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We want to discuss the two identities

(1) log(1 + x) =
∑
n≥1

(−1)n−1
xn

n
,
√

1 + x =
∑
n≥0

(−1)n−1(2n)!

22nn!2(2n− 1)
xn

at x = 1. In both equations, the series on the right side converges for |x| < 1 and the
function on the left is defined for |x| < 1. Both sides of each equation satisfy the same
first-order differential equation (y′ = 1/(1 + x) on the left, y′ = 1

2y
on the right) and have

the same values at x = 0, so the two sides are equal for −1 < x < 1. But what happens
at the endpoints? For example, the series on the left in (1) converges at x = 1 since it is
alternating there, but that alone doesn’t prove the series at x = 1 is log 2.

Let’s be sure not to confuse two issues: convergence of the series at the boundary and
knowing if the value of the series at the boundary equals what we think it should equal.
How can we show the values of the series at the endpoints are what we expect by continuity
from inside the interval of convergence? Rather than treating these two examples by special
methods adapted just for them (see [1, p. 254] for that), we will explain a more systematic
approach to boundary behavior of power series.

Theorem 1 (Abel, 1826). Let g(x) =
∑

n≥0 cnx
n be a power series which converges for

|x| < 1. If
∑

n≥0 cn converges then

lim
x→1−

g(x) =
∑
n≥0

cn.

In other words, if a power series converges at x = 1 then its value at x = 1 is the limit of
its values at x as x→ 1−, so a power series has built-in continuity in its behavior.

Before we prove Abel’s theorem, let’s see how it applies to our previous examples at x = 1.

Example 1. In (1), set g(x) =
∑

n≥1(−1)n−1xn/n for |x| < 1. Then g(x) = log(1 + x) for
|x| < 1. The series g(1) converges since it’s alternating, so by Abel’s theorem

g(1) = lim
x→1−

g(x) = lim
x→1−

log(1 + x) = log 2

since the logarithm is a continuous function.

Example 2. In (1), set g(x) =
∑
n≥0

(−1)n−1(2n)!

22nn!2(2n− 1)
xn for |x| < 1, so g(x) =

√
1 + x here.

The series g(1) is absolutely convergent, so by Abel’s theorem and the continuity of
√

1 + x,

g(1) = lim
x→1−

g(x) = lim
x→1−

√
1 + x =

√
2.

1
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Abel’s theorem says that if a power series converges on (−1, 1) and also at x = 1 then
its value at x = 1 is determined by continuity from the left of 1. You must know the series
converges at x = 1 before you can apply Abel’s theorem. This theorem does not say that if
a function has a power series representation in (−1, 1) and has a limit as x → 1− that the
series converges at x = 1 and equals the limiting value there. Here is a counterexample.

Example 3. Let g(x) = 1/(1 + x2), which is differentiable for all real x. When |x| < 1,
g(x) =

∑
n≥0(−1)nx2n by expanding a geometric series. While g(x) has a limit as x → 1−

(namely 1/2), the power series does not converge at x = 1.

Now we prove Abel’s theorem. The main tool will be summation by parts: for two
sequences u1, . . . , uN and v0, . . . , vN ,

N∑
n=1

un(vn − vn−1) = (uNvN − u1v0)−
N−1∑
n=0

vn(un+1 − un).

Proof. We are given that
∑

n≥0 cnx
n converges for |x| < 1 and at x = 1. Our goal is to prove

lim
x→1−

∑
n≥0

cnx
n =

∑
n≥0

cn.

For −1 < x < 1 we will work with the truncated sums
∑N

n=0 cnx
n and

∑N
n=0 cn. Set

sn = c0 + c1 + · · ·+ cn

for n ≥ 0. Note sn − sn−1 = cn for n ≥ 1. Then

N∑
n=0

cnx
n = c0 +

N∑
n=1

xn(sn − sn−1)

= c0 +
N∑

n=1

un(sn − sn−1) where un = xn

= c0 + uNsN − u1s0 −
N−1∑
n=1

sn(un+1 − un) by summation by parts

= c0 + xNsN − xc0 −
N−1∑
n=1

sn(xn+1 − xn)

= (1− x)c0 + xNsN +
N−1∑
n=1

sn(xn − xn+1)

= (1− x)c0 + xNsN +
N−1∑
n=1

sn(1− x)xn.
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Since s0 = c0, we can absorb the first term into the sum as the n = 0 term, and then pull a
1− x out of each term in the sum:

(2)
N∑

n=0

cnx
n = xNsN + (1− x)

N−1∑
n=0

snx
n.

By hypothesis, the left side of (2) converges as N → ∞. Also xNsN → 0 as N → ∞ since
xN → 0 and sN is bounded (in fact sN converges since we’re assuming

∑∞
n=1 cn converges).

Therefore when −1 < x < 1 the partial sums on the right side of (2) converge as N → ∞
and we get

(3)
∑
n≥0

cnx
n = (1− x)

∑
n≥0

snx
n.

Let s =
∑

n≥0 cn. We want to show
∑

n≥0 cnx
n → s as x→ 1−. We subtract s from both

sides of (3) and write

(4)
∑
n≥0

cnx
n − s = (1− x)

∑
n≥0

(sn − s)xn,

where on the right side we used the formula (1 − x)
∑

n≥0 x
n = 1. Our goal is to show the

right side of (4) tends to 0 as x→ 1−.
By assumption, sn → s as n→∞. Pick a positive number ε. For all large n, say n ≥M ,
|sn − s| ≤ ε. Then we break up the right side of (4) into two sums∑

n≥0

cnx
n − s = (1− x)

M−1∑
n=0

(sn − s)xn + (1− x)
∑
n≥M

(sn − s)xn

and estimate:∣∣∣∣∣∑
n≥0

cnx
n − s

∣∣∣∣∣ ≤ |1− x|
M−1∑
n=0

|sn − s||x|n + |1− x|
∑
n≥M

|sn − s||x|n

≤ |1− x|
M−1∑
n=0

|sn − s||x|n + |1− x|
∑
n≥M

ε|x|n

= |1− x|
M−1∑
n=0

|sn − s||x|n + |1− x|ε |x|
M

1− |x|

< |1− x|
M−1∑
n=0

|sn − s||x|n + |1− x|ε 1

1− |x|
.

Taking 0 < x < 1, |1− x| = 1− x so this upper bound becomes

(5)

∣∣∣∣∣∑
n≥0

cnx
n − s

∣∣∣∣∣ < |1− x|
M−1∑
n=0

|sn − s|+ ε.

When x→ 1−, the first term on the right side of (5) tends to 0 on account of the 1−x there.
(Note the upper index of summation M − 1 has nothing to do with x, so it does not change
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as x → 1−.) When x is close enough to 1, we can make the first term on the right side at
most ε, so

(6)

∣∣∣∣∣∑
n≥0

cnx
n − s

∣∣∣∣∣ ≤ ε + ε = 2ε

as x → 1−. Since ε is an arbitrary positive number, the left side of (6) must go to zero as
x→ 1−. �

Abel’s theorem was stated for the behavior of series at the point x = 1, but rescaling lets
us apply it to other points, as follows.

Corollary 2. Suppose a power series
∑

n≥0 cnx
n converges for |x| < r. If the series converges

at r or −r then the value of the series there is the limit of the values of the series as x tends
to the endpoint from inside the interval. That is,

(a) if
∑

n≥0 cnr
n converges then

lim
x→r−

∑
n≥0

cnx
n =

∑
n≥0

cnr
n,

(b) if
∑

n≥0 cn(−r)n converges then

lim
x→−r+

∑
n≥0

cnx
n =

∑
n≥0

cn(−r)n.

Proof. In (a), let an = cnr
n and g(x) =

∑
n≥0 anx

n =
∑

n≥0 cn(rx)n for |x| < 1. This series
converges at x = 1 so Abel’s theorem tells us∑

n≥0

an = lim
x→1−

∑
n≥0

anx
n = lim

x→1−

∑
n≥0

cnr
nxn = lim

x→r−

∑
n≥0

cnx
n,

where the limit changed from x → 1− to x → r− in the last equation (by replacing x with
x/r). Since an = cnr

n, the left side is
∑

n≥0 an =
∑

n≥0 cnr
n.

The argument in (b) is similar, using an = cn(−r)n. �

Example 4. In the second equation in (1), the series on the right is (absolutely) convergent
at x = −1. The function

√
1 + x is continuous from the right at x = −1, with value 0, so

by Corollary 2 the second series in (1) at x = −1 has value 0:

0 = −
∑
n≥0

(2n)!

22nn!2(2n− 1)
= 1− 1

2
− 1

8
− 1

16
− 5

128
− 7

256
− · · · ,

or equivalently

1 =
∑
n≥1

(2n)!

22nn!2(2n− 1)
.
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