ARC LENGTH, INTEGRATION BY PARTS, AND π

KEITH CONRAD

The number π appears in formulas for two properties of a circle: its area and its circumference. A circle of radius r has area πr^{2} and circumference $2 \pi r$. Why does the same number π show up in both formulas? It's not a surprise that π occurs in the circumference formula, since that is more or less the way π is defined when we first learn about it: the ratio of the circumference C to the diameter $D=2 r$ for any circle is defined to be π, and the equation $\pi=C / D$ is the same as $C=\pi D=\pi(2 r)=2 \pi r$.

To explain why π shows up in the formula for the area of a circle as well, we will focus on a special case of circles with radius 1 (to keep the notation simpler), for which the circumference is 2π by definition and we want to show the area is π. We will express the area A and circumference C of this circle as integrals, using the arc length integral in the case of C, and then use integration by parts to show $C=2 A$, so from $C=2 \pi$ we get $A=\pi$.

To express C and A as integrals, we will work with half a circle, as shaded below. The circle has area twice the shaded region and circumference equal to twice the arc length from $(1,0)$ to $(-1,0)$. Both of these can be expressed as integrals.

The area of the shaded region is the area under the circular arc from $x=-1$ to $x=1$. The equation of the circular arc along the top of the shaded region is $y=\sqrt{1-x^{2}}$, so

$$
\begin{equation*}
A=2 \int_{-1}^{1} \sqrt{1-x^{2}} d x \tag{1}
\end{equation*}
$$

The length of the circular arc along the top of the shaded region is the length of the curve $y=\sqrt{1-x^{2}}$ from $x=-1$ to $x=1$, which is $\int_{-1}^{1} \sqrt{1+(d y / d x)^{2}} d x$. When $y=\sqrt{1-x^{2}}$, we have

$$
\frac{d y}{d x}=\frac{-2 x}{2 \sqrt{1-x^{2}}}=-\frac{x}{\sqrt{1-x^{2}}} \Longrightarrow\left(\frac{d y}{d x}\right)^{2}=\frac{x^{2}}{1-x^{2}} \Longrightarrow 1+\left(\frac{d y}{d x}\right)^{2}=1+\frac{x^{2}}{1-x^{2}}=\frac{1}{1-x^{2}},
$$

$$
\begin{equation*}
C=2 \int_{-1}^{1} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x=2 \int_{-1}^{1} \frac{d x}{\sqrt{1-x^{2}}} \tag{2}
\end{equation*}
$$

Using (1) and (2),

$$
C=2 A \Longleftrightarrow 2 \int_{-1}^{1} \frac{d x}{\sqrt{1-x^{2}}}=4 \int_{-1}^{1} \sqrt{1-x^{2}} d x \Longleftrightarrow \int_{-1}^{1} \frac{d x}{\sqrt{1-x^{2}}}=2 \int_{-1}^{1} \sqrt{1-x^{2}} d x
$$

To prove $C=2 A$, we will prove that last equation:

$$
\begin{equation*}
\int_{-1}^{1} \frac{d x}{\sqrt{1-x^{2}}} \stackrel{?}{=} 2 \int_{-1}^{1} \sqrt{1-x^{2}} d x . \tag{3}
\end{equation*}
$$

In the integral on the right side of (3) use integration by parts with

$$
u=\sqrt{1-x^{2}} \quad \text { and } \quad d v=d x
$$

Then

$$
d u=\frac{-2 x}{2 \sqrt{1-x^{2}}} d x=-\frac{x}{\sqrt{1-x^{2}}} d x \quad \text { and } \quad v=x
$$

so

$$
\begin{equation*}
\int_{-1}^{1} \sqrt{1-x^{2}} d x=\int_{-1}^{1} u d v=\left.u v\right|_{-1} ^{1}-\int_{-1}^{1} v d u=0+\int_{-1}^{1} \frac{x^{2}}{\sqrt{1-x^{2}}} d x \tag{4}
\end{equation*}
$$

Simplify the last integrand by writing the numerator x^{2} as $x^{2}-1+1$:

$$
\begin{aligned}
\int_{-1}^{1} \frac{x^{2}}{\sqrt{1-x^{2}}} d x & =\int_{-1}^{1} \frac{x^{2}-1+1}{\sqrt{1-x^{2}}} d x \\
& =\int_{-1}^{1} \frac{x^{2}-1}{\sqrt{1-x^{2}}} d x+\int_{-1}^{1} \frac{1}{\sqrt{1-x^{2}}} d x \\
& =\int_{-1}^{1}-\frac{\left(1-x^{2}\right)}{\sqrt{1-x^{2}}} d x+\int_{-1}^{1} \frac{1}{\sqrt{1-x^{2}}} d x \\
& =-\int_{-1}^{1} \sqrt{1-x^{2}} d x+\int_{-1}^{1} \frac{1}{\sqrt{1-x^{2}}} d x
\end{aligned}
$$

and feeding this into (4) gives us

$$
\int_{-1}^{1} \sqrt{1-x^{2}} d x=-\int_{-1}^{1} \sqrt{1-x^{2}} d x+\int_{-1}^{1} \frac{1}{\sqrt{1-x^{2}}} d x
$$

Adding $\int_{-1}^{1} \sqrt{1-x^{2}} d x$ to both sides gives us (3), which completes the proof that if we define π so that a circle with radius 1 has circumference 2π then the area of a circle with radius 1 is π.

