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1. Introduction

In part I, we met the contraction mapping theorem and an application of it to solving
nonlinear differential equations. Here we will discuss some variations on the contraction
mapping theorem and give a second interesting application: the construction of fractals.
This will require the use of an abstract metric space, whose “points” are subsets of Euclidean
space.

2. Fractals

Fractals like the Cantor set, Sierpinski’s triangle, and the Koch curve are usually defined
by a recursive modification process starting with a specific figure (for instance, removing
middle-thirds starting from the interval [0, 1] in the case of the Cantor set). Following an
idea of Hutchinson [10], we will describe a different approach to constructing such fractals
using the contraction mapping theorem. Our metric space for the contraction will be the
set of all nonempty compact subsets of Rn. The “points” of the metric space are nonempty
compact subsets of Rn and the metric giving a distance between compact subsets of Rn

was defined by Hausdorff and is called the Hausdorff metric. Classical fractals arise as fixed
points of a contraction on this space of (nonempty) compact subsets of Rn. Much of the
technical development we need doesn’t require anything special about Euclidean space, so
we will work in a general metric space until we have everything in place to return to the
application to fractals in Rn (with n = 1 or 2).

Discussions with Monique Ethier were helpful in the preparation of this section.
Let (X, d) be a metric space. Set

H(X) = nonempty closed and bounded subsets of X.

When X is Euclidean space, H(X) is the set of nonempty compact subsets of X, but in
a general metric space the closed and bounded subsets might include some non-compact
subsets. We are going to turn H(X) into a metric space with the following key properties
(due to Blaschke): if X is complete then H(X) is complete, and if X is compact then H(X)
is compact.

To define a metric on H(X), we use the notion of an expansion of a subset. For a
nonempty subset A ⊂ X and r ≥ 0, set the r-expansion of A to be the points in X within
distance at most r of some point of A:

Er(A) =
⋃
a∈A

Br(a) = {x ∈ X : d(x, a) ≤ r for some a ∈ A}.

In particular, if A = {a} is a one-element set then the r-expansion Er({a}) is the closed
ball Br(a). For any A, E0(A) = A.
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Example 2.1. Take X = R2 with its usual metric. For a point P in R2, Er({P}) = Br(P )
is a closed ball centered at P . For a circle C in R2, Er(C) is an annulus of width 2r with C
as its middle circle when r is less than the radius of C. When r equals or exceeds the radius
of C, Er(C) is a closed ball. For a line segment L in R2, Er(L) is a (flat) cigar-shaped
region with L lying along its middle. If P is a point of R2 not on L then {P} ⊂ Er(L) as
long as r is at least as large as the shortest distance between P and a point of L, but for
the minimal choice of r we will not have L ⊂ Er({P}). Draw a picture! So the relations
{P} ⊂ Er(L) and L ⊂ Er({P}) are not the same in general.

We define the distance between two subsets of X, roughly speaking, to be the smallest r
such that each set is contained in the r-expansion of the other set. For a precise definition,
we use infimums in place of minimums and restrict attention to (nonempty) closed and
bounded subsets of X.

Definition 2.2. For A,B ∈ H(X), their Hausdorff distance is

dH(A,B) = inf{r ≥ 0 : A ⊂ Er(B) and B ⊂ Er(A)}.

Let’s check the definition makes sense. That is, for bounded subsets A and B of X we
want to show A ⊂ Er(B) and B ⊂ Er(A) for some r, so there really are r’s to be taking
infimums over. Since A and B are bounded, A ⊂ BR(x) and B ⊂ BR′(x

′) for some x and
x′ in X and R,R′ > 0. By the triangle inequality, for any a ∈ A and b ∈ B we have

d(a, b) ≤ d(a, x) + d(x, x′) + d(x′, b) ≤ R+ d(x, x′) +R′,

so A ⊂ Er(B) and B ⊂ Er(A) where r = R+ d(x, x′) +R′.
To get used to the notation, verify the following:

(2.1) dH(A,B) < r =⇒ for any a ∈ A there is some b ∈ B such that d(a, b) < r

and

(2.2) r < s =⇒ Er(A) ⊂ Es(A).

Theorem 2.3. The function dH is a metric on H(X).

Proof. Suppose dH(A,B) = 0. This means for any r > 0, A ⊂ Er(B) and B ⊂ Er(A). We
will show A ⊂ B and B ⊂ A, so A = B.

Fix a ∈ A. For any n ≥ 1, A ⊂ E1/n(B), so d(a, bn) ≤ 1/n for some bn ∈ B. Then as
n → ∞, bn → a in X. Since B is closed, this implies a ∈ B. As a was arbitrary in A, we
get A ⊂ B. The argument that B ⊂ A is similar.

That dH is symmetric is clear from its definition.
It remains to show the triangle inequality for dH. Pick nonempty closed and bounded

subsets A,B,C in X. We want to show

dH(A,B) ≤ dH(A,C) + dH(C,B).

Let r = dH(A,C) and s = dH(C,B). We will show for all ε > 0 that

(2.3) dH(A,B) ≤ r + s+ ε,

from which the triangle inequality dH(A,B) ≤ r + s follows.
To prove (2.3), pick a ∈ A. Since dH(A,C) < r + ε/2, by (2.1) there is some c ∈ C such

that d(a, c) < r + ε/2. Since dH(C,B) < s + ε/2, again by (2.1) there is some b ∈ B such
that d(c, b) < s+ ε/2. Therefore

d(a, b) ≤ d(a, c) + d(c, b) < r + s+ ε,
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so each point of A has distance less than r + s + ε from some point of B. This shows
A ⊂ Er+s+ε(B). Similar reasoning shows B ⊂ Es+r+ε(A) = Er+s+ε(A), so (2.3) holds. �

Remark 2.4. The function dH makes sense on bounded subsets of X, whether or not they
are closed. But if we allow bounded subsets which are not closed then we don’t get a metric:
any bounded subset A and its closure A satisfy dH(A,A) = 0.

Definition 2.5. The function dH is called the Hausdorff metric on H(X).

Example 2.6. If A = {a0} is a one-element subset of X then for any B ∈ H(X)

dH({a0}, B) = inf{r ≥ 0 : {a0} ⊂ Er(B) and B ⊂ Er({a0})}
= inf{r ≥ 0 : a0 ∈ Er(B) and B ⊂ Br(a0)}
= inf{r ≥ 0 : B ⊂ Br(a0)}
= inf{r ≥ 0 : d(a0, b) ≤ r for all b ∈ B}
= sup

b∈B
d(a0, b),

In particular, if B = {b0} is also a one-element set then dH({a0}, {b0}) = d(a0, b0).

Remark 2.7. In metric spaces, there is a useful notion of distance between a point x and
a subset S, defined by

dist(x, S) = inf
y∈S

d(x, y).

The concept makes sense for all (nonempty) subsets S, bounded or not. For instance, in Rn

this distance between a point and a hyperplane is the length of the line segment obtained
by dropping a perpendicular from the point to the hyperplane. This has a vivid geometric
meaning in Euclidean space. However, this is not a special case of the Hausdorff distance:
usually when S is closed and bounded, dist(x, S) 6= dH({x}, S). Indeed, from Example 2.6
we have dH({x}, S) = supy∈S d(x, y) rather than infy∈S d(x, y). Nevertheless, there is a
connection between this notion of distance between a point and a subset and the Hausdorff
metric, as we will see at the end of this section (Lemma 2.27).

Since one-point sets in X are closed and bounded, we can embed X into H(X) by asso-
ciating to x the set {x} ∈ H(X). How does X look as a subset of H(X)?

Theorem 2.8. The function X → H(X) given by x 7→ {x} is an isometry and the image
is closed.

Proof. The calculation in Example 2.6, with A and B both one-element sets, shows the map
is an isometry. It is clearly one-to-one (in fact, any isometry is one-to-one).

Now we show the image is closed. Let {xn} be a sequence in X and suppose in H(X)
that {xn} → L. We want to show L has only one element. (As a member of H(X), we at
least know L is nonempty.) Suppose L has two elements, y and y′. Pick ε < d(y, y′)/2.
Since dH({xn}, L)→ 0, there is some n such that L ⊂ Eε({xn}) = Bε(xn), so

d(y, y′) ≤ d(y, xn) + d(xn, y
′) ≤ 2ε < d(y, y′),

a contradiction. �

Theorem 2.9. The metric space (X, d) is complete if and only if (H(X), dH) is complete.
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Proof. By Theorem 2.8, X is isometric to a closed subset of H(X), so if the latter is complete
then so is the former.

Now we will prove that if X is complete then so is H(X). Our argument is taken from
[1, pp. 35–37], with some modifications. Let {An} be a Cauchy sequence in H(X). Set A
to be the limits of sequences {an1 , an2 , an3 , . . . } with n1 < n2 < n3 < · · · and ani ∈ Ani for
all i:

A = {a ∈ X : a = lim
i→∞

ani , ani ∈ Ani , n1 < n2 < n3 < · · · }.

We will show in succession that

(1) A 6= ∅,
(2) A is a closed subset of X,
(3) A is a bounded subset of X (so A ∈ H(X)),
(4) dH(An, A)→ 0 as n→∞.

1) Since {An} is Cauchy in H(X), for every i ≥ 1 there is an integer ni ≥ 1 such that
dH(Am, An) ≤ 1/2i for m,n ≥ ni. Without loss of generality n1 < n2 < n3 < · · · . Now
pick ani ∈ Ani as follows. Choose an1 ∈ An1 arbitrarily. Once we have ani for some i,
then from dH(Ani , Ani+1) < 1/2i there is an ani+1 ∈ Ani+1 such that d(ani , ani+1) < 1/2i by
(2.1). Therefore {ani} is a sequence getting consecutively close at a geometric rate, so it is
a Cauchy sequence in X. It has a limit in X, which is an element of A, so A 6= ∅.

2) Let {xn} ⊂ A with xn → x ∈ X. We want to show x ∈ A. For each i ≥ 1, pick ni
so that d(xni , x) < 1/i. From the definition of A, infinitely many of the An’s contain an
element with distance less than 1/i from xni . Therefore we can choose m1 < m2 < m3 < · · ·
such that ami ∈ Ami and

d(ami , xni) <
1

i
.

Then d(ami,ni , x) < 2/i for all i, so x ∈ A.
3) There is an N ≥ 1 such that dH(Am, An) < 1 for all m,n ≥ N . Then dH(Am, AN ) < 1

for m ≥ N , so

Am ⊂ E1(AN ) =
⋃

a∈AN

B1(a).

Since AN is bounded, AN ⊂ Br(x) for some x ∈ X and r ≥ 0. Then for m ≥ N ,

Am ⊂
⋃

a∈AN

B1(a) ⊂ Br+1(x).

The right side is independent of m. Taking limits of sequences {ami} with ami ∈ Ami , we
see that A ⊂ Br+1(x).

4) Pick ε > 0. There is an Nε ≥ 1 such that dH(Am, An) < ε/2 for all m and n ≥ Nε.
Therefore

(2.4) Am ⊂ Eε/2(An).

We will show for n ≥ Nε that A ⊂ Eε(An) and An ⊂ Eε(A), so dH(A,An) ≤ ε.
To show A ⊂ Eε(An) for n ≥ Nε, pick a ∈ A. Then a = limi→∞ ami with ami ∈ Ami for

all i. For some mi ≥ Nε, d(a, ami) ≤ ε/2. Since ami ∈ Ami , by (2.4) for any n ≥ Nε there is
a bn ∈ An such that d(ami , bn) ≤ ε/2. Therefore by the triangle inequality, for n ≥ Nε we
have d(a, bn) ≤ ε, so a ∈ Eε(An). Since a ∈ A was arbitrary, A ⊂ Eε(An) for all n ≥ Nε.
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Next we show An ⊂ Eε(A) for n ≥ Nε. Pick x ∈ An. We want d(x, a) ≤ ε for some a ∈ A.
Since the sequence A1, A2, A3, . . . is Cauchy, we can recursively pick n1 < n2 < n3 < · · ·
such that

m,m′ ≥ ni =⇒ dH(Am, Am′) <
ε

2i
.

Since n ≥ Nε, we can use n1 = n. Set xn1 = x. If we have xni ∈ Ani for some i then
choose xni+1 ∈ Ani+1 such that d(xni , xni+1) < ε/2i. Therefore the xni ’s are Cauchy, so
they converge. Call the limit a, so a ∈ A. We will show d(x, a) ≤ ε.

From the triangle inequality,

d(xn1 , xni) ≤ d(xn1 , xn2) + d(xn2 , xn3) + · · ·+ d(xni−1 , xni) <
ε

2
+ · · ·+ ε

2i−1
< ε.

Let i→∞: d(xn1 , a) ≤ ε. Since xn1 = x, we’re done. �

The limit of a Cauchy sequence {An} in H(X) can be described in a simpler way.

Theorem 2.10. Let X be a metric space and let {An} be a Cauchy sequence in H(X). If
x = limi→∞ ani where n1 < n2 < n3 < · · · and ani ∈ Ani, then we can fill out {ani} to a
sequence {an} with an ∈ An for all n such that x = limn→∞ an. In particular, when X is
complete the limit of the An’s in H(X) is

{a ∈ X : a = lim
n→∞

an, an ∈ An for all n}.

Proof. If n < n1, pick an ∈ An arbitrarily. If ni < n < ni+1 for some i we want to pick
an ∈ An to be close to ani . Using (2.1), we can pick an ∈ An such that d(an, ani) <
dH(An, Ani) + 1/n. This constructs a sequence {an} with an ∈ An for all n.

To prove d(an, x) → 0 as n → ∞, pick ε > 0. Since ani → x, there is i0 such that for
i ≥ i0, d(ani , x) ≤ ε. Since the An’s are Cauchy in H(X), there is an N ≥ 1 such that
dH(Am, An) ≤ ε for m,n ≥ N . Increase N more if necessary so we also have 1/N ≤ ε. Let
M = max(ni0 , N). We will show d(an, x) ≤ ε whenever n ≥ M . For such n, there is an i
such that ni ≤ n < ni+1. Then i ≥ i0 since M ≥ ni0 . If n = ni then we have d(an, x) ≤ ε
from the choice of i0. If ni < n < ni+1, then

d(an, x) ≤ d(an, ani) + d(ani , x)

< dH(An, Ani) +
1

n
+ ε by the choice of an

≤ ε+
1

N
+ ε since n, ni ≥ N

≤ 3ε.

That proves an → x.
The description of the the limit of the An’s, when X is complete, as limits of sequences

in X with one term from each An, follows from Theorem 2.9 and the filling out procedure
we just described. �

Remark 2.11. In Theorem 2.9 we could have described the limit of the An’s in the less
complicated way from Theorem 2.10. However, it was actually sequences {ani} which
showed up in the proof of Theorem 2.9, rather than sequences {an} with an ∈ An for all
n, so we would have had to prove Theorem 2.10 before Theorem 2.9 and then invoke it 3
times (do you see where?) in the proof of Theorem 2.9. That would make the proof of
Theorem 2.9 seem more complicated than it really is. It seems simpler to use the less tidy
description of limAn first and then come back later to fix it up.
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The set H(X) is closed under finite unions. The next theorem estimates the effect of
unions on the Hausdorff distance.

Theorem 2.12. For subsets A1, . . . , Am, B1, . . . , Bm of H(X),

dH(A1 ∪ · · · ∪Am, B1 ∪ · · · ∪Bm) ≤ max
1≤i≤m

dH(Ai, Bi).

Proof. We will check the case m = 2. The rest is a simple induction.
Pick A,B,C,D ∈ H(X). We want to show dH(A∪B,C∪D) ≤ max(dH(A,C), dH(B,D)).
Let r = dH(A,C) and s = dH(B,D). Without loss of generality, r ≤ s. So we want to

show dH(A ∪B,C ∪D) ≤ s. We will show for any ε > 0 that dH(A ∪B,C ∪D) ≤ s+ ε.
Pick x ∈ A. Since dH(A,C) < r + ε, there is a y ∈ C such that d(x, y) < r + ε ≤ s + ε.

Therefore A ⊂ Es+ε(C) ⊂ Es+ε(C ∪ D). Similarly, B ⊂ Es+ε(C ∪ D), so A ∪ B ⊂
Es+ε(C ∪ D). The inclusion C ∪ D ⊂ Es+ε(A ∪ B) is proved in a similar way. Therefore
dH(A ∪B,C ∪D) ≤ s+ ε. �

If f : X → X is a contraction with constant c then for any closed ball Br(x) in X we
have f(Br(x)) ⊂ Bcr(f(x)), so f sends bounded sets to bounded sets. The closure of a

bounded set is bounded, so we get a function H(X) 7→ H(X) by A 7→ f(A).

Theorem 2.13. Let f : X → X be a contraction with constant c. Then the induced map
on H(X) given by A 7→ f(A) is a contraction with the same constant: dH(f(A), f(B)) ≤
cdH(A,B) for all A,B ∈ H(X).

Proof. If c = 0 then f is constant with image {x0}, say, so f(A) = {x0} for all A ∈ H(X).

Now take c > 0. Set r = dH(A,B). To show dH(f(A), f(B)) ≤ cr, we will show

dH(f(A), f(B)) ≤ c(r + ε)

for all ε > 0. This will follow from showing

f(A) ⊂ Ec(r+ε)(f(B)), f(B) ⊂ Ec(r+ε)(f(A)).

Pick a ∈ A. Since dH(A,B) < r+ ε/2, by (2.1) there is a b ∈ B such that d(a, b) < r+ ε/2,

so d(f(a), f(b)) ≤ cd(a, b) < c(r + ε/2). Thus f(a) ∈ Ec(r+ε/2)(f(B)) ⊂ Ec(r+ε/2)(f(B)).
Since a was arbitrary in A,

f(A) ⊂ Ec(r+ε/2)(f(B)).

Taking the closure of both sides,

f(A) ⊂ Ec(r+ε/2)(f(B)).

This inclusion implies, by (2.2),

f(A) ⊂ Ec(r+ε)(f(B)).

Similar reasoning gives

f(B) ⊂ Ec(r+ε)(f(A)).

�

Theorem 2.14 (Hutchinson). Let f1, . . . , fm : X → X be contractions. Set F : H(X) →
H(X) by

F (A) = f1(A) ∪ · · · ∪ fm(A).

If fi has contraction constant ci, F is a contraction with constant max(c1, . . . , cm).
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Proof. Using Theorems 2.12 and 2.13,

dH(F (A), F (B)) = dH

(
m⋃
i=1

fi(A),
m⋃
i=1

fi(B)

)
≤ max

1≤i≤m
dH(fi(A), fi(B)) ≤ max

1≤i≤m
cidH(A,B).

�

Corollary 2.15. If X is a complete metric space and f1, . . . , fm are contractions on X,
there is a unique nonempty closed and bounded subset A ⊂ X such that

f1(A) ∪ · · · ∪ fm(A) = A.

Proof. Since X is complete, H(X) is complete. The function F as in Theorem 2.14 is a
contraction on H(X), so by the contraction mapping theorem on H(X) there is a unique
A ∈ H(X) such that F (A) = A. �

When m = 1, Corollary 2.15 is dull: letting a be the fixed point of f1, we have F ({a}) =

{f1(a)} = {a} = {a}, so {a} is the fixed point of F in H(X). Taking m > 1, things get
much more interesting. With X = Rn, we will see that some fixed points in this setting are
fractals. Since H(Rn) is the set of nonempty compact subsets of Rn, we do not need to take
closures in the definition of F because each fi(A) is already compact (and thus closed):

F (A) = f1(A) ∪ · · · ∪ fm(A) = f1(A) ∪ · · · ∪ fm(A).

We may write F = f1 ∪ · · · ∪ fm to describe this function. Its iterates are computed by
composing the fi’s in all possible ways and then taking the union, e.g., if F = f1 ∪ f2 then
F 2 = f21 ∪ (f1 ◦ f2) ∪ (f2 ◦ f1) ∪ f22 .

Example 2.16. Take X = R. Let f0, f1 : R→ R by

f0(x) =
1

3
x, f1(x) =

1

3
(x− 1) + 1 =

1

3
x+

2

3
.

Both f0 and f1 are contractions on R, so by Corollary 2.15 there is a unique nonempty
compact subset A ⊂ R such that A = f0(A)∪ f1(A). This is a self-similarity property: A is
a union of two copies of itself, each at one-third the original size. This is one of the features
of the Cantor set, so A is the Cantor set because there is only one compact set fixed by
f0 ∪ f1.

The Cantor set was first defined by Cantor (1884) using the recipe of removing successive
middle-thirds starting with [0, 1], but the viewpoint of Corollary 2.15 shows that the Cantor
set can be obtained from any compact set C ⊂ R: the sequence C,F (C), F (F (C)), . . . ,
where F (C) = f0(C) ∪ f1(C), converges in H(R) to the Cantor set. Taking C = [0, 1],
the iterates Fn(C) are precisely the result of removing successive middle-thirds. But the
convergence to the Cantor set using F -iterates can be achieved starting with any (nonempty)
compact subset C ⊂ R, even a single point!

Example 2.17. Use X = R as before but now take f0(x) = x/2 and f1(x) = (x−1)/2+1 =
(x+ 1)/2. Check that A = [0, 1] satisfies A = f0(A)∪ f1(A), so [0, 1] is the unique compact
fixed point (and is not really a fractal). There are non-compact fixed points of f0 ∪ f1 in
H(R), such as A = R and A = (0, 1). Only the compact fixed point in H(R) is unique.

Example 2.18. Take X = R2. For any point p in the plane, let fp : R2 → R2 be the
function which sends a point q to the point halfway closer to p along the segment connecting
p and q. (In particular, fp(p) = p.) Easily fp is a contraction in the usual metric on R2,
with contraction constant 1/2.
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Pick 3 different points in the plane, say u, v, and w. Then the three functions fu, fv,
and fw are contractions on R2 with contraction constant 1/2, so F = fu ∪ fv ∪ fw is a
contraction mapping on H(R2) with dH(F (A), F (A′)) ≤ (1/2)dH(A,A′) for all A and A′ in
H(R2). There is a unique nonempty compact subset A ⊂ R2 satisfying

A = fu(A) ∪ fv(A) ∪ fw(A).

The Sierpinski triangle with vertices u, v, and w satisfies this condition, so A is that
Sierpinski triangle.

Example 2.19. Viewing R2 as the complex plane, let f1, f2, f3, f4 : C→ C by

f1(z) =
1

3
z, f2(z) =

1

3
eiπ/6z +

1

3
, f3(z) =

1

3
e−iπ/6z +

(
1

3
eiπ/6 +

1

3

)
, f4(z) =

1

3
z +

2

3
.

The (nonempty) compact A ⊂ C satisfying

A = f1(A) ∪ f2(A) ∪ f3(A) ∪ f4(A)

is the Koch curve fractal with endpoints 0 and 1.

A finite collection of contraction mappings on a complete metric space X is called an
iterated function system. We have seen that it leads to a single contraction mapping on
H(X), whose fixed point in H(X) includes some classical fractals when X is Euclidean space.
For an application of iterated function systems to the construction of a continuous nowhere
differentiable function, see [11]. Applications of iterated function systems to computer
graphics are discussed in [1] and [9].

The fixed point of an iterated function system on Rn is compact since all members of
H(Rn) are compact. For a general complete metric space X, there can be closed and
bounded subsets which are not compact. But it is still true that the fixed point of an
iterated function system on X is compact. To prove this, we introduce

K(X) = nonempty compact subsets of X.

Since compact subsets of X are closed and bounded, K(X) ⊂ H(X).

Theorem 2.20. If X is complete then K(X) is a closed subset of H(X). If X is incomplete
then K(X) is not closed in H(X).

Proof. First we suppose X is complete. Let {An} be a sequence in K(X) which converges
to A in H(X). We want to show A is a compact subset of X. We will use a compactness
criterion for general metric spaces: a subset of a metric space is compact if and only if the
subset is complete and totally bounded. (Totally bounded means for any ε > 0 that the
covering by open ε-balls has a finite subcovering.)

Since A is a closed subset of X and X is complete, A is complete. It remains to show
A is a totally bounded subset of X. Pick any ε > 0. If A is not covered by finitely many
open ε-balls then there is a sequence {xn} in A such that d(xm, xn) ≥ ε for all m 6= n.
Since An → A in H(X), for some N ≥ 1 we have A ⊂ Eε/3(AN ). Therefore, for any n,
there is yn ∈ AN such that d(xn, yn) ≤ ε/3. We now have a sequence {yn} in AN . Since
AN is compact, the yn’s have a convergent subsequence. So for some pair of (large) distinct
integers m and n, d(ym, yn) < ε/3. Then by the triangle inequality,

d(xm, xn) ≤ d(xm, ym) + d(ym, yn) + d(yn, xn) <
ε

3
+
ε

3
+
ε

3
= ε,

a contradiction.
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Now suppose X is incomplete: there is a Cauchy sequence {x1, x2, . . . } in X without a
limit in X. We will use this non-convergent Cauchy sequence to write down a sequence
in K(X) which converges to a set in H(X) − K(X). Let An = {x1, . . . , xn} and A =
{x1, x2, . . . }. Each An is finite, so also compact: An ∈ K(X) for all n. We will show
A ∈ H(X), A 6∈ K(X), and An → A in H(X).

Since A has no limit points in X (if a subsequence of a Cauchy sequence converges then
the Cauchy sequence itself converges), A is a closed subset of X. Since Cauchy sequences
are bounded, A is a bounded set. Therefore A ∈ H(X). The set A is not compact because
none of its subsequences converge in X, so A 6∈ K(X). To show dH(An, A)→ 0 as n→∞,
it suffices to show for any ε > 0 that A ⊂ Eε(An) for n� 0; the inclusion An ⊂ Eε(A) will
be automatic because An ⊂ A.

Pick ε > 0. There is some N ≥ 1 such that d(xm, xn) ≤ ε for all m,n ≥ N . Therefore
xm ∈ Eε(An) for all m,n ≥ N . Since x1, . . . , xN−1 ∈ An when n ≥ N we get A ⊂ Eε(An)
for n ≥ N . �

Here is the analogue for K(X) of Theorem 2.9.

Corollary 2.21. The metric space X is complete if and only if K(X) is complete in the
Hausdorff metric.

Proof. If X is complete then so is H(X). A closed subset of a complete space is complete,
so K(X) is complete in the Hausdorff metric by Theorem 2.20.

Conversely, suppose K(X) is complete. The isometric embedding X → H(X) which sends
each x to {x} has image in K(X), and the proof of Theorem 2.8 carries over to show the
image is a closed subset of K(X) (not just closed in H(X)), so X is complete. �

Lemma 2.22. Let f : X → X be a contraction on a complete metric space and Y ⊂ X be
a closed subset such that f(Y ) ⊂ Y . Then the unique fixed point of f is in Y .

Proof. Since Y is a closed subset of a complete metric space, it is complete. Then we can
apply the contraction mapping theorem to f : Y → Y , so f has a fixed point in Y . Since f
has only one fixed point in X, it must lie in Y . �

Theorem 2.23. Let X be complete and {f1, . . . , fm} be an iterated function system on X
with associated contraction F on H(X). The unique fixed point of F in H(X) is compact.

Proof. For A ∈ K(X), each fi(A) is compact, so F (A) is a union of finitely many compact
sets and therefore is compact. Hence F : K(X)→ K(X), so the unique fixed point of F in
H(X) must lie in K(X) by Lemma 2.22. �

Theorem 2.23 explains why some treatments of iterated function systems, such as [1],
focus on K(X) rather than H(X) right from the start.

Theorem 2.24. The metric space X is compact if and only if H(X) is compact.

Proof. Since X is isometric to a closed subset of H(X), if H(X) is compact then so is X.
Conversely, suppose X is compact. To show H(X) is compact we will show it is complete

and totally bounded. From completeness of X we have completeness of H(X). To show
H(X) is totally bounded, pick ε > 0. Then X is covered by finitely many open ε/2-balls,
say

X = Bε/2(x1) ∪Bε/2(x2) ∪ · · · ∪Bε/2(xn).
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We will show H(X) has a finite covering by open ε-balls in the Hausdorff metric, namely
the open ε-balls in H(X) around the finitely many nonempty subsets of {x1, . . . , xn}. (Note
finite sets are compact.)

Pick any A ∈ H(X). It has to meet some of the Bε/2(xi)’s, since those balls cover X. Let
S be the set of xi’s with that property:

S = {xi : A ∩Bε/2(xi) 6= ∅}.

Every element of A is within distance ε/2 of some xi in S, so A ⊂ Eε/2(S). Each xi ∈ S is
within ε/2 of some element of A, so S ⊂ Eε/2(A). Thus dH(S,A) ≤ ε/2 < ε. Since A was
arbitrary, the open ε-balls in H(X) around the nonempty subsets S of {x1, . . . , xn} cover
H(X). �

Lemma 2.25. Let X be a compact metric space. If f : X → X satisfies d(f(x), f(x′)) <
d(x, x′) when x 6= x′ in X, then f has a unique fixed point in X and the fixed point can be
found as the limit of fn(x0) as n→∞ for any x0 ∈ X.

This is due to Edelstein [6].

Proof. To show f has at most one fixed point in X, suppose f has two fixed points a 6= a′.
Then d(a, a′) = d(f(a), f(a′)) < d(a, a′). This is impossible, so a = a′.

To prove f actually has a fixed point, we will look at the function X → [0,∞) given by
x 7→ d(x, f(x)). This measures the distance between each point and its f -value. A fixed
point of f is where this function takes the value 0.

Since X is compact, the function d(x, f(x)) takes on its minimum value: there is an
a ∈ X such that d(a, f(a)) ≤ d(x, f(x)) for all x ∈ X. We’ll show by contradiction that a is
a fixed point for f . If f(a) 6= a then the hypothesis about f in the theorem (taking x = a
and x′ = f(a)) says

d(f(a), f(f(a))) < d(a, f(a)),

which contradicts the minimality of d(a, f(a)) among all numbers d(x, f(x)). So f(a) = a.
Finally, we show for any x0 ∈ X that the sequence xn = fn(x0) converges to a as n→∞.

This can’t be done as in the proof of the contraction mapping theorem since we don’t have
the contraction constant to help us out. Instead we will exploit compactness.

If for some k ≥ 0 we have xk = a then xk+1 = f(xk) = f(a) = a, and more generally
xn = a for all n ≥ k, so xn → a since the terms of the sequence equal a for all large n. Now
we may assume instead that xn 6= a for all n. Then

0 < d(xn+1, a) = d(f(xn), f(a)) < d(xn, a),

so the sequence of numbers d(xn, a) is decreasing and positive. Thus it has a limit ` =
limn→∞ d(xn, a) ≥ 0. We will show ` = 0 (so d(xn, a)→ 0, which means xn → a in X). By
compactness of X, the sequence {xn} has a convergent subsequence xni , say xni → y ∈ X.
Then, by continuity of f , f(xni) → f(y), which says xni+1 → f(y) as i → ∞. Since
d(xn, a) → ` as n → ∞, d(xni , a) → ` and d(xni+1, a) → ` as i → ∞. By continuity of
the metric, d(xni , a)→ d(y, a) and d(xni+1, a) = d(f(xni), a)→ d(f(y), a). Having already
shown these limits are `,

(2.5) d(y, a) = ` = d(f(y), a) = d(f(y), f(a)).

If y 6= a then d(f(y), f(a)) < d(y, a), but this contradicts (2.5). So y = a, which means
` = d(y, a) = 0. That shows d(xn, a)→ 0 as n→∞. �
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Lemma 2.25 is a fixed-point theorem for a function f on a compact metric space satisfying
d(f(x), f(y)) < d(x, y) when x 6= y. For such a function f there is an analogue of Theorem
2.13, as follows.

Theorem 2.26. Let f : X → X satisfy d(f(x), f(y)) < d(x, y) for all distinct x and y in
X. Then for all distinct A and B in K(X), dH(f(A), f(B)) < dH(A,B).

To prove this, we use a technical property of the Hausdorff distance between compact
subsets, codified in the following lemma.

Lemma 2.27. For x ∈ X and S ⊂ X, set the distance from x to S to be dist(x, S) =
infy∈S d(x, y). For compact subsets A and B in X, either dH(A,B) = dist(x,B) for some
x ∈ A or dH(A,B) = dist(x,A) for some x ∈ B.

Proof. First we show for r > 0 that

(2.6) A ⊂ Er(B)⇐⇒ for all a ∈ A,dist(a,B) ≤ r.
Compactness will be essential.

If A ⊂ Er(B) then for all a ∈ A there is a b ∈ B such that d(a, b) ≤ r, so dist(a,B) ≤
d(a, b) ≤ r. Conversely, suppose dist(a,B) ≤ r for all a ∈ A. Since B is compact and d(a, x)
is continuous in x, its infimum over B is a value on B:

dist(a,B) = inf
b∈B

d(a, b) = d(a, b′)

for some b′ ∈ B. Then d(a, b′) ≤ r, so a ∈ Er(B). This holds for all a in A, so A ⊂ Er(B).
This concludes the proof of (2.6).

For any (nonempty) subset S ⊂ X, let δS : X → R by

(2.7) δS(x) = dist(x, S) = inf
y∈S

d(x, y).

Then (2.6) says A ⊂ Er(B) if and only if δB(a) ≤ r for all a ∈ A, which is equivalent to
supa∈A δB(a) ≤ r. Returning to (2.6), we have

A ⊂ Er(B) and B ⊂ Er(A)⇐⇒ sup
a∈A

δB(a) ≤ r and sup
b∈B

δA(b) ≤ r,

so

dH(A,B) = inf{r ≥ 0 : sup
a∈A

δB(a) ≤ r and sup
b∈B

δA(b) ≤ r}

= inf{r ≥ 0 : max(sup
a∈A

δB(a), sup
b∈B

δA(b)) ≤ r}

= max(sup
a∈A

δB(a), sup
b∈B

δA(b)).

With this formula for dH(A,B), the proof of the lemma boils down to showing the supre-
mum of δB over A is a value of δB on A and the supremum of δA over B is a value of δA on
B. This will follow from the continuity of δA and δB on X and the compactness of A and
B (a continuous real-valued function on a compact set assumes its supremum as a value).
To show δA and δB are continuous, we will show more generally that δS is continuous for
any subset S of X. To be precise, we will show

(2.8) | δS(x)− δS(y)| ≤ d(x, y)

for all x and y in X. For ε > 0 there is an s ∈ S such that d(x, s) < δS(x) + ε. Then

δS(y) ≤ d(y, s) ≤ d(y, x) + d(x, s) < d(y, x) + δS(x) + ε,
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so

δS(y)− δS(x) < d(y, x) + ε.

Now let ε→ 0+:

δS(y)− δS(x) ≤ d(y, x) = d(x, y).

Reversing the roles of x and y, we get

δS(x)− δS(y) ≤ d(x, y),

so (2.8) follows.
By continuity of δA and δB and compactness of A and B,

sup
a∈A

δB(a) = δB(a0) and sup
b∈B

δA(b) = δA(b0)

for some a0 ∈ A and b0 ∈ B. Therefore

dH(A,B) = max(δB(a0), δA(b0)) = max(dist(a0, B), dist(b0, A)).

�

Now we prove Theorem 2.26.

Proof. Since A 6= B, dH(A,B) > 0. We want to prove dH(f(A), f(B)) < dH(A,B). There-
fore we may suppose f(A) 6= f(B). Since f is continuous, f(A) and f(B) are both compact.
We apply Lemma 2.27 to f(A) and f(B): either dH(f(A), f(B)) = dist(f(x), f(B)) for some
x ∈ A or dH(f(A), f(B)) = dist(f(x), f(A)) for some x ∈ B. From the symmetry in A and
B, we may suppose the first formula holds, so

dH(f(A), f(B)) = dist(f(x), f(B)) ≤ d(f(x), f(b))

for some x ∈ A and all b ∈ B. Since B is compact, dist(x,B) = d(x, y) for some y ∈ B, so no
element of B is closer to x than y is. Therefore dH(A,B) ≥ d(x, y). (If dH(A,B) < d(x, y)
then x is within distance less than d(x, y) of some element of B, a contradiction.) Now we
have

0 < dH(f(A), f(B)) = dist(f(x), f(B)) ≤ d(f(x), f(y)).

Since d(f(x), f(y)) > 0 we have x 6= y, so d(f(x), f(y)) < d(x, y) ≤ dH(A,B). Thus
dH(f(A), f(B)) < dH(A,B). �

Corollary 2.28. Let f1, . . . , fm : X → X each satisfy d(fi(x), fi(y)) < d(x, y) whenever
x 6= y in X. Let F = f1 ∪ · · · ∪ fm : K(X) → K(X). Then dH(F (A), F (B)) < dH(A,B)
whenever A 6= B in K(X).

Proof. Use Theorems 2.12 and 2.26. �

Example 2.29. Let f1, f2 : [0, 1]→ [0, 1] by f1(x) = 1/(1+x) and f2(x) = 1/(2+x). Since
|f(x)−f(y)|/|x−y| = 1/(1+x)(1+y), |f(x)−f(y)|/|x−y| gets arbitrarily close to 1 when
x and y are sufficiently close to 0, so f1 is not a contraction, but |f1(x) − f1(y)| < |x − y|
for x 6= y in [0, 1]. Since |f ′2(x)| = 1/(2 +x)2, f2 is a contraction on [0, 1] with constant 1/4.
Let F = f1 ∪ f2 on H([0, 1]). By Corollary 2.28, dH(F (A), F (B)) < dH(A,B) for all A 6= B
in H([0, 1]) = K([0, 1]).

Since H([0, 1]) is compact, by Lemma 2.25 there is a unique fixed point of F in H([0, 1])
and the sequence of iterates C,F (C), F 2(C), . . . starting from any C ∈ H([0, 1]) converges
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to this fixed point. This seems to be a serious use of Lemma 2.25, because F truly is not a
contraction. Indeed, the reader should check that for distinct a and b close to 0 in [0, 1],

dH(F ({a}), F ({b})) =
1

(1 + a)(1 + b)
dH({a}, {b}),

which in more concrete terms says

dH({f1(a), f2(a)}, {f1(b), f2(b)}) =
|a− b|

(1 + a)(1 + b)
.

Therefore dH(F ({a}), F ({b}))/dH({a}, {b}) can be made arbitrarily close to 1 by taking a
and b sufficiently close to 0. (For simplicity, even take one of a or b to be 0.)

Alas, this example can be made into an application of the usual contraction mapping
theorem by looking at F 2 = f21 ∪ (f1 ◦ f2) ∪ (f2 ◦ f1) ∪ f22 . Explicitly compute each of the
rational functions f21 , f1 ◦ f2, f2 ◦ f1, and f22 and verify they are contractions by maximizing
their derivatives on [0, 1] (f21 has contraction constant 1/4, f22 has constant 1/16, and the
two composites f1◦f2 and f2◦f1 have constant 1/9). Therefore we can apply the contraction
mapping theorem to F 2.

What is the fixed point of F , as an explicit subset of [0, 1]? A well-chosen initial set C will
give us the answer in terms of continued fractions. Take C = {0}. The set Fn({0}) consists
of the rational numbers in [0, 1] with a continued fraction expansion of length n containing
only 1’s and 2’s (ignoring the initial continued fraction entry 0 common to all continued
fractions in [0, 1]): F ({0}) = {1, 1/2}, F 2({0}) = {1/2, 1/3, 2/3, 2/5}, and so on. The fixed
point of F in H([0, 1]) is limn→∞ F

n({0}), and by the proof of Theorem 2.9 this is the set of
all limits of sequences {ani} where n1 < n2 < · · · and ani ∈ Fni({0}) for all i. These limits
are precisely the real numbers in [0, 1] whose continued fraction expansion contains only 1’s
and 2’s: any such continued fraction expansion is clearly a limit of such rational continued
fractions, and any continued fraction expansion containing an entry besides 1 and 2 is not a
limit of such rational continued fractions since a continued fraction that is sufficiently close
to a given continued fraction must have the same initial entries.

Example 2.30. Following [2], let f : [0, 1] → [0, 1] by f(x) = x/(1 + x). Since fn(x) =
x/(1 + nx), for x 6= y the ratio |fn(x) − fn(y)|/|x − y| = 1/(1 + nx)(1 + ny) is arbitrarily
close to 1 when x and y are sufficiently close to 0, so no iterate fn is a contraction on any
neighborhood of its fixed point 0.

Example 2.31. Let f1, f2 : [0, 1] → [0, 1] by f1(x) = x/(1 + x) and f2(x) = 1/(2 − x).
These functions satisfy |f(x) − f(y)| < |x − y| for x 6= y and none of their iterates are
contractions on [0, 1]. Let F = f1 ∪ f2 on H([0, 1]), so dH(F (A), F (B)) < dH(A,B) for
A 6= B in H([0, 1]) by Corollary 2.28. Since no iterate of f1 or f2 is a contraction on [0, 1],
it is reasonable to expect no iterate of F is a contraction on H([0, 1]), which would make
the existence of a (unique) fixed point of F in H([0, 1]) a real use of Lemma 2.25 and the
compactness of H([0, 1]). The fixed point of F is easy to identify: f1([0, 1]) = [0, 1/2] and
f2([0, 1]) = [1/2, 1], so F ([0, 1]) = [0, 1]. Thus [0, 1] is the only fixed point of F in H([0, 1]).

How can we show no iterate of F is a contraction? The idea is to mimic the argu-
ment in Example 2.30: look at how Fn changes distances in the neighorhood of its fixed
point [0, 1]. We will show for each n that the ratio dH(Fn(A), Fn([0, 1]))/dH(A, [0, 1]) =
dH(Fn(A), [0, 1])/dH(A, [0, 1]) can be made arbitrarily close to 1 by a suitable choice of A,
so Fn is not a contraction.
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Using the definition of the Hausdorff distance, dH(A, [0, 1]) = inf{r ≥ 0 : [0, 1] ⊂
Er(A)} (since A ⊂ [0, 1]). For ε < 1/2, set Aε = [ε, 1 − ε]. Then dH(Aε, [0, 1]) = ε
since the ε-neighborhood of Aε is the smallest one which contains [0, 1]. To compute
dH(Fn(Aε), F

n([0, 1])) = dH(Fn(Aε), [0, 1]), we need to determine the smallest neighbor-
hood of Fn(Aε) which contains [0, 1]. Since f1([0, 1]) = [0, 1/2] and f2([0, 1]) = [1/2, 1],
and f1 and f2 are both increasing, the leftmost point in Fn(Aε) = Fn([ε, 1 − ε]) is
fn1 (ε) = ε/(1 + nε). Therefore dH(Fn(Aε), [0, 1]) ≥ ε/(1 + nε), so

dH(Fn(Aε), F
n([0, 1]))

dH(Aε, [0, 1])
≥ ε/(1 + nε)

ε
=

1

1 + nε
,

which can be made arbitrarily close to 1 using sufficiently small ε. (When n = 1 and n = 2
this lower bound on the ratio is actually an equality. I have not bothered to check if there
is equality for all n ≥ 1.)

Appendix A. More on the Hausdorff metric

In this appendix, we discuss two topics: how convexity behaves in the Hausdorff metric
and how to isometrically embed H(X) into a space of continuous functions on X.

In a real vector space, a subset A is called convex when for any v and w in A the line
segment {λv + (1 − λ)w : 0 ≤ λ ≤ 1} between v and w lies in A. How do compact convex
subsets of Rn behave in the Hausdorff metric?

Theorem A.1 (Blaschke). The compact convex subsets of Rn are a closed subset of H(Rn):
if Ci → C in H(Rn) and each Ci is compact and convex then C is compact and convex.

Proof. We already know the compact subsets of Rn are a closed subset of H(Rn), so C
is compact since each Ci is. Now suppose each Ci is convex and C is not convex. Pick
v, w ∈ C and λ ∈ (0, 1) such that u := λv + (1 − λ)w 6∈ C. Since the complement of C is
open, there is an ε > 0 such that Bε(u) ∩ C = ∅.

For all large i, dH(Ci, C) < ε/3. Fix such an i. By (2.1), there are vi and wi in Ci such
that

||v − vi|| <
ε

3
, ||w − wi|| <

ε

3
,

where || · || is the usual norm on Rn. By convexity of Ci, the vector ui = λvi + (1− λ)wi is
in Ci, where we use the same λ as above. Then

||u− ui|| = ||λ(v − vi) + (1− λ)(w − wi)||
≤ λ||v − vi||+ (1− λ)||w − wi||

<
ε

3
.

Since Bε(u)∩C = ∅ and ui is within ε/3 of u, any x ∈ C satisfies ||x−ui|| ≥ 2ε/3. Therefore
dH(Ci, C) ≥ 2ε/3, which is a contradiction. �

Corollary A.2. The compact convex subsets of Rn are a locally compact metric space with
respect to the Hausdorff metric. More precisely, for R > 0 the compact convex subsets
of BR(0) ⊂ Rn are a compact metric space: any sequence of compact convex subsets of
BR(0) ⊂ Rn has a convergent subsequence with respect to dH.

Proof. Since BR(0) is compact, H(BR(0)) is a compact subset of H(Rn). By Theorem A.1,
the set of compact convex subsets of BR(0) is closed in H(BR(0)), and a closed subset of a
compact space is compact. �
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Corollary A.2 is called the Blaschke selection theorem. It was used by Blaschke in a proof
of the isoperimetric theorem in Rn: among all convex compact subsets of Rn with a fixed
volume, the ones with the least surface area are spheres. The compactness of H(BR(0)) is
used to prove the existence of a surface area minimizer, and extra work is needed to show
it is a sphere. (That surface area minimizers should be convex follows from an argument
using convex hulls.) For further details, see [7, pp. 104–105]. While Hutchinson’s theorem
and its application to fractals are a nice application of the completeness property of the
Hausdorff metric, Blaschke’s work on the isoperimetric theorem is a good application of
the compactness properties of the Hausdorff metric. Blaschke’s selection theorem is used to
study many problems in convex geometry (see, for instance, [3, Sect. 2]). A compactness
theorem of Mahler concerning the space of lattices in Rn can be proved with the Blaschke
selection theorem by associating to each lattice a certain compact convex set (the Voronoi
domain of the lattice) [5, pp. 412–419].

There is a notion of convexity in abstract metric spaces: call a metric space X convex if
for any x 6= y in X there is some z 6= x, y in X such that d(x, y) = d(x, z) + d(z, y). When
X is a closed subset of Rn and is equipped with the standard metric coming from Rn then
X is a convex metric space if and only if it is a convex subset of Rn in the classical sense of
containing the line segment between any two points. (This equivalence of the abstract and
concrete notions of convexity for subsets of Rn is not generally true when either italicized
word above is relaxed. For instance, an open set in Rn need not be a convex subset of Rn

but it is a convex metric space in the abstract sense when it is given the standard metric
from Rn. A sphere in Rn is also not a convex subset of Rn but it is a convex metric space
using its surface metric.)

When d(x, y) = d(x, z) + d(z, y), we say z lies between x and y. (In Rn with its standard
metric, the points between two points are those on the line segment connecting them. On
a sphere with its surface metric, all points besides the north and south poles lie between
the poles.) Although an expression like λx + (1 − λ)y for λ ∈ [0, 1] makes no sense in an
abstract metric space, for any point z between x and y the ratio d(x, z)/d(x, y) lies in [0, 1]
and this number can be considered as a measure of how much closer z is to x than to y (a
substitute for the number λ in classical convexity). Assuming X is convex and complete,
all numbers in [0, 1] actually occur as such ratios:

Lemma A.3. If X is a complete convex metric space then for any distinct points x and y in
X and λ ∈ [0, 1] there is a z ∈ X such that d(x, y) = d(x, z)+d(z, y) and d(x, z)/d(x, y) = λ.

Proof. See [4, Theorem 14.1, p. 41], which proves the stronger result that there is an
isometric embedding of a real interval of length d(x, y) into X which sends the two endpoints
of the real interval to x and y. �

Now we can generalize Theorem A.1 beyond Rn.

Theorem A.4. Let X be a complete convex metric space. The closed and bounded convex
subsets of X form a closed subset of H(X): if Ci → C in H(X) and each Ci is convex then
C is convex.

Proof. Suppose C is not convex. Then there are x 6= y in C such that for all p 6= x, y in C

d(x, y) < d(x, p) + d(p, y).

Fix such a pair of points x and y. Pick λ ∈ (0, 1) and δ > 0. Both will be specified later.
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Since X is convex, there is a z 6= x, y in X such that

d(x, y) = d(x, z) + d(z, y),
d(x, z)

d(x, y)
= λ.

In particular, z 6∈ C and z depends on λ. Since X −C is open there is an open ball around
z not meeting C, say Bε(z) ∩ C = ∅ for some ε > 0. (Now ε depends on λ too.)

For i� 0, dH(Ci, C) ≤ δ. Fix such an i (so i depends on δ). Then there are xi and yi in
Ci such that d(xi, x) ≤ δ and d(yi, y) ≤ δ. Using Lemma A.3, there is a zi ∈ Ci such that

d(xi, yi) = d(xi, zi) + d(zi, yi),
d(xi, zi)

d(xi, yi)
= t.

Our goal is to show zi is not too close to C, contradicting dH(Ci, C) ≤ δ. We have

d(z, zi) ≤ d(z, x) + d(x, xi) + d(xi, zi)

= λd(x, y) + d(x, xi) + λd(xi, yi)

≤ λ(d(x, y) + d(xi, yi)) + δ.

Since d(xi, yi) ≤ d(xi, x) + d(x, y) + d(y, yi) ≤ 2δ + d(x, y),

d(z, zi) ≤ 2λ(d(x, y) + δ) + δ.

For any x′ ∈ C, disjointness of C and Bε(z) gives d(x′, z) ≥ ε, so

ε ≤ ε ≤ d(x′, z) ≤ d(x′, zi) + d(zi, z) ≤ d(x′, zi) + 2λ(d(x, y) + δ) + δ.

Thus
d(x′, zi) ≥ ε− 2λ(d(x, y) + δ)− δ.

This holds for all x′ ∈ C, hence

dH(C,Ci) ≥ ε− 2λ(d(x, y) + δ)− δ,
so ε− 2λ(d(x, y) + δ)− δ ≤ δ. Thus ε ≤ 2λ(d(x, y) + δ) + 2δ, which is NOT a contradiction
since ε ≤ λd(x, y). �

Appendix B. Alternate Description of Hausdorff Metric

Now we describe an isometric embedding of H(X) into the space Cb(X,R) of continuous
bounded R-valued functions on X. The set Cb(X,R) is a real vector space metrized by
the sup-norm metric: supx∈X |f(x)− g(x)|. (The space C(X,R) of all R-valued continuous
functions on X isn’t metrized in this way unless all continuous functions are bounded, which
need not happen: consider X = R.) Here X is any metric space, not necessarily complete.

To send H(X) into Cb(X,R) we use the distance functions δA introduced in (2.7): δA(x) =
dist(x,A). Previously we used these functions for compact A, but we no longer assume A
is compact, so in particular we can’t say that δA(x) = d(x, a) for some a ∈ A. From the
proof of Lemma 2.27, δA : X → R is a continuous function.

Pick A ∈ H(X). We have δA(x) = 0 if and only if x is a limit point of a sequence in A,
which is the same as saying x ∈ A since A is closed. Thus A = {x ∈ X : δA(x) = 0}, so we
can recover the set A from the function δA by seeing where the function is 0. The function
δA : X → R need not be bounded: consider X = Rn with A a disc and ||x|| large. However,
the difference of two such functions is bounded:

Theorem B.1. For A and B in H(X), the difference δA− δB is a bounded function on X.
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This theorem will be superceded soon, but we include this intermediate result as practice
with making estimates.

Proof. Pick x ∈ X and ε > 0. Then there are a0 ∈ A and b0 ∈ B such that d(x, a0) <
δA(x) + ε and d(x, b0) < δB(x) + ε. Therefore

δA(x) ≤ d(x, a0) < δA(x) + ε and δB(x) ≤ d(x, b0) < δB(x) + ε.

Now we can make estimates from above and below on δA(x)− δB(x):

(B.1) (d(x, a0)− ε)− d(x, b0) < δA(x)− δB(x) < d(x, a0)− (d(x, b0)− ε).
From the triangle inequality with the points x, a0, and b0, −d(a0, b0) ≤ d(x, a0)−d(x, b0) ≤
d(a0, b0), so (B.1) implies

−d(a0, b0)− ε < δA(x)− δB(x) < d(a0, b0) + ε.

Hence
| δA(x)− δB(x)| ≤ d(a0, b0) + ε ≤ sup

a∈A,b∈B
d(a0, b0) + ε,

where the supremum is finite since A and B are bounded. The supremum does not depend
on ε, so letting ε→ 0+ gives

| δA(x)− δB(x)| ≤ sup
a∈A,b∈B

d(a, b).

This upper bound is independent of x ∈ X. �

Lemma B.2. For any A and B in H(X),

sup
x∈X

(δA(x)− δB(x)) = sup
b∈B

δA(b) = inf{r ≥ 0 : B ⊂ Er(A)}.

Since δA(x) − δB(x) = δA(x) when x ∈ B, this lemma means that we can restrict the
supremum of δA− δB from X to B (the zero-set of δB) without affecting the value of the
supremum.

Proof. Easily supx∈X(δA(x) − δB(x)) ≥ supb∈B δA(b). We want the reverse inequality and
we need to identify the supremum over B with the infimum mentioned in the lemma (which
is how the Hausdorff distance will eventually get involved).

Pick ε > 0 and x ∈ X. There is some bε ∈ B such that

d(x, bε) < δB(x) + ε.

For all a ∈ A,
d(x, a) ≤ d(x, bε) + d(bε, a) < δB(x) + ε+ d(bε, a),

so
δA(x) ≤ d(x, a) < δB(x) + ε+ d(bε, a).

Subtracting,
δA(x)− δB(x)− ε < d(bε, a).

Here a is arbitrary in A, so taking the infimum over all a gives

δA(x)− δB(x)− ε ≤ inf
a∈A

d(bε, a) = δA(bε) ≤ sup
b∈B

δA(b).

There is no ε-dependence in the supremum over B, so let ε→ 0+:

δA(x)− δB(x) ≤ sup
b∈B

δA(b).
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Now take the supremum over all x ∈ X to get the first equation in the theorem.
It remains to show

sup
b∈B

δA(b) = inf{r ≥ 0 : B ⊂ Er(A)}.

In the proof of Lemma 2.27, we proved such a result (with the roles of A and B reversed) by
using compactness. But we no longer assume A and B are compact, so we need a different
argument.

If B ⊂ Er(A) then for all b ∈ B, δA(b) ≤ r. Therefore supb∈B δA(b) ≤ r, so

sup
b∈B

δA(b) ≤ inf{r ≥ 0 : B ⊂ Er(A)}.

To prove the reverse inequality, pick ε > 0. For any b0 ∈ B, there is some a0 ∈ A such that

d(a0, b0) < δA(b0) + ε ≤ sup
b∈B

δA(b) + ε.

This shows B ⊂ Er(A) with r = supb∈B δA(b) + ε. Therefore

inf{r ≥ 0 : B ⊂ Er(A)} ≤ sup
b∈B

δA(b) + ε.

Let ε→ 0+. �

Now we can refine Theorem B.1.

Theorem B.3. For any A and B in H(X), supx∈X | δA(x)− δB(x)| = dH(A,B).

Proof. From the proof of Lemma B.2, for any x ∈ X we have

δA(x)− δB(x) ≤ inf{r ≥ 0 : B ⊂ Er(A)}.

Similarly,

δB(x)− δA(x) ≤ inf{r ≥ 0 : A ⊂ Er(B)},

so

| δA(x)− δB(x)| ≤ inf{r ≥ 0 : A ⊂ Er(B) and B ⊂ Er(A)} = dH(A,B).

Taking the supremum over all x ∈ X,

sup
x∈X
| δA(x)− δB(x)| ≤ dH(A,B).

For the reverse inequality, since A ⊂ X

sup
x∈X
| δA(x)− δB(x)| ≥ sup

a∈A
δB(a) = inf{r ≥ 0 : A ⊂ Er(B)},

where the equality comes from Lemma B.2 (with the roles of A and B reversed). Similarly,

sup
x∈X
| δA(x)− δB(x)| ≥ sup

b∈B
δA(b) = inf{r ≥ 0 : B ⊂ Er(A)}.

Therefore each of A and B is in the r′-expansion of the other, so

sup
x∈X
| δA(x)− δB(x)| ≥ max(inf{r ≥ 0 : A ⊂ Er(B)}, inf{r ≥ 0 : B ⊂ Er(A)}).
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We want to show this maximum is at least as large as dH(A,B). Pick ε > 0. There is
s < inf{r ≥ 0 : A ⊂ Er(B)}+ ε such that A ⊂ Es(B) and t < inf{r ≥ 0 : B ⊂ Er(A)}+ ε
such that B ⊂ Et(A). Let r′ = max(s, t), so A ⊂ Er′(B) and B ⊂ Er′(A). Therefore

dH(A,B) = inf{r ≥ 0 : A ⊂ Er(B) and B ⊂ Er(A)}
≤ r′

< max(inf{r ≥ 0 : A ⊂ Er(B)}+ ε, inf{r ≥ 0 : B ⊂ Er(A)}+ ε)

= max(inf{r ≥ 0 : A ⊂ Er(B)}, inf{r ≥ 0 : B ⊂ Er(A)}) + ε.

Now let ε→ 0+ to see that

dH(A,B) ≤ max(inf{r ≥ 0 : A ⊂ Er(B)}, inf{r ≥ 0 : B ⊂ Er(A)}),
so supx∈X | δA(x)− δB(x)| ≥ dH(A,B). �

IfX is compact then each δA : X → R is bounded since continuous functions on a compact
set are bounded. Then Theorem B.3 says the mapping H(X)→ Cb(X,R) = C(X,R) given
by A 7→ δA is an isometric embedding. If X is not compact, the functions δA have no
reason to be bounded. But if we simply fix some D ∈ H(X) – even just a one-element
set D = {d0} would do – and associate to each A ∈ H(X) the function δA− δD, which
is bounded, then we get an isometric embedding of H(X) into Cb(X,R). Indeed, the
difference(δA− δD) − (δB − δD) = δA− δB has sup-norm over X equal to dH(A,B) by
Theorem B.3. Thus, subject to the arbitrariness of choosing some (nonempty) closed and
bounded subset D ⊂ X as an anchor, we obtain an isometric embedding of H(X) into
Cb(X,R) by A 7→ δA− δD. Here X is any metric space, complete or not. This isometric
embedding justifies the “naturalness” of the Hausdorff metric on H(X), since it agrees with
a sup-norm metric on functions.

In the course of proving Theorem B.3, we obtained a formula for the Hausdorff distance:

dH(A,B) = max(sup
a∈A

δB(a), sup
b∈B

δA(b)) = max(sup
a∈A

dist(a,B), sup
b∈B

dist(b, A)).

This formula is less intuitive than our original definition of the Hausdorff distance. What
does it say? Glossing over the distinction between supremum and maximum, think of
supa∈A dist(a,B) as the farthest that a point in A can be from its nearest point in B, and
supb∈B dist(b, A) as the farthest that a point in B can be from its nearest point in A. The
Hausdorff distance is the maximum of these two numbers.
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