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Abstract. Representation theory was created by Frobenius about 100 years ago. We
describe the background that led to the problem which motivated Frobenius to define
characters of a finite group and show how representation theory solves the problem. The
first results about representation theory in characteristic p are also discussed.

1. Introduction

Characters of finite abelian groups have been used since Gauss in the beginning of the
19th century, but it was only near the end of that century, in 1896, that Frobenius extended
this concept to finite nonabelian groups [21]. This approach of Frobenius to group characters
is not the one in common use today, although some of his ideas that were overlooked for a
long period have recently been revived [30].

Here we trace the development of the problem whose solution led Frobenius to introduce
characters of finite groups, show how this problem can be solved using classical representa-
tion theory of finite groups, and indicate some relations between this problem and modular
representations.

Other surveys on the origins of representation theory are by Curtis [7], Hawkins [24,
25, 26, 27], Lam [32], and Ledermann [35]. While Curtis describes the development of
modular representation theory focusing on the work of Brauer, we examine the earlier work
in characteristic p of Dickson.

2. Circulants

For a positive integer n, consider an n × n matrix where each row is obtained from the
previous one by a cyclic shift one step to the right. That is, we look at a matrix of the form

X0 X1 X2 . . . Xn−1

Xn−1 X0 X1 . . . Xn−2
...

...
...

. . .
...

X1 X2 X3 . . . X0

 .

Let’s think of the Xi’s as indeterminates. The determinant of this matrix is called a circulant
of order n. It is a homogeneous polynomial of degree n with integer coefficients. Circulants
were first introduced in 1846 by Catalan [5, p. 549].

The circulants of order 2 and 3 are∣∣∣∣ X0 X1

X1 X0

∣∣∣∣ = X2
0 −X2

1 = (X0 +X1)(X0 −X1)
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and ∣∣∣∣∣∣
X0 X1 X2

X2 X0 X1

X1 X2 X0

∣∣∣∣∣∣ = X3
0 +X3

1 +X3
2 − 3X0X1X2

= (X0 +X1 +X2)(X0 + ωX1 + ω2X2)(X0 + ω2X1 + ωX2),

where ω = e2πi/3.
Spottiswoode stated without proof in [37, p. 375] that over the complex numbers, the

circulant of order n factors into n homogeneous linear polynomials whose coefficients are
nth roots of unity, as follows.

Theorem 1.∣∣∣∣∣∣∣∣∣
X0 X1 X2 . . . Xn−1

Xn−1 X0 X1 . . . Xn−2
...

...
...

. . .
...

X1 X2 X3 . . . X0

∣∣∣∣∣∣∣∣∣ =
n−1∏
j=0

(
n−1∑
k=0

ζjkXk

)

=
n−1∏
j=0

(X0 + ζjX1 + · · ·+ ζ(n−1)jXn−1),

where ζ ∈ C is a primitive nth root of unity.

Proof. We give two proofs. The first is essentially the first published proof, by Cremona
[6], where the idea is attributed to Brioschi.

Let f(T ) =
∑n−1

k=0 XkT
k. We want to show the circulant of order n equals

n−1∏
j=0

f(ζj).

Consider the equation of n× n matrices

(Xj−i)(ζij) =

(
n−1∑
k=0

ζj(k+i)Xk

)
= (f(ζj)ζij).

In full, this reads
X0 X1 X2 . . . Xn−1

Xn−1 X0 X1 . . . Xn−2
...

...
...

. . .
...

X1 X2 X3 . . . X0




1 1 1 . . . 1
1 ζ ζ2 . . . ζn−1

...
...

...
. . .

...
1 ζn−1 ζ2(n−1) . . . ζ(n−1)2



=


∑
Xk

∑
ζkXk . . .

∑
ζ(n−1)kXk∑

Xk
∑
ζk+1Xk . . .

∑
ζ(n−1)(k+1)Xk

...
...

. . .
...∑

Xk
∑
ζk+n−1Xk . . .

∑
ζ(n−1)(k+n−1)Xk



=


f(1) f(ζ) . . . f(ζn−1)
f(1) f(ζ)ζ . . . f(ζn−1)ζn−1

...
...

. . .
...

f(1) f(ζ)ζn−1 . . . f(ζn−1)(ζn−1)n−1

 .

The matrix (ζij) is Vandermonde with nonzero determinant (since ζ is a primitive nth root
of unity), so we’re done by taking determinants.
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For the second proof, let 0 ≤ r ≤ n − 1. Add ζ−ir times the ith row (1 ≤ i ≤ n − 1)
of the matrix (Xj−i) to the zeroth (i.e., top) row. This does not affect the value of the
determinant. Now the top row has jth entry (0 ≤ j ≤ n− 1) equal to∑

i∈Z/nZ

ζ−irXj−i =
∑

k∈Z/nZ

ζr(k−j)Xk = ζ−rjf(ζr).

So the circulant is divisible by f(ζr). Since the polynomials f(ζr) are relatively prime for
different r, the circulant is divisible by

∏n−1
r=0 f(ζr). This is a homogeneous polynomial of

degree n, so this product equals the circulant up to a scaling factor. Since both polynomials
are monic in X0, the scaling factor is 1. �

Anticipating later extensions of Theorem 1, it is useful to regard the subscript of Xk

as an element of Z/nZ. Then the circulant is det(Xj−i). Actually, Catalan, Spottis-
woode, and Cremona worked with det(Xi+j), but these two determinants differ only in
sign: det(Xi+j) = (−1)(n−1)(n−2)/2det(Xj−i). Spottiswoode’s formula had a sign error,
Cremona’s did not.

How does the circulant factor over a field of characteristic p? The use of the complex
numbers is as container of appropriate roots of unity for the factorization. So the argument
above works over any algebraically closed field of characteristic prime to n, since such a field
contains a primitive nth root of unity. The field doesn’t have to be algebraically closed; we
just need the polynomial Y n−1 to split completely over the field into distinct linear factors.
What if we work over a field of characteristic p where p|n? Let’s look at an example, p = 2
and n = 2. Over a field of characteristic 0,∣∣∣∣ X0 X1

X1 X0

∣∣∣∣ = (X0 −X1)(X0 +X1).

Over a field of characteristic 2,∣∣∣∣ X0 X1

X1 X0

∣∣∣∣ = (X0 +X1)(X0 +X1) = (X0 +X1)2.

This factorization reflects that of Y 2 − 1. In characteristic 0, Y 2 − 1 = (Y − 1)(Y + 1) is
a product of two relatively prime polynomials. In characteristic 2, Y 2 − 1 = (Y + 1)2 is
the square of a single polynomial. This gives the flavor of the general case in characteristic
p. If p|n then the circulant of order n factors in characterisitic p the same way as it
does in characteristic 0, except we have some repeated factors appearing as they do in the
factorization of Y n − 1 in characteristic p. That is, over a field F of characteristic p where
Y n − 1 splits completely,∣∣∣∣∣∣∣∣∣

X0 X1 X2 . . . Xn−1

Xn−1 X0 X1 . . . Xn−2
...

...
...

. . .
...

X1 X2 X3 . . . X0

∣∣∣∣∣∣∣∣∣ =
∏
ω∈F
ωn=1

(
n−1∑
k=0

ωkXk

)
,

where any nth root of unity in F is repeated as often as its multiplicity as a root of Y n− 1.
Writing n = prm with m prime to p, the right hand side of the above equation equals

∏
ω∈F
ωm=1

(
n−1∑
k=0

ωkXk

)pr
.

As an example of this, in characteristic p

det(Xj−i)i,j∈Z/prZ = (X0 +X1 + · · ·+Xpr−1)p
r
.
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The factorization of the circulant in characteristic p was needed by Davenport in [9],
where he gave a proof using resultants. As an alternate proof, reduce the characteristic 0
formula mod p by the appropriate technical device. One choice is to work over the ring
Z[ζn] and reduce modulo a prime divisor of p. A second choice is to work over the p-adic
ring Zp[ζn] and pass to the residue field. The factorization in characteristic 0 then passes
to characteristic p, and factors that had been distinct in characteristic 0 are now repeated
in the way Y n − 1 factors in characteristic p.

3. The Work of Dedekind

Parts of this section are based on [24].
Dedekind was led to an extension of the circulant by considerations in algebraic num-

ber theory. Let K/Q be a finite Galois extension of degree n with Galois group G =
{σ1, . . . , σn}. The discriminant of a set of n elements α1, . . . , αn of K is defined to be the
square of the determinant ∣∣∣∣∣∣∣∣∣

σ1(α1) σ1(α2) . . . σ1(αn)
σ2(α1) σ2(α2) . . . σ2(αn)

...
...

. . .
...

σn(α1) σn(α2) . . . σn(αn)

∣∣∣∣∣∣∣∣∣ .
We will be using this as motivation for the group determinant below.

Dedekind had reasons to consider the discriminant of n elements formed by the Q-
conjugates σi(α) of a single element α. In that case the discriminant becomes the square
of ∣∣∣∣∣∣∣∣∣

σ1(σ1(α)) σ1(σ2(α)) . . . σ1(σn(α))
σ2(σ1(α)) σ2(σ2(α)) . . . σ2(σn(α))

...
...

. . .
...

σn(σ1(α)) σn(σ2(α)) . . . σn(σn(α))

∣∣∣∣∣∣∣∣∣ .
Let xσ = σ(α). Then this is the determinant of the matrix (aσ,τ ) doubly indexed by G,
where aσ,τ = xστ .

Dedekind’s work with det(xστ ) soon convinced him that working with det(xστ−1) would
be more convenient. Perhaps one reason is that the entries along the main diagonal of
(xστ−1) are all the same, xe. For any finite group G we form a set of variables {Xg} indexed
by G and define the group matrix to be (Xgh−1). This matrix can be thought of as one
where each row is obtained from a fixed row (e.g., the top row if an ordering is put on
the index set G) by the group G acting as permutations on the subscripts of the entries in
the fixed row. The matrix introduced in Section 2 in connection with the circulant is the
transpose of the group matrix for Z/nZ. The group determinant is defined to be

Θ(G) = det(Xgh−1).

This is a homogeneous polynomial in the Xg’s of degree n = #G with integer coefficients.
Note det(Xgh−1) = det(Xg−1h). When G = Z/nZ, the group determinant is the circulant
of order n.

The group matrix is closely related to the group algebra, for example the map Z[G] →
Mn(Z) given by

∑
g xgg 7→ (xgh−1) is a ring homomorphism. This will be useful later on.

Around 1880, Dedekind proved that when G is any finite abelian group, Θ(G) factors over
C into a product of linear factors with coefficients being roots of unity. Burnside proved
this too [3], using the decomposition of any finite abelian group into a product of cyclic
groups, and an argument similar to the second proof of Theorem 1. Although Dedekind and
Burnside established basically the same factorization, Dedekind’s formulation was superior
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because he had a conceptual idea of where the roots of unity were coming from, as can be
seen in the following statement of his result, which gives some insight into the role of the
roots of unity appearing in the factorization of the circulant.

Theorem 2. Let G be a finite abelian group. Then

det(Xgh−1) =
∏
χ∈ bG

∑
g∈G

χ(g)Xg

 ,

where Ĝ is the character group of G, namely the group of homomorphisms from G to C×.

Proof. We give two proofs. The first one is based on a proof for the circulant factorization.
This argument will extend only partially to nonabelian groups. We motivate the approach
to the nonabelian situation by giving a second proof that is developed inside the group
algebra C[G].

Our first proof will mimic the second proof of Theorem 1. Fix a character χ of G. For
each nonidentity element g of G, add χ(g) times the gth row of the group matrix (Xgh−1)
to the row indexed by the identity, e. The entry in row e and column h becomes∑

g

χ(g)Xgh−1 = χ(h)
∑
g

χ(g)Xg.

Here the sum includes g = e. Thus Θ(G) is divisible by
∑

g χ(g)Xg. Such polynomials
are relatively prime for different χ since different characters are not scalar multiples. The
product of all these factors is homogeneous of degree n and monic in Xe, like Θ(G), so it
equals Θ(G).

Here is a second proof. We consider two bases of C[G], G and {
∑

g χ(g)g}
χ∈ bG. That the

second set is a basis is a different way of saying the characters of G are linearly independent.
Left multiplication on C[G] by any element

∑
agg is a linear map. Let’s express it as a

matrix with respect to these two bases.
First we use the basis G. For h ∈ G,(∑

agg
)
h =

∑
agh−1g,

so the matrix is (agh−1), whose determinant is det(agh−1).
Now we use the basis

∑
χ(g)g as χ runs over Ĝ. We have(∑

g

agg

)(∑
h

χ(h)h

)
=

∑
k

∑
gh=k

agχ(h)

 k

=
∑
k

(∑
g

agχ(g−1)χ(k)

)
k

=

(∑
g

agχ(g−1)

)(∑
k

χ(k)k

)
.
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The basis {
∑

g χ(g)g} for C[G] consists of eigenvectors for left multiplication by
∑
agg, so

the determinant of this left multiplication is the product of its eigenvalues, hence

det(agh−1) =
∏
χ∈ bG

∑
g∈G

χ−1(g)ag

 =
∏
χ∈ bG

∑
g∈G

χ(g)ag

 .

Therefore the polynomials det(Xgh−1) and
∏
χ∈ bG

(∑
g∈G χ(g)Xg

)
are equal functions on

all of Cn, so they must be the same polynomial. �

For a proof of Theorem 2 that mimics the matrix product proof of the circulant factor-
ization, see [2, p. 421, exer. 14]. A variant on the second proof of Theorem 2 can be found
in [34, pp. 89-90] and [2, p. 421, exer. 12, 13].

Example. G = Z/2Z × Z/2Z. For purposes of convenient notation, writing Xg will be
cumbersome. Let’s write

X1 = X(0,0), X2 = X(0,1), X3 = X(1,0), X4 = X(1,1).

Then Dedekind’s theorem says∣∣∣∣∣∣∣∣
X1 X2 X3 X4

X2 X1 X4 X3

X3 X4 X1 X2

X4 X3 X2 X1

∣∣∣∣∣∣∣∣ = (X1 +X2 +X3 +X4)(X1 +X2 −X3 −X4)×

(X1 −X2 +X3 −X4)(X1 −X2 −X3 +X4).

What form does Theorem 2 take if we factor the group determinant of an abelian group
over an algebraically closed field F of characteristic p? If n = #G is prime to p, then G has
n characters in characteristic p, i.e. there are n homomorphisms G → F×, and the above
formula of Dedekind’s still works. In fact, the proof of Theorem 2 still works. If n = prm
where m is prime to p, then there are m homomorphisms G → F×, and by reducing the
characteristic 0 formula into characteristic p by either of the tools mentioned in connection
with the circulant formula in characteristic p, we see that for each character χ : G → F×,
the linear factor

∑
g χ(g)Xg appears in the factorization of Θ(G) over F with multiplicity

pr. For instance, if G is an abelian p-group then the only group homomorphism G → F×

is the trivial character and

Θ(G) =

∑
g∈G

Xg

#G

.

Around 1886, Dedekind became interested in factoring the group determinant for non-
abelian finite groups. His first discovery was that when the group is nonabelian, some of
the irreducible factors of the group determinant might not be linear. Let’s see this in two
examples that Dedekind worked out.

Example. [10, pp. 423-424] Let G = S3. It is easier to write the variables as Xi, 1 ≤ i ≤ 6,
rather than as Xπ, π ∈ S3. We enumerate the elements of S3 as Dedekind did:

π1 = (1), π2 = (123), π3 = (132), π4 = (23), π5 = (13), π6 = (12).

Set Xi = Xπi . Then Dedekind calculated

Θ(S3) = Φ1Φ2Φ2
3,
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where

Φ1 = X1 +X2 +X3 +X4 +X5 +X6,

Φ2 = X1 +X2 +X3 −X4 −X5 −X6,

Φ3 = X2
1 +X2

2 +X2
3 −X2

4 −X2
5 −X2

6 −X1X2 −X1X3 −X2X3 +X4X5

+X4X6 +X5X6.

He used the change of variables

u = X1 +X2 +X3, v = X4 +X5 +X6,
u1 = X1 + ωX2 + ω2X3, v1 = X4 + ωX5 + ω2X6,
u2 = X1 + ω2X2 + ωX3, v2 = X4 + ω2X5 + ωX6,

to write the factorization of Θ(S3) as

Θ(S3) = (u+ v)(u− v)(u1u2 − v1v2)2.

Obviously Φ1 and Φ2 are irreducible. What about Φ3? Since the change of variables from
the X’s to the u’s and v’s is invertible, it gives a C-algebra automorphism of the polynomial
ring over C in the Xi’s. In particular, the u’s and v’s are algebraically independent over C.
In C[u, v, u1, v1, u2, v2], u1u2− v1v2 is irreducible, so Φ3 is irreducible. For future reference,
note we proved irreducibility of Φ3 by finding a linear change of variables converting Φ3 to
the determinant of a 2× 2 matrix with algebraically independent entries.

Dedekind’s change of variables was perhaps motivated by the case of group determinants
for abelian groups, where roots of unity arise as coefficients. We will see later (equation
(2)) that an expression of Φ3 in the form ad − bc can be found where a, b, c, d are linear
polynomials in the Xi’s with integer coefficients. This is related to the fact that the ir-
reducible 2-dimensional complex representation of S3 can be written using matrices with
integer entries.

Hamilton’s 1843 discovery of quaternions gave rise to interest in “hypercomplex” number
systems, i.e. associative C-algebras. Dedekind decided that since Θ(S3) didn’t factor into
linear factors over C, he should find an appropriate hypercomplex number system over
which the factors become linear. It seems plausible by looking at Φ3 that if it can be
made into a product of linear factors over some hypercomplex system, there should be two
homogeneous linear factors, so [10, pp. 438-441] Dedekind wrote

(1) Φ3 =
(∑

αiXi

)(∑
βiXi

)
,

for some elements αi and βi in an unknown hypercomplex system. In particular, α1β1 = 1.
Dedekind normalized this hypothesized factorization by setting α1 = β1 = 1 and then mul-
tiplied out the right hand side of (1), keeping in mind that there may be noncommutativity
among the coefficients. He obtained a number of relations between the α’s and the β’s, such
as

α2 + β2 = α3 + β3 = −1,
α4 + β4 = α5 + β5 = α6 + β6 = 0,
α2β2 = α3β3 = 1,
α4β4 = α5β5 = α6β6 = −1.

So α4 = −β4, hence α2
4 = −α4β4 = 1. Similarly, α2

5 = α2
6 = 1. Also α2 = −1 − β2, so

α2
2 = −α2 − α2β2 = −α2 − 1, hence 1 + α2 + α2

2 = 0, so α3
2 = 1. Similarly, α3

3 = 1. Note
that π2 and π3 have order 3 and the coefficients of X2 and X3 satisfy α3

2 = α3
3 = 1, while

π4, π5, π6 have order 2 and the coefficients of X4, X5, and X6 satisfy α2
4 = α2

5 = α2
6 = 1. So

writing πi in place of αi and defining βi by the above additive relation with αi, it seems we
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may have factored Φ3 into linear factors over the noncommutative ring C[S3]. This is not
quite correct (and Dedekind did not state his results using the group algebra). Identifying
αi as πi in C[S3] leads to some collapsing of the ring. For example, looking at the coefficient
of X2X3 in (1) leads to

−1 = α2β3 + α3β2

= α2(−1− α3) + α3(−1− α2)
= −α2 − α3 − α2α3 − α3α2

= −π2 − π3 − π2π3 − π3π2

= −π2 − π3 − 2,

so we need 1 + π2 + π3 = 0. Multiplying this equation through by π4 on the left leads to
π4 + π5 + π6 = 0. It is left to the reader to check that (1) is true over C[S3]/Ω, where Ω
is the subspace generated by 1 + π2 + π3 and π4 + π5 + π6, which is a 2-sided ideal. The
4-dimensional C-algebra C[S3]/Ω is isomorphic to the 2 by 2 matrices over C.

Example. [10, pp. 424-425] Let G = Q8, the quaternion group {±1,±i,±j,±k}. We index
the elements of G as

g1 = 1, g2 = −1, g3 = i, g4 = −i, g5 = j, g6 = −j, g7 = k, g8 = −k.

Let Xi = Xgi , 1 ≤ i ≤ 8. Dedekind computed

Θ(Q8) = Φ1Φ2Φ3Φ4Φ2
5,

where
Φ1 = X1 +X2 +X3 +X4 +X5 +X6 +X7 +X8,

Φ2 = X1 +X2 +X3 +X4 −X5 −X6 −X7 −X8,

Φ3 = X1 +X2 −X3 −X4 +X5 +X6 −X7 −X8,

Φ4 = X1 +X2 −X3 −X4 −X5 −X6 +X7 +X8,

Φ5 =
∑

X2
i − 2X1X2 − 2X3X4 − 2X5X6 − 2X7X8

= (X1 −X2)2 + (X3 −X4)2 + (X5 −X6)2 + (X7 −X8)2.

Only Φ5 is not linear, and it is irreducible over C. There is an obvious “hypercomplex”
number system over which Φ5 becomes a product of linear factors, namely the quaternions
H (although C is not in its center).

In general, Dedekind wanted to find a hypercomplex number system over which Θ(G)
factors linearly and understand how the structure of G is reflected in such a hypercomplex
system. Ten years later, in 1896, Dedekind classified the finite groups all of whose subgroups
are normal (Hamiltonian groups), and at the end of a letter to Frobenius where he wrote
about this result [10, pp. 420-421], Dedekind mentioned the group determinant, explained
how it factors in the abelian case, and suggested Frobenius think about the nonabelian case.
It is the question of factoring the group determinant of an arbitrary finite group that gave
rise to representation theory by Frobenius, though other algebraic developments in the late
19th century were also heading in this direction [25].

4. The Work of Frobenius

Frobenius felt the interesting problem was not finding a hypercomplex number system
where Θ(G) becomes a product of linear factors, but finding the irreducible factors of Θ(G)
over the complex numbers, whether or not they are linear. His solution to this problem
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appeared in [22], and depended on the papers [20] and [21], where he established the needed
facts about commuting matrices and characters of finite groups.

Frobenius begins [21] by recalling previous uses of characters in number theory. Here is
how the paper starts:

“When he proved that every linear function of one variable represents infin-
itely many prime numbers if its coefficients are coprime integers, Dirichlet
used for the first time certain systems of roots of unity, which also appear
when one treats the closely related problem of the number of ideal classes
in cyclotomic fields [...]”

Establishing Dirichlet’s theorem on primes in the arithmetic progression m+nj (j ∈ N)
and the class number formula for the cyclotomic field Q(ζn) involve not only the characters
of (Z/nZ)×, but also something Frobenius did not explicitly refer to: L-functions of these
characters. This was about thirty years before Artin [1] introduced L-functions of the
characters Frobenius introduced in [21].

Towards the end of the introduction to [21] is a prescient comment:
“In April of this year, Dedekind gave me an exercise . . . [whose] solution,
which I hope to be able to present soon, led me to a generalization of the
notion of a character to arbitrary finite groups. I want to develop this notion
here since I believe that by its introduction, group theory should undergo a
major advancement and enrichment.”

We begin our analysis of the factorization of Θ(G) by writing down one factor that is
always present and indicating how to normalize the factorization. Since each row of the
matrix (Xgh−1) contains the sequence {Xg} in some order, adding all the columns to a fixed
column shows Θ(G) is divisible by

∑
g∈GXg. This observation, for cyclic G, was made by

Catalan when he first introduced circulants.
Since Θ(G) is homogeneous of degree n = #G, its irreducible factors are also homoge-

neous. If we set the variables Xg for g 6= e equal to 0, then Θ(G) becomes the polynomial
Xn
e . Therefore we fix a definite factorization of Θ(G) into irreducibles by requiring the

irreducible factors to be monic in Xe. It will turn out that this is Frobenius’ factorization
of the group determinant of G.

What are irreducible factors of Θ(G) besides
∑
Xg? For each character χ : G → C×

we have a factor
∑

g χ(g)Xg, proven just as in the proof of Theorem 2. This accounts for
#G/[G,G] factors, which leaves more factors to determine for nonabelian G.

In only a few months Frobenius solved this problem. Letting s denote the number of
conjugacy classes of G, Frobenius proved Θ(G) has s (homogeneous) irreducible factors
that are monic in Xe, each one having degree equal to its multiplicity in the factorization
of Θ(G). That is,

Θ(G) =
s∏
i=1

Φfi
i ,

where Φi is homogeneous irreducible and fi is the degree of Φi. He also proved fi|n [22,
Sect. 12]. (Taking degrees of both sides, we get n =

∑
i f

2
i , which should look familiar

from representation theory. We’ll see later that the fi’s are the degrees of the irreducible
complex representations of G.) His study of this problem led him to introduce for the first
time the notion of a character of a finite nonabelian group, which he defined as a conjugacy
class function related to the number of solutions of the equation ab = c where a, b, c run
over elements in three conjugacy classes. For a description of this method, see [8, pp.
218-219] or [32, pp. 367-368]. His original notion of character only referred to irreducible
ones. The following year would see Frobenius interpret characters as trace functions [23,
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p. 954]. The basic properties of irreducible characters, such as the orthogonality relations,
were first proved without representations. A treatment in English of the group determinant
and characters without representation theory was given by Dickson in his 1902 exposition
[11] of Frobenius’ work.

Rather than go through all of Frobenius’ original proof of the factorization of Θ(G),
which did not use representations, we will invoke representation theory in the next section
to explain its decomposition.

However, to give a flavor of how Frobenius analyzed the group determinant, we prove a
property of its irreducible factors by his techniques (Theorem 3 below). Recall n = #G.
We will abbreviate Θ(G) as Θ.

Lemma 1. The adjoint of the group matrix (Xgh−1) has (g, h) entry (1/n)∂Θ/∂Xhg−1.

Proof. Let D be the determinant of a matrix (ag,h) doubly indexed by G and having in-
dependent entries, so D is a polynomial in Z[ag,h]. The adjoint of the matrix (ag,h) is
(∂D/∂ah,g).

Let ϕ : Z[ag,h]→ Z[Xr] be the ring homomorphism where ϕ(ag,h) = Xgh−1 . So ϕ(D) = Θ,
the group determinant. We want to show

ϕ

(
∂D

∂ah,g

)
=

1
n

∂Θ
∂Xhg−1

.

By the chain rule, or checking on monomials, for all f in Z[ag,h] and r in G

∂ϕ(f)
∂Xr

=
∑

gh−1=r

ϕ

(
∂f

∂ag,h

)
=
∑
k∈G

ϕ

(
∂f

∂ag0k,h0k

)
,

where (g0, h0) is any pair with g0h
−1
0 = r.

Let ψk be the ring automorphism of Z[ag,h] where ψk(ag,h) = agk,hk. Then ϕψk = ϕ, so

∂ϕ(f)
∂Xr

=
∑
k∈G

ϕψk

(
∂ψ−1

k f

∂ag0,h0

)
=
∑
k∈G

ϕ

(
∂ψ−1

k f

∂ag0,h0

)
=
∑
k∈G

ϕ

(
∂ψkf

∂ag0,h0

)
.

Now set f = D, and note ψk(D) = D. �

Letting Yr = (1/n)∂Θ/∂Xr−1 , we see the adjoint of (Xgh−1) has the form (Ygh−1).
Polynomials in the Xg’s can be viewed as functions on matrices of the form x = (xgh−1) or

as functions on elements of the group algebra x =
∑

g xgg. For example, viewing the group
determinant Θ as such a function, it is multiplicative: Θ(xy) = Θ(x)Θ(y). The element xy
has g-coordinate

∑
ab=g xayb.

The next theorem, which appeared in [22, Sect. 1], shows the multiplicative property of
Θ passes to its irreducible factors, and in fact characterizes them.

Theorem 3. Let Φ be a homogeneous irreducible polynomial in the variables Xg. Then
Φ(xy) = Φ(x)Φ(y) if and only if Φ is monic in Xe and is a factor of Θ.

Proof. First we assume Φ is monic in Xe and is a factor of Θ.
Choose indeterminates {Xg} and {Yg}. Let Zg =

∑
ab=gXaYb, so in C[Xg, Yh] we have

Θ(Z) = Θ(X)Θ(Y ). Since Φ(Z)|Θ(Z), Φ(Z) = Λ(X)M(Y ) for some polynomials Λ in the
X’s and M in the Y ’s. Set Ye = 1 and Yg = 0 for g 6= e. We get Φ(X) = Λ(X)M(1, 0, 0, . . . ).
Similarly, Φ(Y ) = Λ(1, 0, 0, . . . )M(Y ). Therefore

Φ(X)Φ(Y ) = Φ(Z)Λ(1, 0, 0, . . . )M(1, 0, 0, . . . ) = Φ(XY )Φ(1, 0, 0, . . . ).

Since Φ is homogeneous and monic in Xe, Φ(1, 0, 0, . . . ) = 1.
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Now assume Φ is multiplicative. Since Φ is homogeneous, Φ(Xe, 0, 0, . . . ) = cXd
e . Letting

Ye = 1 and Yg = 0 for g 6= e, we have Φ(X) = Φ(X)Φ(1, 0, 0, . . . ), so Φ(1, 0, 0, . . . ) = c = 1,
hence Φ is monic in Xe.

By Lemma 1, we can write the adjoint matrix of (Xgh−1) in the form (Ygh−1). For this
choice of the Y ’s, we have in C[Xg] that Φ(X)Φ(Y ) = Φ(Θ, 0, 0, . . . ) = Θd, so Φ|Θ. �

The “if” direction did not need Φ to be irreducible. It can also be removed as a hypothesis
in the “only if” direction by weakening the conclusion to Φ dividing a power of Θ.

Theorem 3 allowed Frobenius to establish a conjecture of Dedekind [10, p. 422], which
said that the linear factors of Θ, monic in Xe, are related to the characters of the abelian
group G/[G,G]. More precisely, Frobenius showed the linear factors of Θ, monic in Xe,
are exactly the polynomials

∑
g χ(g)Xg, where χ : G → C× is a character, and each such

linear factor arises exactly once in the factorization of Θ. (Since we already showed such
polynomials are factors, only the “if” direction of Theorem 3 is needed and therefore Lemma
1 is not required for this.) The reader is referred to the paper of Frobenius [22, Sect. 2] or
Dickson [11, Sect. 6] for details of this argument.

It is of interest to see what is mentioned about the group determinant in Thomas Muir’s
The Theory of Determinants in the Historical Order of Development, which aimed to de-
scribe all developments in the subject up until 1900. In the preface to the final volume, Muir
expresses the hope that “little matter of any serious importance has been passed over that
was needed for this History.” There are many references to the circulant, one to Dedekind’s
calculation of Θ(S3), but there is no mention of any work on the group determinant by
Frobenius.

5. Factoring the Group Determinant by Representation Theory

We now use representation theory to completely factor the group determinant.
As in the second proof of Theorem 2, let’s compute the matrix for left multiplication in

C[G] by an element
∑
agg, with respect to the basis G of C[G]. Since(∑

g

agg

)
h =

∑
g

agh−1g,

the matrix for left multiplication by
∑
agg is (agh−1). Hence

det(agh−1) = NC[G]/C

(∑
g

agg

)
.

Since C[G] decomposes into a product of matrix algebras, this norm will decompose
into a product of determinants. More specifically, let {(ρ, Vρ)} be a full set of mutually
nonisomorphic irreducible representations of G (over the complex numbers). Then the map

C[G]→
∏
ρ irred

EndC(Vρ)

given by ∑
g∈G

agg 7→

∑
g∈G

agρ(g)


ρ irred

is an isomorphism of C-algebras. Thus

NC[G]/C

(∑
g

agg

)
=
∏
ρ irred

NEndC(Vρ)/C

(∑
g

agρ(g)

)
=
∏
ρ irred

det

(∑
g

agρ(g)

)deg(ρ)

.
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This last equation arises from the fact that in the endomorphism ring End(V ) of an m-
dimensional vector space V , left multiplication by an element is a linear map End(V ) →
End(V ) whose determinant is equal to the mth power of the usual determinant of the
element. Therefore

Θ(G) = det(Xgh−1) =
∏
ρ irred

det

(∑
g

Xgρ(g)

)deg(ρ)

.

Note det(
∑

gXgρ(g)) is a homogeneous polynomial of degree deg(ρ), monic in Xe.
We now show that the irreducible factors of Θ(G) (which are monic in Xe) can be put

in a one-to-one correspondence with the irreducible representations of G by proving

Theorem 4. For an irreducible complex representation ρ of G,
(i) the polynomial det(

∑
gXgρ(g)) is irreducible and

(ii) ρ is determined by det(
∑

gXgρ(g)).

We begin with a lemma originally due to Burnside [4].

Lemma 2. If (ρ, V ) is an irreducible representation of G, then the C-algebra map C[G]→
EndC(V ) given by

∑
g∈G agg 7→

∑
g∈G agρ(g) is onto. That is, the transformations ρ(g)

linearly span EndC(V ).

Proof. This map is basically a projection of C[G] onto one of its simple C[G]-submodules,
so it is onto. Alternatively, for a proof that works for representations over any algebraically
closed field, even one with characteristic dividing the size of G, see [33]. �

Lemma 3. Let ρ : G → GLd(C) be a representation. Write
∑

g∈GXgρ(g) = (Lij), where
the Lij’s are linear polynomials in the Xg’s. If ρ is irreducible then the Lij’s are linearly
independent over C.

Proof. By Lemma 2, any set of d2 complex numbers (zij) arises as
∑
agρ(g) = (Lij(ag)) for

some vector (ag) in Cn. So∑
cijLij = 0 in C[Xg] ⇒

∑
cijLij(ag) = 0 for all (ag) ∈ Cn

⇒
∑

cijzij = 0 for all (zij) ∈ Cd2

⇒ all cij = 0.

�

Now we prove Theorem 4.

Proof. (i) By Lemma 3, choose n − deg(ρ)2 homogeneous linear polynomials Lk such that
{Lij , Lk} is a basis of the homogeneous linear polynomials in C[Xg]. Then we can move
between the sets {Xg} and {Lij , Lk} by a linear change of variables. This gives a C-algebra
automorphism of C[Xg], so the set {Lij , Lk} consists of algebraically independent elements
over C. In particular,

det

∑
g∈G

Xgρ(g)

 = det(Lij)

is the determinant of a matrix whose entries are algebraically independent. It is a standard
fact (see [36, p. 96] for an elementary proof) that such a determinant is irreducible in
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C[Lij ], so it is also irreducible if we append the extra algebraically independent variables
{Lk} to the ring, so this polynomial is irreducible in C[Lij , Lk] = C[Xg].

(ii) We need to show that ρ is determined by det(
∑
Xgρ(g)). It is enough to show the

corresponding character χρ is determined, and that is what we will do.
The number χρ(e) is the degree of the homogeneous polynomial det(

∑
Xgρ(g)). For h 6=

e, we will recover χρ(h) as the coefficient of Xdeg(ρ)−1
e Xh. To see this, we ignore all variables

besides Xe and Xh by setting Xg equal to 0 for g 6= e, h. Then our polynomial becomes
det(XeI+Xhρ(h)). We want to know the coefficient of Xdeg(ρ)−1

e Xh in this polynomial. For
any matrix A, the polynomial det(TI +A) in the variable T has second leading coefficient
Tr(A). Apply this to A = Xhρ(h), whose trace is χρ(h)Xh. �

Let’s work through the proof of Theorem 4(i) in a case we’ve already seen, G = S3.
Recall

π1 = (1), π2 = (123), π3 = (132), π4 = (23), π5 = (13), π6 = (12).

Let ρ : S3 → GL(V ) be the irreducible two-dimensional representation on

V = {(z1, z2, z3) ∈ C3 : z1 + z2 + z3 = 0}

given by permutation of the cooordinates. Using (1, 0,−1), (0, 1,−1) as an ordered basis of
V , we get the matrix realizations

[ρ(π1)] =
(

1 0
0 1

)
, [ρ(π2)] =

(
−1 −1

1 0

)
, [ρ(π3)] =

(
0 1
−1 −1

)
,

[ρ(π4)] =
(

1 0
−1 −1

)
, [ρ(π5)] =

(
−1 −1

0 1

)
, [ρ(π6)] =

(
0 1
1 0

)
.

Therefore

(2)
6∑
i=1

Xi[ρ(πi)] =
(
X1 −X2 +X4 −X5 −X2 +X3 −X5 +X6

X2 −X3 −X4 +X6 X1 −X3 −X4 +X5

)
,

which tells us what the Lij in Lemma 3 are, 1 ≤ i, j ≤ 2. Taking the determinant of the
right hand side of (2) gives an expression ad− bc for the factor Φ3 of Θ(S3) where a, b, c, d
are linear polynomials with integer coefficients (such an expression was given by Dickson
in [14, Eq. 2]). In the expression of Dedekind’s for Φ3 which we saw earlier, a, b, c, and d
had coefficients involving cube roots of unity. The fact that we can get integer coefficients
is related to the 2-dimensional irreducible representation of S3 being realizable in GL2(Z).
In general, the irreducible factors of Θ(Sn) have integer coefficients since all irreducible
representations of Sn are defined over the rational numbers.

As a basis of the linear forms in C[Xi] we use the Lij and matrix entries of all
∑
Xiρ

′(πi)
where ρ′ runs over irreducible representations of S3 not isomorphic to ρ. These are the
trivial and sign representations, which yield L1 = X1 + X2 + X3 + X4 + X5 + X6 and
L2 = X1 +X2 +X3 −X4 −X5 −X6, so we can also use X1 +X2 +X3 and X4 +X5 +X6.
These are essentially elements Dedekind came across when factoring Θ(S3) into linear factors
in some hypercomplex number system. Compare this means of manufacturing π1 + π2 + π3

and π4 + π5 + π6 with Dedekind’s calculation.
As an illustration of the proof of Theorem 4(ii), the quadratic irreducible factor of Θ(S3)

corresponds to the irreducible 2-dimensional representation of S3, and its coefficients of
X1Xi for 2 ≤ i ≤ 6 (some of which are zero) coincide with the character values at πi.

The proof given for Frobenius’ theorem on the factorization of Θ(G) can be adapted
to show that for any finite-dimensional complex representation ρ of G, the determinant
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attached to ρ, namely

Θρ(G) = det

∑
g∈G

Xgρ(g)

 ,

decomposes into homogeneous irreducible factors (monic in Xe) in accordance with the
decomposition of ρ into irreducible representations. Frobenius’ theorem on the group de-
terminant involves the regular representation.

In Frobenius’ initial work on the group determinant, he felt the most remarkable (and
difficult to prove) feature of the factorization was that the degree of each irreducible factor
coincides with its multiplicity as a factor. We recognize this feature as a familiar statement
about the multiplicity of irreducible representations in the regular representation.

Since every factor (monic in Xe) of the group determinant has the form det(
∑

gXgρ(g))
for some representation ρ, the “if” direction of Theorem 3 gets a second proof from the
definition of a representation and the multiplicativity of determinants.

According to Hawkins [26], [27], Frobenius’ original approach to characters of G (which
is not the first one that appeared in print) was as follows. Let Φ be an irreducible factor
of Θ(G) which is monic in Xe and of degree d. Define the associated character χ by
letting χ(g) be the coefficient of Xd−1

e in ∂Φ/∂Xg. This is equivalent to the description we
gave in the proof of Theorem 4(ii), except that we speak of the character attached to an
irreducible representation of G while Frobenius (at first) spoke of the character attached to
an irreducible factor of the group determinant of G.

Here is another point of view that Frobenius had on characters. Let Φ be an irreducible
factor of the group determinant of G, monic in Xe and of degree d. We regard Φ as a
function C[G]→ C by

∑
agg 7→ Φ(ag). Let x =

∑
agg ∈ C[G]. For a variable u, set

(3) Φ(x+ ue) = ud + C1u
d−1 + · · ·+ Cd,

where Ci is a polynomial function of the ag’s which is homogeneous of degree i. In particular,
C1 is a linear homogeneous polynomial of the ag’s. Frobenius observed in [22, p. 1360] that
its coefficients are the values of the character χ corresponding to Φ: C1 =

∑
g χ(g)ag.

Since (3) is essentially a characteristic polynomial, so C1 is basically a trace, the connection
Frobenius eventually found between characters and traces is not surprising.

In [22], Frobenius explicitly showed how all the coefficients of an irreducible factor of the
group determinant can be expressed explicitly in terms of its corresponding character. We
will show more generally that for any (complex) representation ρ of G, irreducible or not,
the coefficients of det(

∑
Xgρ(g)) can be expressed in terms of χρ. Our discussion is based

on the matrix formula (4) below, which we now explain.
For N ≥ 1 and σ ∈ SN consisting of disjoint cycles of length N1, . . . , Nr, define a trace

map Trσ : Md(C)→ C by Trσ(A) = Tr(AN1) · · · · ·Tr(ANr). For example, Tr(1)(2)...(N)(A) =
(TrA)N , Tr(1,...,N)(A) = Tr(AN ), and Trσ(Id) = dr. If σ and τ are conjugate in SN , they
have the same cycle structure (and vice versa), so Trσ = Trτ . Note Trσ is typically not
linear.

For our application, we set N = d. We will prove that for A ∈ Md(C),

(4) det(A) =
1
d!

∑
σ∈Sd

sgn(σ)Trσ(A).

A formula equivalent to (4) was used by Frobenius in [22, Eq. 8, Sect. 3].
For example, when d = 2 let A have eigenvalues λ and µ. The right hand side is

1
2

((TrA)2 − Tr(A2)) =
1
2

((λ+ µ)2 − (λ2 + µ2)) = λµ = det(A).
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To prove (4), let λ1, . . . , λd be the eigenvalues of A, repeated with multiplicity. For k ≥ 1,
let sk = λk1 + · · ·+ λkd.

If σ has m1 1-cycles, m2 2-cycles, and so on, then m1 + 2m2 + · · · + dmd = d and
sgn(σ) =

∏
k

(
(−1)k−1

)mk . Since
∑
kmk = d, sgn(σ) = (−1)d−

P
kmk . Also, Trσ(A) =

sm1
1 sm2

2 · · · · · smdd . Therefore

sgn(σ)Trσ(A) = (−1)d
d∏

k=1

(−1)mksmkk .

If σ and τ have the same cycle structure, sgn(σ)Trσ(A) = sgn(τ)Trτ (A). For our evalu-
ation of

1
d!

∑
σ∈Sd

sgn(σ)Trσ(A),

we want to collect all the terms corresponding to permutations with the same cycle structure.
The permutations in Sd having a cycle structure with m1 1-cycles, m2 2-cycles, and so on
form a conjugacy class whose size is d!/

∏d
k=1 k

mk ·mk!. Thus

1
d!

∑
σ∈Sd

sgn(σ)Trσ(A) =
1
d!

∑
m1,m2,···≥0

m1+2m2+···=d

(−1)dd!
d∏

k=1

(−1)mksmkk
kmkmk!

= (−1)d
∑

m1,m2,···≥0
m1+2m2+···=d

d∏
k=1

(−1)mksmkk
kmkmk!

.

We want to show this equals λ1 · · · · · λd. To do this, we use generating functions:

∑
i≥0

 ∑
m1,m2,···≥0
m1+2m2+···=i

d∏
k=1

(−1)mksmkk
kmkmk!

 ti =
∑
i≥0

∑
m1,m2,···≥0
m1+2m2+···=i

d∏
k=1

(−1)mk(sktk)mk

kmkmk!

=
d∏

k=1

∑
mk≥0

(
−sktk

k

)mk 1
mk!

=
d∏

k=1

e−skt
k/k

= exp

(
−

d∑
k=1

skt
k

k

)

= exp

− d∑
j=1

d∑
k=1

λkj t
k

k


=

d∏
j=1

exp

(
−

d∑
k=1

λkj t
k/k

)

≡
d∏
j=1

exp(log(1− λjt)) mod td+1

≡
d∏
j=1

(1− λjt) mod td+1.
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The coefficient of td here is (−1)dλ1 · · · · · λd, as desired.
More generally, for N ≥ 1 and A ∈ Md(C), the coefficient of tN in

∏d
j=1(1 − λjt) is

(−1)NTr(
∧NA), so by an argument similar to the one above,

Tr

(
N∧
A

)
= (−1)N

∑
m1,m2,···≥0

m1+2m2+···=N

N∏
k=1

(−1)mksmkk
kmkmk!

=
1
N !

∑
σ∈SN

sgn(σ)Trσ(A).

It is interesting to write (4) using the classical definition of the determinant of the d× d
matrix (aij): ∑

σ∈Sd

sgn(σ)a1σ(1)a2σ(2) . . . adσ(d) =
1
d!

∑
σ∈Sd

sgn(σ)Trσ((aij)).

Although these sums are both taken over Sd, the addends corresponding to the same per-
mutation σ are typically not equal. For instance, for a diagonal matrix the left hand side
has only one nonzero term while the right hand side has many nonzero terms.

Let’s apply (4) to representation theory. It says that for a d-dimensional representation
ρ of G,

det

∑
g∈G

Xgρ(g)

 =
1
d!

∑
σ∈Sd

sgn(σ)Trσ

∑
g∈G

Xgρ(g)


= (−1)d

∑
m1,m2,···≥0

m1+2m2+···=d

d∏
k=1

(−1)mk

kmkmk!

Tr

(∑
g

ρ(g)Xg

)kmk

,

which equals

(−1)d
∑

m1,m2,···≥0
m1+2m2+···=d

d∏
k=1

(−1)mk

kmkmk!

 ∑
(g1,...,gk)∈Gk

χρ(g1 · · · · · gk)Xg1 · · · · ·Xgk

mk

.

So all coefficients can be expressed in terms of χρ. For the connection between the coeffi-
cients and the higher characters of ρ, see Johnson [30, p. 301].

In particular, if ρ is 1-dimensional then det (
∑
Xgρ(g)) =

∑
χρ(g)Xg. For 2-dimensional

ρ,

det
(∑

Xgρ(g)
)

=
1
2

∑
g∈G

χρ(g)Xg

2

− 1
2

∑
(g,h)∈G2

χρ(gh)XgXh

=
1
2

∑
(g,h)∈G2

(χρ(g)χρ(h)− χρ(gh))XgXh

=
1
2

∑
g

(χρ(g)2 − χρ(g2))X2
g +

∑
{g,h} unequal

(χρ(g)χρ(h)− χρ(gh))XgXh.

To conclude this section, let’s use the point of view developed here to factor the group
determinant of D8, the group of symmetries of the square (also denoted by some as D4).
We index the elements of D8 as

g1 = 1, g2 = (13)(24), g3 = (1234), g4 = (1432),
g5 = (13), g6 = (24), g7 = (12)(34), g8 = (14)(23).
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The conjugacy classes are

c1 = {1}, c2 = {g2}, c3 = {g3, g4}, c4 = {g5, g6}, c5 = {g7, g8}.

The character table of D8 is

c1 c2 c3 c4 c5
χ1 1 1 1 1 1
χ2 1 1 1 −1 −1
χ3 1 1 −1 1 −1
χ4 1 1 −1 −1 1
χ5 2 −2 0 0 0

Therefore Θ(D8) = Φ1Φ2Φ3Φ4Φ2
5, where

Φ1 = X1 +X2 +X3 +X4 +X5 +X6 +X7 +X8

Φ2 = X1 +X2 +X3 +X4 −X5 −X6 −X7 −X8

Φ3 = X1 +X2 −X3 −X4 +X5 +X6 −X7 −X8

Φ4 = X1 +X2 −X3 −X4 −X5 −X6 +X7 +X8

Φ5 = det
(∑

Xgρ(g)
)
,

where ρ is the 2-dimensional irreducible representation of D8. So

Φ5 =
∑
g

1
2

(χ5(g)2 − χ5(g2))X2
g +

∑
{g,h} unequal

(χ5(g)χ5(h)− χ5(gh))XgXh

= X2
1 +X2

2 +X2
3 +X2

4 −X2
5 −X2

6 −X2
7 −X2

8 − 2X1X2 − 2X3X4

+2X5X6 + 2X7X8.

Although Q8 and D8 have identical character tables, and all coefficients of an irreducible fac-
tor of the group determinant are determined by the corresponding character, the quadratic
irreducible factors of Θ(Q8) and Θ(D8) are different. This illustrates that the determination
of all coefficients of a factor from its character depends on the character as a function on
group elements, not only on conjugacy classes.

6. The Group Determinant in Characteristic p

In 1902, six years after Frobenius began his work on Θ(G) and characters over the complex
numbers, Dickson began studying these ideas over fields with characteristic p, perhaps as
an outgrowth of his interest in finite fields and linear groups. As the variables xg run over
a field F , the matrices of the form (xgh−1) with nonzero determinant are a group under
multiplication. Dickson was interested in the structure of this group, and its size when F is
finite. In terms of the group algebra, this group is the unit group of F [G], although Dickson
did not use this point of view in his papers. He worked out examples for explicit groups in
[12, 13, 14].

In [15] he examined Θ(G) mod p when #G is not divisible by p, indicating the case
p|#G was quite different, illustrating some examples when p|#G in [16]. In 1907, Dickson
presented a more general account of what happens in characteristic p, allowing for the
possibility that #G is divisible by p [17, 18]. We will discuss some of Dickson’s results in
this section, although our proofs are not always the same as his.

First let’s look at examples. We’ve already indicated how the group determinant of an
abelian group factors in characteristic p. Let’s factor Θ(S3) over an algebraically closed
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field of characteristic p. Recall that

Θ(S3) = Φ1Φ2Φ2
3,

where

Φ1 = X1 +X2 +X3 +X4 +X5 +X6,

Φ2 = X1 +X2 +X3 −X4 −X5 −X6,

Φ3 = X2
1 +X2

2 +X2
3 −X2

4 −X2
5 −X2

6 −X1X2 −X1X3 −X2X3 +X4X5

+X4X6 +X5X6.

Over the complex numbers, Φ3 is an irreducible polynomial. Dedekind’s proof of this uses
primitive cube roots of unity, which exist in characteristic p for p 6= 3, in which case his
proof still applies. For p 6= 2 we have Φ1 6= Φ2, so except in characteristics 2 and 3, Θ(S3)
factors in characteristic p exactly as it does in characteristic 0. In characteristic 2 we get
Φ1 = Φ2, so

Θ(S3) ≡ (Φ1Φ3)2 mod 2.
Unlike the factorization over C, an irreducible factor in characteristic 2 appears with mul-
tiplicity not equal to its degree. Since

Φ1Φ2 = Φ3 + 3(X1X2 +X1X3 +X2X3 −X4X5 −X4X6 −X5X6),

in characteristic 3 we have
Θ(S3) ≡ (Φ1Φ2)3 mod 3.

Again we have irreducible factors appearing with multiplicity not equal to their degree.
From now on, F denotes a characteristic p algebraically closed field (except in Lemma

5).
If p6 |#G, then F [G] is semisimple, in which case the factorization of Θ(G) over F behaves

just as over the complex numbers: irreducible factors (that are monic in Xe) are in bijection
with irreducible representations of G in characteristic p and the multiplicity of an irreducible
factor equals its degree. The proofs over C go through with no changes.

What if perhaps p|#G?
First, note that Theorem 3 is still true in characteristic p, by the same proof. (The entries

of the adjoint matrix as given in Lemma 1 make sense mod p since they are minors from
the group matrix and are thus polynomials with integer coefficients.)

Therefore linear factors of Θ(G) mod p arise exactly as over the complex numbers, i.e.
characters χ : G → F× correspond to linear factors

∑
χ(g)Xg. The treatment of linear

factors by Frobenius [22, Sect. 2] or Dickson [11, Sect. 6] applies in characteristic p to show
all linear factors look like this and they all appear with the same multiplicity (which might
be greater than 1). So the number of distinct linear factors of Θ(G) mod p is the p-free part
of the size of G/[G,G], as Dickson first noted in [18, Sect. 7].

To write down nonlinear irreducible factors of Θ(G) over F , we use Jordan-Hölder series
instead of the (possibly false) complete reducibility of the regular representation of G over
F . This works for any F -representation space (ρ, V ) of G, so we work in this setting.

Consider the factor modules appearing in a Jordan-Hölder series of V as an F [G]-module:

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vr = V,

where each Vi is an F [G]-submodule and Vi/Vi−1 is a simple F [G]-module. Viewing
∑
agg ∈

F [G] as an F -linear operator V → V , it induces endomorphisms of each Vi/Vi−1 (1 ≤ i ≤ r)
and

(5) det
(∑

agρ(g)
)

=
r∏
i=1

det
(∑

agρ(g)|Vi/Vi−1

)
.
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Therefore the determinant attached to ρ, Θρ(G), factors into a product of determinants
attached to the simple constituents of a Jordan-Hölder series for V as an F [G]-module. A
representation and its semisimplification have identical group determinants.

We have seen before that an abelian p-group has mod p group determinant equal to
(
∑
Xg)#G. Let’s generalize this to any finite p-group [17, Sect. 5].

Theorem 5. Let G be a finite p-group, ρ : G→ GL(V ) a mod p representation of G. Then

Θρ(G) =

(∑
g

Xg

)dim(V )

.

In particular, Θ(G) = (
∑
Xg)#G.

Proof. The only irreducible representation in characteristic p of a p-group is the trivial
representation. For the trivial representation of G,

∑
agg acts like multiplication by

∑
ag,

so the determinant of this action is
∑
ag. Now use (5). �

To show the determinant attached to an irreducible representation over F is an irreducible
polynomial, we follow Dickson [18, Sect. 5] and begin by extending Lemma 2.

Lemma 4. If (ρ, V ) is an irreducible representation of G over any algebraically closed field,
then the transformations ρ(g) linearly span End(V ).

Proof. The second proof of Lemma 2 is valid in this setting. �

Corollary 1. If (ρ, V ) is an irreducible representation of G over any algebraically closed
field, then its character is not identically zero.

Proof. Assume χρ(g) = 0 for all g ∈ G. Then Tr(
∑
agρ(g)) = 0 for all scalars ag. By

Lemma 4, the trace is identically zero, which is false. �

Theorem 6. If (ρ, V ) is an irreducible representation of G over any algebraically closed
field, then
(i) Θρ(G) = det(

∑
gXgρ(g)) is an irreducible polynomial and

(ii) ρ is determined by Θρ(G).

Proof. The proof of Theorem 4(i) applies to any algebraically closed field. The same is
true of Theorem 4(ii), because absolutely irreducible representations are determined by
their character and irreducibility is the same as absolute irreducibility over an algebraically
closed field. �

If a representation ρ of G is reducible, then Θρ(G) is a reducible polynomial, by (5).
Applying (5) and Theorem 6 to the regular representation, we see that even in charac-

teristic p, irreducible factors of the group determinant (monic in Xe) are in bijection with
irreducible representations.

To be accurate, the second part of Theorem 6 was not stated by Dickson, but he did
write about a related issue. In [18, Sect. 5] he noted that over C Frobenius “gives a method
of determining all the coefficients of Φ in terms of the [corresponding] characters χ(R)”.
Here Φ is the determinant attached to an irreducible representation. We illustrated such a
formula earlier. Dickson added that “The method must be modified in the case of a modular
field.” The formula over C breaks down mod p when the degree of the representation is
greater than or equal to p.

Dickson never indicated that he had a general modified method, but he worked out
explicit formulas for coefficients of irreducible factors of degree 2 in the group determinant
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mod 2, and of degree 3 in the group determinant mod 2 and mod 3, in terms of the
corresponding character.

Here is an example of one of his formulas. Let ρ be a 2-dimensional representation of G.
Set

A =
∑
g

Xgρ(g), det(A+ uI2) = u2 + Φ1u+ Φ2,

where Φ1 =
∑

g χ(g)Xg and Φ2 = Θρ(G), say

Φ2 =
∑
g≤h

cg,hXgXh.

The ordering on G is introduced to avoid repeating monomials. Our task is to find a formula
for cg,h when ρ is irreducible.

Dickson [18, p. 483] used the Newton identities relating the symmetric functions and the
power sums in the eigenvalues of A to show in all characteristics that

2cg,h = 2(χ(g)χ(h)− χ(gh))

for g < h,
χ(g)cg,g = χ(g)χ(g2)− χ(g3),

and
χ(h)cg,g = −3χ(g2h) + 3χ(g)χ(gh) + χ(g2)χ(h)− χ(g)2χ(h)

for g 6= h. To compute cg,h for a characteristic 2 representation, view our task first as a
problem in matrices with indeterminate entries over the integers (with ρ replaced by any
such 2 × 2 matrix-valued function on G, not necessarily multiplicative), so we can cancel
the 2 on both sides of the first formula and then reduce mod 2, thus getting a valid formula
for cg,h when g < h. By Corollary 1, χ is not identically zero, so the last two equations
suffice to determine cg,g. In characteristic 2, we get the formula

cg,g =
χ(g2h) + χ(g)χ(gh)

χ(h)

for any h in G with χ(h) 6= 0.
Looking back at the example of the factorization of Θ(S3) in characteristics 2 and 3, we

saw that irreducible factors do not appear with multiplicity equal to their degree. This
is a general phenomenon first proven by Dickson in [17]. His arguments involve binomial
coefficient manipulations (coming from a change of variables in the group matrix), which
we will replace with the language of induced representations.

Let T be the trivial representation space in characteristic p for a group G. The regular
representation of G is IndG{1}(T ). For a p-Sylow subgroup H of G,

IndG{1}(T ) = IndGH(IndH{1}(T )).

Lemma 5. If G is a finite group, H a subgroup, F a field, and W1 and W2 are F -
representation spaces of H with the same Jordan-Hölder quotients, then IndGH(W1) and
IndGH(W2) are F -representation spaces of G with the same Jordan-Hölder quotients.

Proof. Using a decomposition of G into left H-cosets, F [G] is a free right F [H]-module,
so the operation IndGH(·) = F [G] ⊗F [H] (·) is an exact functor. Therefore IndGH(W1) and
IndGH(W2) admit decomposition series with isomorphic quotients, so their refinements to
Jordan-Hölder series have isomorphic quotients. �
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Let #G = prm, where m is not divisible by p. Any representation in characteristic p
of the p-Sylow subgroup H of G has Jordan-Hölder quotients which are all equal to the
trivial representation, so by Lemma 5 the Jordan-Hölder quotients of IndG{1}(T ) coincide
with those of

IndGH(
pr⊕
i=1

T ) =
pr⊕
i=1

IndGH(T ).

Since IndGH(T ) is the permutation representation of G on the left cosets of H, we have in
characteristic p that

(6) Θ(G) = Dpr ,

where D is the determinant attached to the mod p permutation representation of G on the
left cosets of a p-Sylow subgroup H of G. (I thank Ron Solomon and Pham Huu Tiep for
showing me many G where this representation is not semisimple.)

Let’s get an explicit formula for D. Denoting the left H-cosets of G by g1H, . . . , gmH,
the space for this representation is V =

⊕m
i=1 FegiH with the usual left G-action on the

basis. For gj ∈ {g1, . . . , gm},(∑
s∈G

ass

)
egjH =

∑
s∈G

asesgjH

=
∑
s∈G

asg−1
j
esH

=
m∑
i=1

(∑
h∈H

agihg−1
j

)
egiH .

Therefore

(7) D = det

(∑
h∈H

Xgihg
−1
j

)
1≤i,j≤m

.

Equations (6) and (7) constitute the theorem of Dickson in [17, Sect. 3], except he used
right coset representatives. If p does not divide the size of G, then D is the group matrix
and (6) becomes a tautology, with pr = 1.

In [17, Sect. 10], Dickson indicated one way to possibly factor D. Let K be a sub-
group of G that is maximal for the property of having H as a normal subgroup. Then
IndGH(T ) = IndGK(IndKH(T )). The representation IndKH(T ) is the regular representation of
K/H, a group whose size is prime to p, so this representation is semisimple in characteris-
tic p. Decomposing this representation into irreducibles (each such factor has multiplicity
equal to its degree), we get a corresponding factoring of D, although not necessarily into
irreducible factors.

The study of modular representations remained largely unexplored after Dickson, until
Brauer’s work beginning in the 1930s. See Curtis [7] for a discussion of Brauer’s ideas.

Brauer’s initial papers contained some results having a bearing on the group determinant
in characteristic p. For example, he gave his own proof of a consequence of equation (6),
namely that every irreducible mod p representation of a group with size prm (m prime to
p) occurs as a composition factor of the regular representation with multiplicity divisible
by pr. And while Dickson did not examine the number of irreducible factors (monic in
Xe) of the group determinant mod p, i.e. the number of nonisomorphic mod p irreducible
representations of a finite group, a theorem of Brauer says this number equals the number
of conjugacy classes in the group consisting of elements with order prime to p.



22 KEITH CONRAD

7. Recent Results

Character tables do not provide a way to distinguish any two finite groups, in general.
For example, for any prime p the two nonisomorphic nonabelian groups of order p3 have
the same character table. Can we find a computational tool extending the character table
which will distinguish any two non-isomorphic finite groups? In 1991, Formanek and Sibley
[19] showed that if there is a bijection between two groups G and H which converts Θ(G)
to Θ(H), then G and H are isomorphic. Since the irreducible characters can be read off (in
principle) from the factors of Θ(G), we see Θ(G) is one answer to the question. However, if
#G is large then Θ(G) is too hard to compute. Is there something closer to the character
table which works? Yes. See the articles of Hoehnke and Johnson [28], [29] and Johnson
and Sehgal [31].
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