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As an illustration of many uses of the Mean Value Theorem, consider the following result,
which was question A6 on the 32nd Putnam Exam [2] in 1971.1 According to [2, p. 175],
nobody answered it with a score of 8, 9, or 10 (the top score).

Theorem 1. If every number 2t, 3t, 4t, 5t, . . . (that is, every nt where n = 2, 3, 4, 5, . . .) is
an integer, then t is 0 or a positive integer.

Proof. Since 2t is an integer, we must have t ≥ 0. To prove t is an integer, we that it is
impossible for t to be a non-integer: first 0 < t < 1 can’t happen, then 1 < t < 2 can’t
happen, then 2 < t < 3 can’t happen, and so on, implying that t can only be one of the
numbers 0, 1, 2, 3, . . .. We’ll go through the argument for small 0 < t < 3 first so the reader
can see what is happening there before we treat the general case.

Case 1: We can’t have 0 < t < 1.
Assume 0 < t < 1. For each integer n ≥ 1, (n+1)t−nt is an integer since nt and (n+1)t

are integers. The Mean Value Theorem implies

(n + 1)t − nt = txt−1
n

for some xn where n < xn < n + 1. Since t− 1 < 0, we have xt−1
n < nt−1, so

0 < (n + 1)t − nt < tnt−1.

Since t− 1 < 0, tnt−1 → 0 as n→∞. Thus for large n, 0 < (n+ 1)t − nt < 1, which is a
contradiction: there is no integer between 0 and 1.

Case 2: We can’t have 1 < t < 2.
Assume 1 < t < 2. For each integer n ≥ 1, the number

((n + 2)t − (n + 1)t)− ((n + 1)t − nt) = (n + 2)t − 2(n + 1)t + nt

is an integer since nt, (n + 1)t, and (n + 2)t are all integers. By the Mean Value Theorem,

(n + 1)t − nt = txt−1
n and (n + 2)t − (n + 1)t = txt−1

n+1

where n < xn < n + 1 and n + 1 < xn+1 < n + 2, so xn < xn+1. Then

(n + 2)t − 2(n + 1)t + nt = txt−1
n+1 − txt−1

n

= t(xt−1
n+1 − xt−1

n )

= t(t− 1)yt−2
n

by the Mean Value Theorem, where xn < yn < xn+1. Since t > 1, the numbers t and t− 1
are positive, so t(t− 1)yt−2

n > 0. Thus (n + 2)t − 2(n + 1)t + nt > 0.
Since n < xn < yn and t− 2 < 0,

0 < (n + 2)t − 2(n + 1)t + nt = t(t− 1)yt−2
n < t(t− 1)nt−2.

1I first heard this result from a Mathoverflow question: https://mathoverflow.net/questions/ 17560.
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As n→∞, t(t− 1)nt−2 → 0 due to the exponent t− 2 being negative . Thus for large n,

0 < (n + 2)t − 2(n + 1)t + nt < 1.

and that is contradiction since no integer is between 0 and 1.
Case 3: We can’t have 2 < t < 3.
Assume 2 < t < 3. For each integer n ≥ 1, we will look at the numbers

((n+3)t−(n+2)t)−2((n+2)t−(n+1)t)+((n+1)t−nt) = (n+3)t−3(n+2)t+3(n+1)t−nt,

which are integers since nt, (n + 1)t, (n + 2)t, and (n + 3)t are integers. We’ll apply the
Mean Value Theorem to each difference on the left side:

(n + 1)t − nt = txt−1
n (n + 2)t − (n + 1)t = txt−1

n+1, and (n + 3)t − (n + 2)t = txt−1
n+2

where n < xn < n + 1, n + 1 < xn+1 < n + 2, and n + 2 < xn+2 < n + 3. Then

(n + 3)t − 3(n + 2)t + 3(n + 1)t − nt = txt−1
n+2 − 2txt−1

n+1 + txt−1
n ,

= t((xt−1
n+2 − xt−1

n+1)− (xt−1
n+1 − xt−1

n ))

= t((t− 1)yt−2
n+1 − (t− 1)yt−2

n )

= t(t− 1)(yt−2
n+1 − yt−2

n )

by the Mean Value Theorem, where xn < yn < xn+1 and xn+1 < yn+1 < xn+2. Then
yn < yn+1, so

yt−2
n+1 − yt−2

n = (t− 2)zt−3
n

by the Mean Value Theorem, where yn < zn < yn+1. Thus

(n + 3)t − 3(n + 2)t + 3(n + 1)t − nt = t(t− 1)(t− 2)zt−3
n ,

which is positive since zn > 0 and t > 2. Since n < xn < yn < zn and t−3 < 0, zt−3
n < nt−3.

Thus

0 < (n + 3)t − 3(n + 2)t + 3(n + 1)t − nt = t(t− 1)(t− 2)zt−3
n < t(t− 1)(t− 2)nt−3.

We have t(t− 1)(t− 2)nt−3 → 0 as n→∞ since t− 3 < 0, so for large n,

0 < (n + 3)t − 3(n + 2)t − 3(n + 1)t + nt < 1.

This is a contradiction since no integer is between 0 and 1.
General case: Hopefully the reader sees a general pattern emerging in order to prove that

k − 1 < t < k is impossible for each positive integer k, which would mean that t can only
be one of the numbers 0, 1, 2, 3, . . ., or in other words t must be 0 or a positive integer.

The strategy we use is based on the following identity that is inspired by the earlier cases:
for positive integers k and n and all real numbers t,

(1)
k∑

j=0

(−1)k−j

(
k

j

)
(n + j)t = t(t− 1) · · · (t− k + 1)ct−k

for some c in (n, n + k) that depends on t, k, and n. We will actually prove a stronger
result: for each positive integer k, real number t, and all 0 < a0 < · · · < ak,

(2)

k∑
j=0

(−1)k−j

(
k

j

)
atj = t(t− 1) · · · (t− k + 1)ct−k
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for some c in (a0, ak) that depends on t, k, and the aj ’s. (Equation (1) is the special
case aj = n + j.) To prove (2), we will use induction on k. The base case (k = 1) says
at1 − at0 = tct−1 for some c in (a0, a1), which is the Mean Value Theorem for xt on [a0, a1].

To prove the inductive step, let k ≥ 2 on the left side of (2) and split off the first and

last terms on the the left side of (2). Then use the identity
(
k
j

)
=
(
k−1
j−1

)
+
(
k−1
j

)
when

1 ≤ j ≤ k − 1 to show after recombining terms that

k∑
j=0

(−1)k−j

(
k

j

)
atj =

k−1∑
i=0

(−1)k−1−i

(
k − 1

i

)
(ati+1 − ati).

On the right side here, ati+1−ati = tbt−1
i for some bi in (ai, ai+1) by the Mean Value Theorem,

so 0 < b0 < b1 < · · · < bk−1. Then

(3)

k∑
j=0

(−1)k−j

(
k

j

)
atj = t

k−1∑
i=0

(−1)k−1−i

(
k − 1

i

)
bt−1
i .

The sum on the right side of (3) is exactly what we can use in an inductive step: if (2)
holds with k − 1 in place of k (and all t’s and aj ’s), then by using t − 1 in place of t and
the bi’s in place of the aj ’s, we can rewrite the sum on the right side of (3):

k−1∑
i=0

(−1)k−1−i

(
k − 1

i

)
bt−1
i = (t− 1) · · · ((t− 1)− (k − 1) + 1)c(t−1)−(k−1)

= (t− 1) · · · (t− k + 1)ct−k

for some c in (b0, bk−1). Thus

k∑
j=0

(−1)k−j

(
k

j

)
atj = t(t− 1) · · · (t− k + 1)ct−k

where a0 < b0 < c < bk−1 < ak, so c is in (a0, ak). That completes the proof of (2) for all k.
Now assume t is a real number such that 2t, 3t, 4t, 5t, . . . are all integers. That 2t is

an integer implies t ≥ 0. We will show for each positive integer k that we can’t have
k − 1 < t < k, so t = 0 or t is a positive integer.

Assume k − 1 < t < k, where k is a positive integer. Use (1):

k∑
j=0

(−1)k−j

(
k

j

)
(n + j)t = t(t− 1) · · · (t− k + 1)ct−k,

where n is a positive integer and c is in (n, n+ k). The left side is an integer and all factors
on the right side are positive since k − 1 < t, so the left side is a positive integer. The
exponent on c is negative since t < k. Since n < c and t− k < 0, we have ct−k < nt−k, so

0 <
k∑

j=0

(−1)k−j

(
k

j

)
(n + j)t < t(t− 1) · · · (t− k + 1)nt−k.
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As n→∞, we have nt−k → 0, so for large enough n

0 <
k∑

j=0

(−1)k−j

(
k

j

)
(n + j)t < 1,

and that is a contradiction since the number between 0 and 1 is an integer. So for each
positive integer k we can’t have k − 1 < t < k. �

Remark 2. Using the six exponentials theorem from transcendental number theory, it can
be shown that if we assume only that 2t, 3t, and 5t are integers, then t is 0 or a positive
integer. (This is also true when 2, 3, and 5 are replaced by any three multiplicatively
independent positive integers.)

It is expected that if we assume only that 2t and 3t are integers then t has to be 0 or a
positive integer, but that remains an unsolved problem. (The same conclusion should also
hold when 2 and 3 are replaced by any two multiplicatively independent positive integers,
and the case of two different primes was posed by Alaoglu and Erdős [1, p. 449].) This
would be a consequence of the unproved four exponentials conjecture, which in turn is a
consequence of Schanuel’s conjecture.
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