
The Möbius function and the residue theorem

Brian Conrad
Department of Mathematics,

University of Michigan, Ann Arbor, MI 48109-1109
Email: bdconrad@umich.edu

Keith Conrad
Department of Mathematics,

University of Connecticut, Storrs, CT 06269-3009
Email: kconrad@math.uconn.edu

Manuscript correspondence to: Keith Conrad at above address.
Tel: (860)486-3207, Fax: (860) 486-4238

1



Abstract

A classical conjecture of Bouniakowsky says that a non-constant irreducible poly-
nomial in Z[T ] has infinitely many prime values unless there is a local obstruction.
Replacing Z[T ] with κ[u][T ], where κ is a finite field, the obvious analogue of Bouni-
akowsky’s conjecture is false. All known counterexamples can be explained by a new
obstruction, and this obstruction can be used to fix the conjecture. The situation is
more subtle in characteristic 2 than in odd characteristic. Here we illustrate the general
theory for characteristic 2 in some examples.
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In memory of Arnold E. Ross

1 Introduction

When f(T ) ∈ Z[T ] is a non-constant irreducible polynomial, a classical conjecture of Bou-
niakowsky [1] asserts that f(n) is prime for infinitely many integers n unless there is a
local obstruction, i.e., unless f(n) is divisible by a common prime for every n ∈ Z. For
example, T 2 − T + 6 is irreducible, but has a local obstruction at 2: n2 − n + 6 is always
even. Bouniakowsky’s conjecture is proved when deg f = 1 (this is the qualitative form
of Dirichlet’s theorem), but no example has been settled when deg f > 1. The key point
we wish to emphasize is that the philosophy underlying Bouniakowsky’s conjecture (and
its quantitative refinements, as in work of Hardy–Littlewood) is that statistics on prime
specializations should be governed by local considerations. A survey on connections be-
tween diophantine equations and Bouniakowsky’s conjecture (more precisely, the broader
conjecture of Schinzel which treats primality of several polynomials rather than a single
polynomial) is in [8].

While Bouniakowsky did not discuss a conjecture in κ[u][T ], where κ is a finite field,
there is an obvious formulation, as follows. Let f(T ) ∈ κ[u][T ] be any irreducible with
positive T -degree. Then there should be infinitely many irreducible values f(g), as g runs
over κ[u], unless there is a local obstruction, i.e., unless some irreducible in κ[u] divides f(g)
for every g ∈ κ[u]. As in the classical case, this conjecture is a theorem when degT (f) = 1.

Surprisingly, this obvious analogue of Bouniakowsky’s conjecture is not generally true!
For example, T 8 + u3 is irreducible in F2[u][T ] and has no local obstructions (the values
at T = 0 and T = 1 are relatively prime in F2[u]). Yet for every g ∈ F2[u], g8 + u3 is
reducible. The reducibility is clear when g(0) = 0, but not when g(0) = 1. In the latter
case, Swan [7] proved the reducibility by showing g8 +u3 has an even number of irreducible
factors. We find it convenient to write this in the form µF2[u](g8 + u3) = 1, where µF2[u]

is the analogue on F2[u] of the classical Möbius function. Note that whereas the property
of being squarefree (i.e., having non-zero Möbius-value) is local, the Möbius function is
inherently global.

A general analysis of the preceding phenomenon is tied up with inseparability in positive
characteristic and extends to higher genus curves (κ[u] being the case of “genus 0”), and
is joint work with R. Gross that will be presented in [2] and [3]. The main discovery
we have found is that there is a global obstruction to irreducible values of polynomials in
κ[u][T ], having no classical analogue in Z[T ]. This new obstruction is related to unusual
statistics for µκ[u](f(g)) as g varies. By “unusual statistics” we mean: the average value
of µκ[u](f(g)), in a sense which is made precise in [2], provably does not always tend to
0. In contrast, for any non-constant f(T ) ∈ Z[T ], one expects (in agreement with all
numerical evidence) that the average (1/x)

∑
n≤x µ(f(n)) tends to 0, although this has not

been proved in any case where deg f > 1. (When deg f = 1, H. N. Shapiro [5] proved
the condition (1/x)

∑
n≤x µ(f(n)) → 0 is equivalent to the quantitative form of Dirichlet’s

theorem.)
The extent to which the average value of µκ[u](f(g)), for some f(T ) ∈ κ[u][T ], has

non-zero limiting behavior turns out to be linked not only to a corrected κ[u]-analogue of
Bouniakowsky’s conjecture for f(T ), but to a quantiative refinement, i.e., to a κ[u]-analogue
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of the Hardy–Littlewood conjecture on the frequency of prime values of polynomials.

Example 1.1. Let f(T ) = T 12 + (u + 1)T 6 + u4 ∈ F3[u][T ]. Numerical data suggest that,
as g varies over F3[u], f(g) is irreducible about 1.33 times as often as is predicted by naive
probabilistic arguments (based on an analogy with the classical situation in Z[T ]). We are
unable to prove the asymptotic relation suggested by the data, but we can rigorously produce
a number close to 1.33 in the statisics for non-zero values of µF3[u](f(g)), as follows. In [2],
µF3[u](f(g)) is proved to be periodic in g, with period u(u−1), for deg g ≥ 1. A consequence,
as explained in [2], is that the average non-zero value of µF3[u](f(g)), in a certain sense,
is exactly −1/3. This differs from 1 by 4/3 = 1.333 . . . . (Consider an agreement between
naive predictions and numerical data as corresponding to a trivial correction factor of 1.)

The pattern illustrated by Example 1.1 fits into the following more general picture. For
all f(T ) ∈ κ[u][T ] that we have found to have a noticeable excess or defect of irreducible
values for f(g) compared to naive (local) probabilistic predictions, f(T ) is a polynomial in
T p. Moreover, the excess or defect of irreducible values agrees numerically with a correction
factor which is related to averages of non-zero Möbius values µκ[u](f(g)). The definition
and analysis of this correction factor is given in [2], where the general case turns out to
be more complicated than what is suggested by Example 1.1 alone. In particular, the case
p = 2 is not as well understood as the case p 6= 2.

Having illustrated why the behavior of µκ[u](f(g)) is of interest in connection with
a κ[u]-analogue of Bouniakowsky’s conjecture, we turn to the main focus of this paper:
the extra difficulties encountered in understanding µκ[u](f(g)) when κ has characteristic 2
rather than odd characteristic. Let us illustrate the difference between odd characteristic
and characteristic 2 by considering f(T ) = T p + u. When κ has characteristic p 6= 2 and
g ∈ κ[u] is non-constant, µκ[u](gp + u) admits a very simple formula:

µκ[u](g
p + u) = (−1)nχ(−1)n(n+1)/2χ(c)n, (1.1)

where χ is the quadratic character on κ×, n is the degree of g, and c is the leading coefficient
of g. In particular, µκ[u](gp + u) is determined by χ(c) and n mod 4 (or just n mod 2 if −1
is a square in κ). The proof of (1.1), which is discussed in [2], is an easy application of
Swan’s work.

The analogue of (1.1) in characteristic 2 is more subtle:

Example 1.2. Let κ be a finite field of characteristic 2. For any g ∈ κ[u] with deg g ≥ 1,

µκ[u](g
2 + u) = (−1)b

deg g+1
2

c[κ:F2](−1)Trκ/F2
(s2(ωg)), (1.2)

where b·c is the greatest integer function, Trκ/F2
is the trace,

ωg :=
g

g2 + u
dg (1.3)

is a rational 1-form on P1
κ, and s2(ω) (for any rational 1-form ω on P1

κ) denotes the second
elementary symmetric function of the residues of ω at its geometric poles:

s2(ω) =
∑

y1 6=y2

Resy1(ω) Resy2(ω) ∈ κ,

4



the sum running over unordered pairs {y1, y2} of distinct geometric poles of ω on P1
κ. The

proof of (1.2) is given in §3.
As an illustration of (1.2), consider g = u + γ, where γ ∈ κ. Then g2 + u = u2 + u + γ2,

so µκ[u](g2 + u) = 1 if u2 + u + γ2 has a root in κ, and µκ[u](g2 + u) = −1 otherwise.
Whether or not u2 + u + γ2 splits over κ is equivalent to whether or not Trκ/F2

(γ2) = 0,
so µκ[u](g2 + u) = (−1)Trκ/F2

(γ2). On the other hand, the differential form ωg has poles at
the roots r1 and r2 of u2 + u + γ2, and at ∞, with respective residues r1 + γ, r2 + γ, and 1.
These three residues have second elementary symmetric function γ + 1, so the right side of
(1.2) is (−1)Trκ/F2

(γ). This agrees with our direct calculation of µκ[u](g2 + u), since γ and
γ2 have the same trace to F2.

Our next characteristic 2 example has no residues in its statement, but they show up in
its proof.

Example 1.3. Let κ be a finite field of characteristic 2. For any g ∈ κ[u] with deg g ≥ 3,

µκ[u](g
8 + (u3 + u)g4 + u) = 1. (1.4)

A proof of (1.4) is given in §2, where we also show the restriction deg g ≥ 3 is sharp: for
some c ∈ κ×, the right side of (1.4) is −1 when g = cu2.

The meaning of Examples 1.2 and 1.3 in the context of a Bouniakowsky-type conjecture
over κ[u] is the following. Examples 1.2 and 1.3 involve T 2+u and T 8+(u3+u)T 4+u. Both
are irreducible in κ[u][T ] and have no local obstructions (each has relatively prime values
at T = 0 and T = 1). The Möbius formula in Example 1.3 implies that g8 + (u3 + u)g4 + u
is reducible when deg g ≥ 3, and thus T 8 + (u3 + u)T 4 + u is a counterexample to the
obvious analogue of Bouniakowsky’s conjecture over κ[u]. On the other hand, our formula
for µκ[u](g2 + u) does not immediately rule out the possibility of g2 + u being irreducible
for infinitely many g, and numerical testing for κ = F2 and F4 supports this possibility. In
fact, Example 1.2 is a case where we believe (but we are not able to prove) that the obvious
κ[u]-analogue of Bouniakowsky’s conjecture is true.

For characteristic 2, the main result in [2] is the following theorem that has Examples
1.2 and 1.3 as special cases.

Theorem 1.4. Let κ be a finite field of characteristic 2 and f(T ) ∈ κ[u][T ] be a polynomial
in T 2, say f(T ) = a(T 2). Assume f(T ) is squarefree with positive T -degree and has no
irreducible factor in κ[u]. For non-zero g ∈ κ[u], set

ωa,g :=
(∂T a)(g2)g2

a(g2)
dg

g

There exists a non-zero Mf ∈ κ[u] such that for g1, g2 ∈ κ[u] with sufficiently large
degrees, the congruences deg g1 ≡ deg g2 mod 4 and g1 ≡ g2 mod Mf imply

(−1)Trκ/F2
(s2(ωa,g1 ))µκ[u](f(g1)) = (−1)Trκ/F2

(s2(ωa,g2 ))µκ[u](f(g2)).

If 4|degT a or [κ : F2] is even, then the congruence condition on deg gi can be dropped.
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Remark 1.5. If f(T ) is a polynomial in T 4, so a(T ) is itself a polynomial in T 2, then using
Ma in place of Mf and noting d(g2) = 0 for any g, all g1 and g2 of large degree in κ[u]
satisfy

deg g1 ≡ deg g2 mod 2, g1 ≡ g2 mod Ma =⇒ µκ[u](f(g1)) = µκ[u](f(g2)).

However, if f(T ) is only a polynomial in T 2, the sign (−1)Trκ/F2
(s2(ωa,g)) does not seem to

behave in a simple manner in general. This accounts for our current inability to formulate
a completely satisfactory characteristic 2 analogue of Bouniakowsky’s conjecture.

Theorem 1.4 explains part of Examples 1.2 and 1.3, using f(T ) = T 2 + u and f(T ) =
T 8 +(u3 +u)T 4 +u. (In the second case, f(T ) is a polynomial in T 4. That is why Example
1.3 has a simpler appearance than Example 1.2.) Indeed, the proof of Theorem 1.4 in [2]
turns out to imply that Mf = 1 in Example 1.2 and Ma = 1 in Example 1.3. Therefore,
according to Theorem 1.4, when g has sufficiently large degree,

(−1)Trκ/F2
(s2(ωg))µκ[u](g

2 + u) (1.5)

only depends on deg g mod 4 (ωg is as in (1.3)) and

µ(g8 + (u3 + u)g4 + u) (1.6)

is independent of g. What the proof of Theorem 1.4 does not easily tell us is an effective
lower bound on deg g in the two examples, and what the values of (1.5) and (1.6) actually
are.

The proof of Theorem 1.4 in [2] is long and involves a mixture of algebraic and 2-
adic arguments, and the proof of the higher-genus version of Theorem 1.4 in [3] uses rigid
analytic geometry and deformation theory, together with a technique for pulling up results
from the genus-zero case. In the present paper, we illustrate some of the general ideas in
the proof of Theorem 1.4 by proving (1.2) and (1.4) in a self-contained way, including the
effective lower bounds. The methods we use in these specific examples are, for the most
part, specializations of the methods used to analyze the general case in genus zero. Our
hope is that working out these examples here will make the general proof of Theorem 1.4
in [2] easier to follow.

Terminology. Write W for the Witt vectors of κ (e.g., W = Z2 when κ = F2), and
write K for the fraction field of W . We will be working with polynomials in W [u], and want
to fix the meaning of two terms in the context of this ring. A polynomial in W [u] is called
unitary when its leading coefficient is a unit. For a non-zero polynomial h(u) ∈ κ[u], a lift of
h to W [u] is any H(u) ∈ W [u] which reduces to h and satisfies deg H = deg h. The degree
condition is equivalent to requiring that H is unitary. For instance, 2u2 + u + 3 ∈ W [u]
reduces to u + 1 in κ[u] but it is not considered to be a lift of u + 1.

We thank M. Larsen for some suggestions related to Example 1.3 and the referee for
some comments on an earlier version of this paper. The first author thanks the NSF and
the Sloan Foundation for financial support.
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2 Example 1.3

Since polynomials in T 4 are easier to treat, we discuss Example 1.3 before Example 1.2.
Our strategy for proving (1.4) has three steps. Define

F (T ) := T 2 + (u3 + u)T + u ∈ Z[u][T ],

so (1.4) is equivalent to: µκ[u](F (g4)) = 1 when g ∈ κ[u] has degree at least 3.
Our first step in the direction of (1.4) will use a formula of Swan to show

µκ[u](F (g4)) = χ(RW (F (G4), F (G4)′)), (2.1)

where g ∈ κ[u] is non-constant, G ∈ W [u] is any lift of g (deg G = deg g, so G is unitary),
RW is the resultant on W [u] with respect to W , and χ is a certain quadratic character on
W×. The derivative F (G4)′ is a u-derivative.

Our second step will simplify the right side of (2.1). The resultant RW (F (G4), F (G4)′)
is difficult to compute symbolically, since F (G4)′ depends on G′. We will use the residue
theorem to show, that F (G4)′ can be replaced with (∂uF )(G4) in (2.1):

µκ[u](F (g4)) = χ(RW (F (G4), (∂uF )(G4))). (2.2)

(The resultant in (2.1) and (2.2) is computed in characteristic 0. The characteristic 0
polynomials F (G4)′ and (∂uF )(G4) are usually not equal, although their reductions to
characteristic 2 agree.) Up to this stage, g can be any non-constant polynomial in κ[u].

We will study the 2-adic valuations of roots of certain auxiliary polynomials in order to
show RW (F (G4), (∂uF )(G4)) is a square in W× when G ∈ W [u] is unitary and deg G ≥ 3.
Therefore (2.2) is equal to 1 for all g with degree at least 3, which proves (1.4). A more
careful study of the case deg G = 2 will show us the right side of (2.2) is −1 for at least one
g of degree 2.

Now we carry out this strategy.

Step 1: Derive (2.1).
We begin by recalling a formula of Swan which describes the Möbius function on sep-

arable polynomials in κ[u] in terms of a polynomial lifting into characteristic 0. This will
suffice for our intended application, since g8 + (u3 + u)g4 + u is separable for any g in κ[u].
Indeed, suppose an irreducible π in κ[u] divides both g8 + (u3 + u)g4 + u and its derivative
(u2 + 1)g4 + 1:

g8 + (u3 + u)g4 + u ≡ 0 mod π, (u2 + 1)g4 + 1 ≡ 0 mod π.

Feeding the second congruence into the first, we get g8 ≡ 0 mod π, so π|g. Thus, the second
congruence becomes 1 ≡ 0 mod π, a contradiction.

For a separable h ∈ κ[u], let H be any lift of h to W [u]. A formula of Swan [7] expresses
µκ[u](h) in terms of the discriminant of H:

µκ[u](h) = (−1)deg hχ(discW H), (2.3)
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where χ is a quadratic character on W× which we define in the next paragraph. The
discriminant of H, for us, is defined as

discW H :=
(−1)d(d−1)/2

∏
H(α)=0 H ′(α)

(leadH)d
, (2.4)

where d = deg H. (This definition is unaffected when H is scaled by a non-zero constant,
which is not the case for the usual definition of the polynomial discriminant in the literature.)
Since h is separable, discW H is in W×. In fact, by an easy extension of Stickelberger’s
congruence modulo 4 for discriminants over Z, discW H ∈ µodd(W ) · (1 + 4W ), where
µodd(W ) is the group of odd-order roots of unity in W .

The quadratic character χ in (2.3) will be defined in terms of the product decomposition

W× = µodd(W ) · (1 + 2W ).

The squares (W×)2 have index 2 in the subgroup µodd(W ) · (1 + 4W ) [4, p. 47]. Initially
define χ as the quadratic character on µodd(W )·(1+4W ) whose kernel is (W×)2. Explicitly,
for ζ ∈ µodd(W ) and w ∈ W ,

χ(ζ(1 + 4w)) = (−1)Trκ/F2
(w mod 2W ). (2.5)

In particular, χ is trivial on 1 + 8W ; this will be crucial later. To avoid the tedium of
verifying that every element of W× to which we will apply χ lies in µodd(W ) · (1 + 4W ),
extend χ arbitrarily to a character on W×. The extended character is quadratic since
(W×)2 lies in (in fact, equals) the kernel of the original χ. We can consider χ as a quadratic
character on W×/(1 + 8W ).

(When κ = F2, χ is the quadratic Legendre symbol ( ·2) on Z×
2 /(1 + 8Z2) and (2.3) says

µF2[u](h) = (−1)deg h(disc H
2 ), which is a formula going back to Stickelberger [6].)

We return to the intended application. Choose g ∈ κ[u] with degree n ≥ 1, and let
h = F (g4) = g8 + (u3 + u)g4 + u. Since h is separable and deg h = 8n, (2.3) implies

µκ[u](F (g4)) = χ(discW (F (G4))), (2.6)

where G ∈ W [u] is any lift of g. (Then F (G4) is a lift of F (g4), and G and F (G4) are
unitary.)

Now we change (2.6) into an equation involving resultants. We use the standard defini-
tion of resultants: when D is a domain and H1 and H2 are non-zero in D[u],

RD(H1,H2) := (leadH1)deg H2
∏

H1(α)=0

H2(α), (2.7)

the product running over the roots of H1 (with multiplicity) in a splitting field. In steps 2
and 3 below, we will use the following three properties of resultants:

a) RD(H1,H2) = (−1)(deg H1)(deg H2)RW (H2,H1). (Thus RD(H1,H2) = RD(H2,H1)
when one of the Hj ’s has even degree.)

b) Resultants are bimultiplicative in each argument.
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c) When H1 ≡ H2 mod H3, RD(H3,H1) = (lead H3)deg H1−deg H2RD(H3,H2).

Comparing (2.4) and (2.7),

discW H =
(−1)d(d−1)/2RW (H(u),H ′(u))

(leadH)2d−1
, (2.8)

where d = deg H. Using H = G8 + (u3 + u)G4 + u = F (G4) in (2.8), we get

discW (F (G4)) =
RW (F (G4), F (G4)′)

(leadG)8(16n−1)
. (2.9)

Since χ is quadratic, (2.6) and (2.9) imply (2.1).

Step 2: Derive (2.2).
Reduction W [u] → κ[u] commutes with differentiation, but does not generally commute

with the calculation of resultants. The reason is that resultants depend on degrees and
leading coefficients, and a leading coefficient in characteristic 0 may vanish under reduction
(causing the degree to drop). For example, when c ∈ W×, RW (cu2+u, 2u+1) = c−2 ∈ W×

and the resultant of the reduced polynomials is Rκ(cu2 + u, 1) = 1 ∈ κ×. Usually, c− 2 6= 1
in W/2W = κ.

Nevertheless, reduction and calculation of resultants can behave well together. For ex-
ample, when H1 and H2 are both unitary polynomials in W [u], the reduction of RW (H1,H2)
equals Rκ(H1, H2). More importantly for us, when at least one of H1 or H2 is unitary,

Rκ(H1, H2) ∈ κ× ⇐⇒ RW (H1,H2) ∈ W×. (2.10)

Indeed, by property (a) of resultants, it suffices to show this equivalence when H1 is unitary.
In that case, the reason RW (H1,H2) may not reduce to Rκ(H1, H2) is that the degree of
H2 may be smaller than that of H2. The effect of a degree drop in κ[u] (in other words,
computing a resultant with an artificially inflated degree assigned to one of the polynomials)
is a scaling of the actual resultant by a power of the reduction of leadH1. This is a unit
factor, which does not affect the property of a resultant lying in κ× or not.

Since F (g4) is separable, so discκ(F (g4)) 6= 0, RW (F (G4), F (G4)′) ∈ W× by (2.10).
Since (∂uF )(G4) and F (G4)′ have the same reduction in κ[u], (2.10) implies the resultant
RW (F (G4), (∂uF )(G4)) is also in W×. Therefore (2.2) will follow from

RW (F (G4), F (G4)′)
RW (F (G4), (∂uF )(G4))

∈ (W×)2. (2.11)

Equation (2.11) is what we will prove in the rest of Step 2.
To simplify notation, for non-zero w1, w2 ∈ W we will write w1 ∼ w2 to denote equality

up to unit square factor (i.e., w1/w2 ∈ (W×)2).
Let c = leadG ∈ W×, so lead(F (G4)) = c8 ∈ (W×)2. Then

RW (F (G4), F (G4)′) ∼
∏
α

F (G4)′|u=α, (2.12)

RW (F (G4), (∂uF )(G4)) ∼
∏
α

(∂uF )(G4)|u=α, (2.13)
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where α runs over the roots of F (G4) in an algebraic closure K (K is the fraction field of
W ). The α’s in fact lie in the valuation ring of K, which we write as W . The suppressed
square factors on the right sides of (2.12) and (2.13) are c8(8n−1) and c8(4n+2), respectively.

By the Chain Rule,

F (G4)′ = (∂uF )(G4) + (∂T F )(G4) · 4G3G′. (2.14)

Feeding this into (2.12) and (2.13) gives

RW (F (G4), F (G4)′)
RW (F (G4), (∂uF )(G4))

∼
∏
α

(
1 + 4

(∂T F )(G4)G3G′

(∂uF )(G4)

∣∣∣∣
u=α

)
≡ 1 + 4

∑
α

(∂T F )(G4)G3G′

(∂uF )(G4)

∣∣∣∣
u=α

mod 8W.

(The sum over α is in W since it is Galois-invariant and (∂uF )(G4)|u=α ∈ W
×.)

Let P = F (G4) ∈ W [u]. Since P is unitary and its reduction in κ[u] is separable, its
roots in K lie in W and are simple; different roots have different reductions in the residue
field of W . Hence, we arrive at the key observation: P is a local parameter at each of its
roots, so we can write each term in the sum over α as a residue at α:

(∂T F )(G4)G3G′

(∂uF )(G4)

∣∣∣∣
u=α

= Resα

(
(∂T F )(G4)G3G′

(∂uF )(G4)
dP

P

)
.

Computing dP , the differential form on the right side can be written as

(∂T F )(G4)G3G′

(∂uF )(G4)
dP

P
=

(∂T F )(G4)G3G′

(∂uF )(G4)
(∂uF )(G4) + (∂T F )(G4)4G3G′

F (G4)
du

=
(∂T F )(G4)G4

F (G4)
dG

G
+

4((∂T F )(G4)G3G′)2

(∂uF )(G4)F (G4)
du.

Since F (g4) is separable in characteristic 2, the residue (at each α) of the second dif-
ferential form on the right side lies in 4W , so the sum is in 4W , and hence is in 2W .
Therefore ∑

α

(∂T F )(G4)G3G′

(∂uF )(G4)

∣∣∣∣
u=α

≡
∑
α

Resα

(
(∂T F )(G4)G4

F (G4)
dG

G

)
mod 2W.

The roots α of F (G4) include all the poles of ((∂T F )(G4)G3/F (G4)) dG except perhaps
∞. Moreover, reduction α 7→ α gives a bijection between the geometric roots of F (G4) and
F (g4). Therefore by the residue theorem over κ,∑

α

Resα

(
(∂T F )(g4)g4

F (g4)
dg

g

)
= −Res∞

(
(∂T F )(g4)g4

F (g4)
dg

g

)
= −degT (F ) ord∞(g)
= 0

since degT (F ) = 0 in κ. This establishes (2.11), and therefore (2.2).
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Step 3: Let G = cun + · · · in W [u] with c ∈ W× and n ≥ 1. We will prove the resultant
RW (F (G4), (∂uF )(G4)) is a square in W× when n ≥ 3 and that it is not in the kernel of χ
for some G of degree 2.

We write out the resultant more fully:

RW (F (G4), (∂uF )(G4)) = RW (G8 + (u3 + u)G4 + u, (3u2 + 1)G4 + 1).

Using some resultant algebra, we are going to show

RW (F (G4), (∂uF )(G4)) ∼ RW (6u5 + 2u3 + 1, G4 − 2u3), (2.15)

where ∼ has the same meaning as in the discussion of Step 2. We then will use 2-adic
algebra to prove RW (6u5 + 2u3 + 1, G4 − 2u3) is a square in W× when n ≥ 3.

Using properties (a), (b), and (c) of resultants as listed above (2.8), we get

RW (F (G4), (∂uF )(G4)) = RW ((3u2 + 1)G4 + 1, G8 + (u3 + u)G4 + u)
= RW ((3u2 + 1)G4 + 1, G8 + u(−2u2G4 − 1) + u)
= RW ((3u2 + 1)G4 + 1, G8 − 2u3G4)
= RW ((3u2 + 1)G4 + 1, G)4 ·RW ((3u2 + 1)G4 + 1, G4 − 2u3)
= RW (G, (3u2 + 1)G4 + 1)4 ·RW (G4 − 2u3, (3u2 + 1)G4 + 1)
= c4(4n+2) · c4(4n−3)RW (G4 − 2u3, (3u2 + 1)2u3 + 1)
∼ RW (6u5 + 2u3 + 1, G4 − 2u3),

which is (2.15).
Let β run over the roots of 6u5 + 2u3 + 1 in K. Clearly |β|2 > 1, so G(β) 6= 0 (roots of

G are integral over W ). Therefore

RW (6u5 + 2u3 + 1, G4 − 2u3) = 64n
∏
β

(G(β)4 − 2β3)

=

6n
∏
β

G(β)

4∏
β

G(β)4 − 2β3

G(β)4

= RW (6u5 + 2u3 + 1, G)4
∏
β

(
1− 2β3

G(β)4

)
.

Normalizing the 2-adic valuation to be the usual one on Q2, each β has 2-adic valuation
−1/5 (1/β is the root of an Eisenstein polynomial) and G is unitary, so G(β) has 2-adic
valuation −n/5 and 2β3/G(β)4 has 2-adic valuation (4n + 2)/5 > 1. Therefore the product
over β, which is a field norm down to K, lies in W×.

Since RW (6u5 +2u3 +1, G) = 6n
∏

β G(β) and there are five β’s, the 2-adic valuation of
RW (6u5 + 2u3 + 1, G) is n + 5(−n/5) = 0. Thus, RW (6u5 + 2u3 + 1, G) ∈ W×, so its fourth
power is in (W×)2. Therefore by (2.2),

µκ[u](F (g4)) = χ

∏
β

(
1− 2β3

G(β)4

) (2.16)
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as long as n ≥ 1.
We now look at

∏
β(1− 2β3/G(β)4). The valuation of 2β3/G(β)4, which is (4n + 2)/5,

is ≥ 3 for n ≥ 4. When n = 3, the valuation of 2β3/G(β)4 is 14/5 > 2, so∏
β

(
1− 2β3

G(β)4

)
≡ 1 mod 214/5. (2.17)

The left side of (2.17) lies in W× and W is unramified over Z2, so (2.17) actually holds
modulo 23. Thus

∏
β(1− 2β3/G(β)4) lies in 1 + 8W ⊂ (W×)2 for n ≥ 3, not just for n ≥ 4.

This concludes the explanation of Example 1.3 when n ≥ 3.
Now consider the case n = 2. We will show µκ[u](F (g4)) = −1 for some g in κ[u] which

is a κ×-multiple of u2. Considering (2.16), our task is equivalent to finding c ∈ W× such
that the product ∏

β

(
1− 2β3

(cβ2)4

)
=
∏
β

(
1− 2

c4β5

)
,

which lies in W×, is not in the kernel of χ. Noting 2β5 has valuation 0, we compute the
product modulo 24 as∏

β

(
1− 2

c4β5

)
=

∏
β

(
1− 4

c4(2β5)

)
≡ 1− 4

∑
β

1
c4(2β5)

mod 24.

Let β0 denote one of the β’s, and let L = K(β0). The sum over β is c−4 TrL/K(1/(2β0)5),
which lies in W , so (2.16) and the definition (2.5) of χ tell us

µκ[u](F ((cu2)4)) = (−1)TrW/Z2
(c−4 TrOL/W (1/(2β5

0))). (2.18)

Since L/K is totally ramified, TrOL/W (x) ≡ [OL : W ]x mod mL for any x ∈ OL. Therefore,
since [OL : W ] = 5, TrOL/W (1/(2β5

0)) lies in W×. Looking again at (2.18), it is now
immediate that c exists such that µ(F ((cu2)4)) = −1. (Running through this norm and
trace argument with a unitary lift G of any g with degree n ≥ 2, µκ[u](F (g4)) equals
(−1)TrW/Z2

(β3
0/(2G(β0)4)). The 2-adic valuation of β3

0/(2G(β0)4) is (4n − 8)/5 ≥ 0, which
gives an alternate conclusion to the proof of (1.4) for n ≥ 3.)

3 Example 1.2

The explanation of Example 1.2 follows ideas similar to those of Example 1.3, but we meet
some new complications because T 2 + u is not a polynomial in T 4. (The convenience of
polynomials in T 4 is due to calculations like (2.14), which introduce a factor of 4 in unde-
sirable terms involving G′, thus simplifying mod 8 computations to mod 2 computations,
i.e., to computations in the residue field of an unramified extension of W .)

Let g ∈ κ[u] have degree n ≥ 1. Since g2 + u has degree 2n, (2.3) says

µκ[u](g
2 + u) = χ(discW (G2 + u)), (3.1)
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where G is a lift of g to W [u]. In particular, G has degree n. Set c = leadG ∈ W×.
Letting α ∈ W run over the roots of G2 + u in K,

discW (G2 + u) =
(−1)n

c2n

∏
α

(1 + 2G(α)G′(α)). (3.2)

Since Q := G2 + u is a local parameter at each α, G(α)G′(α) = Resα(GG′(dQ/Q)).
Writing

GG′ dQ

Q
=

GG′(1 + 2GG′)
G2 + u

du

=
G

G2 + u
dG + 2 · (GG′)2

du

G2 + u
,

we have∏
α

(1 + 2G(α)G′(α)) =
∏
α

(
1 + 2 Resα

(
G

G2 + u
dG

)
+ 4 Resα

(
(GG′)2

du

G2 + u

))
. (3.3)

The product only matters modulo 8, since in (3.1) we apply χ to the product. Since g2+u is
separable in characteristic 2, each α lies in an unramified extension of K. Thus, each of the
residues on the right side of (3.3) is in W nr, the valuation ring of the maximal unramified
extension of K inside of K.

Let ωG = (G/(G2 +u)) dG and ωg = (g/(g2 +u)) dg. These are rational 1-forms on P1
K

and P1
κ. The right side of (3.3) is congruent modulo 8W nr to

1 + 2
∑
α

Resα(ωG) + 4
∑
α

Resα

(
(GG′)2

du

G2 + u

)
+ 4

∑
α1 6=α2

Resα1(ωG) Resα2(ωG). (3.4)

The first sum in (3.4) is −Res∞(ωG). The second sum only matters mod 2W nr, so we
compute its reduction mod 2. For each α, g2 + u is a local parameter at α. Thus, since the
residue characteristic is 2, we have:

Resα

(
(gg′)2

du

g2 + u

)
= Resα

(
(gg′)2

d(g2 + u)
g2 + u

)
=

(
Resα

(
gg′

d(g2 + u)
g2 + u

))2

=
(

Resα

(
g

g′du

g2 + u

))2

= (Resα ωg)2.

Since α 7→ α is a bijection between geometric roots of G2 + u and g2 + u,

∑
α

Resα

(
(gg′)2

g2 + u
du

)
=
∑
α

(Resα ωg)2 =

(∑
α

Resα ωg

)2

= (Res∞ ωg)2 (3.5)

by the residue theorem over κ.
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We conclude from preceding calculations that
∏

α(1+2G(α)G′(α)) is congruent modulo
8W nr (even modulo 8W , by Galois invariance) to

1− 2 Res∞(ωG) + 4(Res∞ ωG)2 + 4
∑

α1 6=α2

Resα1(ωG) Resα2(ωG). (3.6)

The second term in (3.6) is −2 Res∞(ωG) = 2n and the third is −4
∑

α Resα(ωG) Res∞(ωG).
Since we are working modulo 8, so −4 may be replaced with 4, equations (3.1), (3.2), (3.3),
and (3.6) give

µκ[u](g
2 + u) = χ((−1)n(1 + 2n + 4s2(ωg))) = χ((−1)n(1 + 2n) + 4s2(ωg)).

Since (−1)n(1 + 2n) ≡ 1 + 4b1+n
2 c mod 8, (2.5) gives

µκ[u](g
2 + u) = (−1)Trκ/F2

(b 1+n
2
c+s2(ωg)) = (−1)b

1+n
2
c[κ:F2](−1)Trκ/F2

(s2(ωg)),

concluding the verification of Example 1.2.

Remark 3.1. In the general proof of Theorem 1.4, the 1-form (gg′)2du/(g2 +u) is replaced
with ηg := s2

gdrg/rg where rg equals f(g) and sg is a certain rational function (depending
on g and g′), and the role of ωg is played by θg := sgdrg/rg. In such generality, a calculation
much like (3.5) equates the sum of the residues of ηg at poles of θg on A1

κ with the sum of
(Res∞θg)2 and the residues of ηg at its poles x 6= ∞ that are not poles of θg.

The miracle is that ηg has vanishing residue at such x because in characteristic 2

Resxηg = Resx

(
s2
g

drg

rg

)
=
(

Resx

(
sg

drg

rg

))2

= (Resxθg)2 = 0.

Thus, the sum of the residues of ηg at the finite poles of θg is equal to Res∞ηg = (Res∞θg)2,
as in (3.5), even when ηg has finite poles away from the finite poles of θg. This is crucial in
the proof of Theorem 1.4.
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tions, in: K. Györy, H. Iwaniec, J. Urbanowicz (Eds.), Number Theory in Progress (Vol.
1), de Gruyter, Berlin, 1999, pp. 503–530.

15


