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1. Introduction

Let f(x) and g(x) be two functions which are positive when x is large. They are said to be
asymptotically equal, or just asymptotic, if

lim
x→∞

f(x)

g(x)
= 1.

We then write f(x) ∼ g(x). What this means is that f(x) and g(x) grow in the same way when x
gets large.

Example 1.1. x3 + 10x + 7 ∼ x3, 3x +
√
x ∼ 3x, 1/(x2 − x) ∼ 1/x2, and x + sinx ∼ x.

In these examples, the function on the right side of the ∼ relation is simpler than the function on
the left side. There is no intrinsic reason this has to be the case, e.g., x ∼ x+ sinx. But in practice
the whole point of thinking about asymptotically equal functions is to make a function simpler
without affecting its growth. Replacing a function f(x) with another function which is asymptotic
to it and in a sense simpler than f(x) amounts to the idea of extracting the “main term” which
describes the growth of f(x).

When f(x) ∼ g(x) it is not usually true that the difference f(x)− g(x) tends to 0. For instance,
x3 + 10x + 7 ∼ x3 but (x3 + 10x + 7) − x3 = 10x + 7 tends to ∞ as x → ∞. Being asymptotic
does not mean the “absolute error” |f(x) − g(x)| goes to 0, but rather that the “relative error”
|f(x)/g(x) − 1| tends to 0. Notice also that we write 1/(x2 − x) ∼ 1/x2 even though both sides
make no sense at x = 0 and the left side is not positive for 0 < x < 1; all that matters is behavior
as x→∞, where both sides make sense and are positive.

If you gain a decent understanding of both orders of growth (e.g., exponentials dominate all
power functions) and this new asymptotic relation, you will be much more confident in your study
of the convergence of infinite series and improper integrals.

2. Properties of asymptotically equal functions

The following theorem shows that certain operations on asymptotic functions maintain the as-
ymptotic relation.

Theorem 2.1. Suppose f(x) ∼ g(x). Then the following additional asymptotic relations hold:

• g(x) ∼ f(x),
• f(x)r ∼ g(x)r for any exponent r (possibly negative),
• log f(x) ∼ log g(x) if g(x)→∞ as x→∞.

Proof. We are assuming f(x)/g(x) → 1 as x → ∞. Then g(x)/f(x) = (f(x)/g(x))−1 → 1−1 = 1
and f(x)r/g(x)r = (f(x)/g(x))r → 1r = 1 (as x→∞).
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The relation between logarithms of asymptotically equal functions is a little trickier to explain.
Since f(x)/g(x)→ 1, taking logarithms tells us

(2.1) log f(x)− log g(x)→ log 1 = 0.

Why must log f(g) ∼ log g(x)? Since g(x) → ∞, also log g(x) → ∞, so 1/ log g(x) → 0. Dividing
(2.1) by log g(x) gives us

log f(x)

log g(x)
− 1→ 0,

so log f(x)/ log g(x)→ 1. Thus log f(x) ∼ log g(x). �

Remark 2.2. It is false that if f(x) ∼ g(x) then ef(x) ∼ eg(x). For instance, x2 + x ∼ x2, but

ex
2+x 6∼ ex

2
since the ratio ex

2+x/ex
2

is ex, which does not tend to 1 as x→∞. Thus, while powers
and logarithms of asymptotic functions are asymptotic, exponentials of asymptotic functions are
(usually) not asymptotic.

It is also false that asymptotic functions have asymptotic derivatives. Here is a basic counterex-
ample: x2 + x sinx ∼ x2 but if we take derivatives of both sides then 2x+ x cosx+ sinx 6∼ 2x (the
ratio is 1 + (1/2) cosx + (sinx)/2x, which does not tend to 1).

The following examples apply the ideas in Theorem 2.1.

Example 2.3. (3x2 − x)2 ∼ 9x4 since 3x2 − x ∼ 3x2 and we square both sides.

Example 2.4.
√
x3 + 2x2 ∼ x3/2 since x3 + 2x2 ∼ x3 and we take square roots of both sides (raise

to the power 1/2).

Example 2.5. log(x +
√
x) ∼ log x since x +

√
x ∼ x and we take the logarithm of both sides.

Theorem 2.6. If f(x) ∼ g(x) and h(x) ∼ k(x), then f(x)h(x) ∼ g(x)k(x) and f(x)/h(x) ∼
g(x)/k(x).

Proof. For the products,
f(x)h(x)

g(x)k(x)
=

f(x)

g(x)
· h(x)

k(x)
→ 1 · 1 = 1.

For the ratios,
f(x)/h(x)

g(x)/k(x)
=

f(x)/g(x)

h(x)/k(x)
→ 1

1
= 1.

�

Example 2.7. (3x6 + 2x)/(5x2 + 9) ∼ (3/5)x4 since 3x6 + 2x ∼ 3x6 and 5x2 + 9 ∼ 5x2. Now
divide.

3. Integrals of asymptotic functions

We saw in Remark 2.2 that differentiation does not behave nicely on asymptotic functions. The
story with integration is different, essentially because you can integrate inequalities while you can’t
differentiate them. The following result is the main application of asymptotic functions to calculus
in this handout.

Theorem 3.1. Suppose f(x) and g(x) are continuous positive functions on [a,∞) and f(x) ∼ g(x).
Then

∫∞
a f(t)dt converges if and only if

∫∞
a g(t)dt converges.
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Proof. We will show that convergence of
∫∞
a g(t)dt implies convergence of

∫∞
a f(t)dt; the argument

in the other direction follows by interchanging the roles of f(x) and g(x), which is allowed since
f(x) ∼ g(x) if and only if g(x) ∼ f(x).

Since f(x)/g(x) → 1, for large x we have f(x)/g(x) ≤ 2. Then, since g(x) > 0 for large x, we
multiply through by g(x) to get

(3.1) f(x) ≤ 2g(x)

for all large x, say for x ≥ c > a. Since
∫∞
a g(t)dt converges, so does

∫∞
c g(t)dt (just subtract∫ c

a g(t)dt from the first improper integral). Therefore
∫∞
c 2g(t)dt converges, so by the comparison

test
∫∞
c f(t)dt converges. Finally, adding

∫ c
a f(t)dt to this, we get convergence of

∫∞
a f(t)dt. �

Using Theorem 3.1, it becomes a snap to decide convergence of nearly all integrals to ∞ of
positive functions which show up in calculus books, as long as you know a few basic examples.
For instance, since

∫∞
1 dx/xp converges for p > 1 and not for 0 < p ≤ 1, an integral out to ∞

of any function which is asymptotically equal to a function that decays faster than 1/xp for p > 1
converges. If a function is asymptotically equal to a function that decays slower than 1/x, say, its
integral out to ∞ diverges.

Example 3.2. Consider

∫ ∞
1

dx√
1 + x2

. The integrand is 1/
√

1 + x2 ∼ 1/x. Since
∫∞
1 dx/x di-

verges, so does the initial integral.

Example 3.3. Consider

∫ ∞
1

dx

1 + x2
. The integrand is 1/(1 + x2) ∼ 1/x2. Since

∫∞
1 dx/x2 con-

verges, so does the initial integral.

Example 3.4. Consider

∫ ∞
1

xdx

1 + x2
. The integrand is x/(1 + x2) ∼ 1/x. Since

∫∞
1 dx/x diverges,

so does the initial integral.

This does not mean convergence of all improper integrals out to ∞ in a calculus book can be
checked in your head. Sometimes work is needed. Here are two examples.

Example 3.5. Consider

∫ ∞
2

dx

x log x
. The function x log x grows faster than x, but slower than any

xr for r > 1. Therefore 1/x log x decays faster than 1/x and slower than 1/xr for any r > 1. This
means we can’t decide by comparison with power functions whether or not the integral converges.
But we can do a direct calculation in this case:∫ ∞

2

dx

x log x
= lim

b→∞

∫ b

2

dx

x log x

= lim
b→∞

log(log x)

∣∣∣∣b
2

= lim
b→∞

(log log b− log log 2)

= ∞.

Thus
∫∞
1 dx/x log x diverges.

Example 3.6. Consider

∫ ∞
2

dx

x(log x)2
. The integrand 1/x(log x)2 decays faster than 1/x but

slower than 1/xr for any r > 1. It decays slightly faster than 1/x log x, whose integral we just saw
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diverges. Once again is not clear by any comparison with known growth whether or not this new
improper integral converges. But we can directly compute it to find out how things go:

∫ ∞
2

dx

x(log x)2
= lim

b→∞

∫ b

2

dx

x(log x)2

= lim
b→∞

− 1

log x

∣∣∣∣b
2

= lim
b→∞

− 1

log b
+

1

log 2

=
1

log 2
.

Thus
∫∞
1 dx/x(log x)2 converges, and in fact equals 1/ log 2.

Theorem 3.7. Integrals of asymptotic functions are asymptotic if one of the integrals diverges.
That is, if f(x) ∼ g(x) and

∫∞
a g(t)dt =∞ then

∫ x
a f(t)dt ∼

∫ x
a g(t)dt.

Proof. The reason that integrals of asymptotic functions are asymptotic is L’Hopital’s rule along
with the Fundamental Theorem of Calculus. Here are the details. Set F (x) =

∫ x
a f(t)dt and

G(x) =
∫ x
a g(t)dt. Then F ′(x) = f(x) and G′(x) = g(x) by the Fundamental Theorem of Calculus.

Our hypothesis that
∫∞
a g(t)dt =∞ means G(x)→∞ as x→∞. By Theorem 3.1,

∫∞
a f(t)dt =∞

too, so F (x)→∞ as x→∞. Thus the ratio∫ x
a f(t)dt∫ x
a g(t)dt

=
F (x)

G(x)

has the indeterminate form ∞/∞. The ratio of the derivatives is

F ′(x)

G′(x)
=

f(x)

g(x)
,

which tends to 1 as x→∞ since f(x) ∼ g(x). Thus, by L’Hopital’s rule we have F (x)/G(x)→ 1
as x → ∞, so F (x) ∼ G(x). This is exactly the asymptotic equality of the integrals which we
wanted to prove. �

Example 3.8. Consider x2 + x ∼ x2. By a direct calculation,
∫ x
0 (t2 + t)dt = x3/3 + x2/2 and∫ x

0 (t2 + t)dt = x3/3. These integrals are asymptotic to each other: x3/3 + x2/2 ∼ x3/3.
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