rigorously, we make
a change of variables. Fixing t > 0, set y = tx, so dy = t dx and

(14.7) F (t) =

∫
R

cos y

1 + y2/t2
dy

t
=

∫
R

t cos y

t2 + y2
dy.

This new second integral for F (t) when t > 0 will be accessible to justifying differentiation under
the integral sign. (Although the new integral in (14.7) is an odd function of t while F (t) is an even
function of t, there is no contradiction since the new integral for F (t) was derived only for t > 0.)

Fix c′ > c > 0. For t ∈ (c, c′), the integrand in∫
R

t cos y

t2 + y2
dy

8Some webpages and online videos compute integrals like F (t) by this method with mistakes.
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is bounded above in absolute value by t/(t2 + y2) ≤ c′/(c2 + y2), which is independent of t and
integrable over R. The t-partial derivative of the integrand is (y2 − t2)(cos y)/(t2 + y2)2, which
is bounded above in absolute value by (y2 + t2)/(t2 + y2)2 = 1/(t2 + y2) ≤ 1/(c2 + y2), which is
independent of t and integrable over R. This justifies the use of differentiation under the integral
sign by Theorem 12.3: for c < t < c′, and hence for all t > 0 since we never specified c or c′,

F ′(t) =

∫
R

∂

∂t

(
t cos y

t2 + y2

)
dy =

∫
R

y2 − t2

(t2 + y2)2
cos y dy.

Next we’ll compute F ′′(t) by differentiation under the integral sign on F ′(t). For 0 < c < t < c′,
check the t-partial derivative of the integrand is bounded above in absolute value by a function of
y that is independent of t and is integrable over R (exercise), so by Theorem 12.3, for t > 0

F ′′(t) =

∫
R

∂2

∂t2

(
t cos y

t2 + y2

)
dy =

∫
R

∂2

∂t2

(
t

t2 + y2

)
cos y dy.

Check that (∂2/∂t2)(t/(t2 + y2)) = −(∂2/∂y2)(t/(t2 + y2)), so

F ′′(t) = −
∫
R

∂2

∂y2

(
t

t2 + y2

)
cos y dy.

Using integration by parts on this formula for F ′′(t) twice (starting with u = − cos y and dv =
(∂2/∂y2)(t/(t2 + y2)), we obtain for t > 0

F ′′(t) = −
∫
R

∂

∂y

(
t

t2 + y2

)
sin y dy =

∫
R

(
t

t2 + y2

)
cos y dy = F (t).

The equation F ′′(t) = F (t) for t > 0 is what we found by the nonrigorous method earlier.
How can we show F (t) = aet + be−t for t > 0 (not t ∈ R)? One way is by a strong enough

existence/uniqueness theorem for linear ODEs. To see another way, set G(t) = F (t) + F ′(t) for
t > 0, so

G′(t) = F ′(t) + F ′′(t) = F ′(t) + F (t) = G(t).

Then (G(t)/et)′ = (etG′(t)−G(t)et)/e2t = 0, so G(t)/et = c for t > 0, where c is a constant. That
makes F (t) + F ′(t) = cet, so F ′(t) = −F (t) + cet. Set H(t) = F (t)− (c/2)et when t > 0. Then

H ′(t) = F ′(t)− c

2
et = −

(
F (t)− c

2
et
)′

= −H(t),

so (H(t)/e−t)′ = (e−tH ′(t)+H(t)e−t)/e−2t = 0. Thus H(t)/e−t = b for t > 0, where b is a constant,
so

F (t) =
c

2
et +H(t) =

c

2
et + be−t

for t > 0. Setting a = c/2, there are constants a and b such that

(14.8) F (t) :=

∫
R

cos(tx)

1 + x2
dx = aet + be−t

for t > 0. To determine a and b, we look at (14.8) as t→ 0+ and as t→∞.
As t → 0+, the integrand in (14.8) tends pointwise to 1/(1 + x2), so we expect F (t) to tend to

F (0) =
∫
R dx/(1 + x2) = π (see (14.2)) as t→ 0+. To justify this, we will bound

|F (t)− F (0)| =
∣∣∣∣∫

R

cos(tx)

1 + x2
dx−

∫
R

dx

1 + x2

∣∣∣∣ ≤ ∫
R

| cos(tx)− 1|
1 + x2

dx.
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For N > 0, break up the integral over R into the regions |x| ≤ N and |x| ≥ N . We have∫
R

| cos(tx)− 1|
1 + x2

dx ≤
∫
|x|≤N

| cos(tx)− 1|
1 + x2

dx+

∫
|x|≥N

2

1 + x2
dx

≤
∫
|x|≤N

t|x|
1 + x2

dx+

∫
|x|≥N

2

1 + x2
dx

= t

∫
|x|≤N

|x|
1 + x2

dx+ 4
(π

2
− arctanN

)
.

We can make π/2−arctanN as small as we wish by taking N sufficiently large, and for such an N ,
we can make the first term as small as we wish by taking t sufficiently small. Thus F (t) → F (0)
as t→ 0+. Returning to (14.8), letting t→ 0+ we obtain π = a+ b, so for all t > 0,

(14.9)

∫
R

cos(tx)

1 + x2
dx = aet + (π − a)e−t = a(et − e−t) + πe−t.

Letting t → ∞ in (14.9), the left side tends to 0 by the estimate |F (t)| ≤ C/t derived (correctly)
in the paragraph right after (14.6), so a = 0. Thus F (t) = πe−t for t > 0.

Remark 14.1. Now that we know F (t) = πe−t for t > 0, so F ′(t) = −πe−t, the formal differenti-
ation under the integral sign that led to (14.3) suggests that∫

R

x sin(tx)

1 + x2
dx = πe−t for t > 0.

This integral is subtle: it is not absolutely convergent. The formula above can be justified by the

residue theorem in complex analysis (defining
∫
R as limR→∞

∫ R
−R). That formula is not true at

t = 0: the integral at t = 0 is 0, but πe−t at t = 0 is π. The integral is discontinuous at t = 0.9

15. Fourier transform of a Gaussian

For a continuous function f : R→ C that is rapidly decreasing at ±∞, its Fourier transform is
the function Ff : R→ C defined by

(15.1) (Ff)(y) =

∫ ∞
−∞

f(x)e−ixy dx =

∫ ∞
−∞

f(x)(cos(xy)− i sin(xy)) dx.

For example, (Ff)(0) =
∫∞
−∞ f(x) dx. This integral transform shows up all over the place in pure

and applied analysis. We will use differentiation under the integral sign to compute the Fourier

transform of Gaussian functions e−ax
2/2 where a > 0, first for a = 1 and then for all a > 0.

When f(x) = e−x
2/2, differentiate both sides of the equation

(Ff)(y) =

∫ ∞
−∞

e−x
2/2e−ixy dx

with respect to y, using differentiation under the integral sign for the right side:

(15.2) (Ff)′(y) =

∫ ∞
−∞
−ixe−x2/2e−ixy dx = −i

∫ ∞
−∞

xe−x
2/2e−ixy dx.

Differentiation under the integral sign here can be justified by applying Theorem 12.3 to the real

and imaginary parts of (Ff)(y): let f(x, y) be e−x
2/2 cos(xy) or −e−x2/2 sin(xy), A(x) = e−x

2/2,

and B(x) = |x|e−x2/2 since | cos(xy)| ≤ 1 and | sin(xy)| ≤ 1 for all real numbers x and y.

9Since F (t) = πe−|t| for all t, in the sense of distributions F ′(t) = −πsgn(t)e−|t| and F ′′(t) = F (t)− 2πδ(t).
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Apply integration by parts (for complex-valued functions) to the last integral in (15.2) using

u = e−ixy and dv = xe−x
2/2 dx, with du = −iye−ixy dx and v = −e−x2/2:∫ ∞

−∞
xe−x

2/2e−ixy dx =

∫ ∞
−∞

udv

= uv

∣∣∣∣x=∞
x=−∞

−
∫ ∞
−∞

v du

= −e
−ixy

ex2/2
v

∣∣∣∣x=∞
x=−∞

− iy
∫ ∞
−∞

e−x
2/2e−ixy dx

= −iy(Ff)(y).

Thus (15.2) becomes

(Ff)′(y) = −i(−i)y(Ff)(y) = −y(Ff)(y).

The solutions to the differential equation g′(y) = −yg(y) are g(y) = Ce−y
2/2 for constant C, so

f(x) = e−x
2/2 =⇒ (Ff)(y) = Ce−y

2/2

for some C. To determine C, set y = 0 on both sides:
∫∞
−∞ e

−x2/2 dx = C. That integral is
√

2π by

Section 4 (another use of differentiation under the integral sign), so

(15.3) f(x) = e−x
2/2 =⇒ (Ff)(y) =

√
2πe−y

2/2.

For a > 0, we can calculate the Fourier transform of e−ax
2/2 by a change of variables and (15.3):∫ ∞

−∞
e−ax

2/2e−ixy dx =

∫ ∞
−∞

e−t
2/2e−ity/

√
a dt√

a
where t =

√
ax

=
1√
a

(Ff)

(
y√
a

)
=

1√
a

√
2πe−(y/

√
a)2/2 by (15.3)

=

√
2π

a
e−y

2/(2a).

This calculation shows that, up to a scaling factor, a highly peaked Gaussian (e−ax
2/2 for large

a) has a Fourier transform that is spread out (e−y
2/(2a) for small 1/a) and a spread out Gaussian

(e−ax
2/2 for small a) has a Fourier transform that is highly peaked (e−y

2/(2a) for large 1/a). The
Fourier transform’s effect of exchanging highly peaked and spread out Gaussians is a mathematical
expression of the Heisenberg Uncertainty Principle from quantum mechanics.

16. Exercises

1. For t > 0, show by calculus that

∫ ∞
0

dx

x2 + t2
=
π

2t
and then prove by differentiation under

the integral sign that

∫ ∞
0

dx

(x2 + t2)2
=

π

4t3
,

∫ ∞
0

dx

(x2 + t2)3
=

3π

16t5
, and

∫ ∞
0

dx

(x2 + t2)n
=(

2n− 2

n− 1

)
π

(2t)2n−1
for all n ≥ 1.
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2. Starting from the formula

∫
R

cos(tx)

1 + x2
dx =

π

et
in (14.1) for t > 0, make a change of variables

and then differentiate under the integral sign to prove

∫
R

cosx

(x2 + t2)2
dx =

π(t+ 1)

2t3et
if t > 0.

3. From the formula

∫ ∞
0

e−tx
sinx

x
dx =

π

2
− arctan t for t > 0, in Section 3, use a change of

variables to obtain a formula for

∫ ∞
0

e−ax
sin(bx)

x
dx when a and b are positive. Then use dif-

ferentiation under the integral sign with respect to b to find a formula for

∫ ∞
0

e−ax cos(bx) dx

when a and b are positive. (Differentiation under the integral sign with respect to a will

produce a formula for

∫ ∞
0

e−ax sin(bx) dx, but that would be circular in our approach since

we used that integral in our derivation of the formula for

∫ ∞
0

e−tx
sinx

x
dx in Section 3.)

4. By the formula

∫ ∞
0

e−tx
sinx

x
dx =

π

2
− arctan t for t > 0, let x = ay for a > 0 to see∫ ∞

0
e−tay

sin(ay)

y
dy =

π

2
− arctan t,

so the integral on the left is independent of a and thus has a-derivative 0. Differentiation
under the integral sign, with respect to a, implies∫ ∞

0
e−tay(cos(ay)− t sin(ay)) dy = 0.

Verify that this application of differentiation under the integral sign is valid when a > 0
and t > 0. What happens if t = 0?

5. Show

∫ ∞
0

sin(tx)

x(x2 + 1)
dx =

π

2
(1−e−t) for t > 0 by justifying differentiation under the integral

sign and using (14.1).

6. Prove

∫ ∞
0

e−tx
cosx− 1

x
dx = log

(
t√

1 + t2

)
for t > 0. What happens to the integral as

t→ 0+?

7. Prove

∫ ∞
0

log(1 + t2x2)

1 + x2
dx = π log(1 + t) for t > 0 (it is obvious for t = 0). Then deduce,

for a > 0 and b > 0, ∫ ∞
0

log(1 + a2x2)

b2 + x2
dx =

π log(1 + ab)

b
.

8. Prove

∫ ∞
0

(e−x − e−tx)
dx

x
= log t for t > 0 by justifying differentiation under the integral

sign. This is (8.2) for t > −1. Deduce that

∫ ∞
0

(e−ax − e−bx)
dx

x
= log(b/a) for a > 0 and

b > 0.
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9. Prove

∫ ∞
0

e−
1
2
x2− t2

2x2 dx =

√
π

2
e−|t| for all t by justifying differentiation under the integral

sign for t > 0.10 (As in Section 14, the integral is not differentiable at t = 0.) Deduce that∫ ∞
0

e−ax
2−b/x2 dx =

√
π

2
√
a
e−2
√
ab for a > 0 and b > 0. (Hint: Let F (t) be the integral. Use

differentiation under the integral sign and a change of variables to show F ′(t) = −F (t) if
t > 0.)

10. In calculus textbooks, formulas for the indefinite integrals∫
xn sinx dx and

∫
xn cosx dx

are derived recursively using integration by parts. Find formulas for these integrals when
n = 1, 2, 3, 4 using differentiation under the integral sign starting with the formulas∫

cos(tx) dx =
sin(tx)

t
,

∫
sin(tx) dx = −cos(tx)

t

for t > 0.

11. Here is another approach to (12.7). For t ∈ R let F (t) =

∫ 1

0

log(1 + tx)

1 + x2
dx (the upper

bound of integration is 1, not t). Compute F ′(t) explicitly using a partial fraction decom-

position and then show F (1) =
∫ 1
0 F

′(t) dt = −F (1) + (π/4) log 2 to solve for F (1).

12. If you are familiar with integration of complex-valued functions, show for y ∈ R that∫ ∞
−∞

e−(x+iy)
2

dx =
√

2π.

In other words, show the integral on the left side is independent of y. (Hint: Use differen-
tiation under the integral sign to compute the y-derivative of the left side.)

Appendix A. Justifying passage to the limit in a sine integral

In Section 3 we derived the equation

(A.1)

∫ ∞
0

e−tx
sinx

x
dx =

π

2
− arctan t for t > 0,

which by naive passage to the limit as t→ 0+ suggests that

(A.2)

∫ ∞
0

sinx

x
dx =

π

2
.

To prove (A.2) is correct, we will show
∫∞
0

sinx
x dx exists and then show the difference

(A.3)

∫ ∞
0

sinx

x
dx−

∫ ∞
0

e−tx
sinx

x
dx =

∫ ∞
0

(1− e−tx)
sinx

x
dx

tends to 0 as t→ 0+. The key in both cases is alternating series.

10This example was brought to my attention by Gregory Markowsky. The earliest reference for it that I know is
a calculus textbook [2, p. 106–107] from 1888.
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On the interval [kπ, (k + 1)π], where k is an integer, we can write sinx = (−1)k| sinx|, so

convergence of
∫∞
0

sinx
x dx = limb→∞

∫ b
0

sinx
x dx is equivalent to convergence of the series

∑
k≥0

∫ (k+1)π

kπ

sinx

x
dx =

∑
k≥0

(−1)k
∫ (k+1)π

kπ

| sinx|
x

dx.

This is an alternating series in which the terms ak =
∫ (k+1)π
kπ

| sinx|
x dx are monotonically decreasing:

ak+1 =

∫ (k+2)π

(k+1)π

| sinx|
x

dx =

∫ (k+1)π

kπ

| sin(x+ π)|
x+ π

dx =

∫ (k+1)π

kπ

| sinx|
x+ π

dx < ak.

On [kπ, (k + 1)π] we have 0 ≤ 1/|x| ≤ 1/(kπ) and the interval has length π, so ak ≤ π/(kπ) = 1/k
for k ≥ 1. Thus ak → 0, so

∫∞
0

sinx
x dx =

∑
k≥0(−1)kak converges.

To show the right side of (A.3) tends to 0 as t→ 0+, we write it as an alternating series. Breaking
up the interval of integration [0,∞) into a union of intervals [kπ, (k + 1)π] for k ≥ 0,

(A.4)

∫ ∞
0

(1− e−tx)
sinx

x
dx =

∑
k≥0

(−1)kIk(t), where Ik(t) =

∫ (k+1)π

kπ
(1− e−tx)

| sinx|
x

dx.

Since 1 − e−tx > 0 for t > 0 and x > 0, the series
∑

k≥0(−1)kIk(t) is alternating. The upper

bound 1 − e−tx < 1 tells us Ik(t) ≤ 1/k for k ≥ 1 by the same reasoning we used on ak above, so
Ik(t)→ 0 as k →∞. To show the terms Ik(t) are monotonically decreasing with k, set this up as
the inequality

(A.5) Ik(t)− Ik+1(t) > 0 for t > 0.

Each Ik(t) is a function of t for all t, not just t > 0 (note Ik(t) only involves integration on a
bounded interval). The difference Ik(t)− Ik+1(t) vanishes when t = 0 (in fact both terms are then

0), and I ′k(t) =
∫ (k+1)π
kπ e−tx| sinx| dx for all t by differentiation under the integral sign, so (A.5)

would follow from the derivative inequality I ′k(t)− I ′k+1(t) > 0 for t > 0. By a change of variables
y = x− π in the integral for I ′k+1(t),

I ′k+1(t) =

∫ (k+1)π

kπ
e−t(y+π)| sin(y + π)|dy = e−tπ

∫ (k+1)π

kπ
e−ty| sin y|dy < I ′k(t).

This completes the proof that the series in (A.4) for t > 0 satisfies the alternating series test.
If we truncate the series

∑
k≥0(−1)kIk(t) after the Nth term, the magnitude of the error is no

greater than the absolute value of the next term:

∑
k≥0

(−1)kIk(t) =

N∑
k=0

(−1)kIk(t) + rN , where |rN | ≤ |IN+1(t)| ≤
1

N + 1
.

Since 0 ≤ 1− e−y ≤ y for y ≥ 0,∣∣∣∣∣
N∑
k=0

(−1)kIk(t)

∣∣∣∣∣ ≤
∫ (N+1)π

0
(1− e−tx)

| sinx|
x

dx =

∫ (N+1)π

0
t dx = t(N + 1)π.
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Thus ∣∣∣∣∫ ∞
0

(1− e−tx)
sinx

x
dx

∣∣∣∣ =

∣∣∣∣∣∣
∑
k≥0

(−1)kIk(t)

∣∣∣∣∣∣
≤

∣∣∣∣∣
N∑
k=0

(−1)kIk(t)

∣∣∣∣∣+ |rN |

≤ t(N + 1)π +
1

N + 1
.

For ε > 0 we can make the second term at most ε/2 by a suitable choice of N . Then the first term
is at most ε/2 for all small enough t (depending on N), and that shows (A.3) tends to 0 as t→ 0+.

Appendix B. An example from the book Feynman studied

The book Advanced Calculus, by Frederick Woods [16], is where Feynman learned differentiation
under the integral sign. The sections of the book discussing this method are 60, 61 (for bounded
intervals), and 63 (for unbounded intervals), and there are exercises at the end of the chapter on
pp. 159–163. Figure 2 below has an example from the book:

∫∞
0 e−αx(sinx)/x dx when α > 0,

which is our (3.1). Woods obtained the value π/2−arctan(α) and rewrote it as arctan(1/α), which
is valid when α > 0 (not when α < 0).

Figure 2. Page 154 in Woods’ Advanced Calculus.
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