A SEPARABLE EXTENSION WITH INSEPARABLE RESIDUE FIELD

KEITH CONRAD

Let K be a field complete with respect to a non-archimedean valuation, having valuation ring \mathcal{O}_K and residue field $k = \mathcal{O}_K/\mathfrak{m}_K$. We describe here examples of such K with a finite extension that is separable over K and the residue field extension over k is inseparable.

Let F be an imperfect field of characteristic p, so F^p is a proper subset of F. Pick $a \in F - F^p$. (Example: $F = \mathbf{F}_p(y)$ and a = y.) It is a basic result in field theory that a not being a pth power in F makes $T^p - a$ irreducible in F[T].

Example 1. Set K = F((x)), equipped with the x-adic valuation, so $\mathcal{O}_K = F[[x]]$, $\mathfrak{m}_K = (x)$, and $k = \mathcal{O}_K/\mathfrak{m}_K \cong F$. Set

$$f(T) = T^p - xT - a \in \mathcal{O}_K[T].$$

Reducing coefficients modulo $x, \overline{f}(T) = T^p - a$ is irreducible in F[T] (because $a \notin F^p$). By Gauss's lemma, f(T) is irreducible over K. Since f'(T) = -x is a nonzero constant in K, (f(T), f'(T)) = 1. Thus f(T) is separable.

Let $L = K(\alpha)$ where α is a root of f(T), so L/K is separable and [L : K] = p. In the residue field $\ell := \mathcal{O}_L/\mathfrak{m}_L$, which is an extension of $k \cong F$, the element $\overline{\alpha}$ is a root of $\overline{f}(T) = T^p - a$. Since $\overline{f}(T)$ is irreducible in F[T], $[\ell : k] \ge p$. It is always the case that the residue field degree does not exceed the field degree, so $[\ell : k] \le [L : K] = p$. Thus $[\ell : k] = p$, so $\ell = k(\overline{\alpha})$, which is (purely) inseparable over k.

Let's show the field extension L/K is not Galois when p > 2. The roots of f(T) are $\{\alpha + ct : c \in \mathbf{F}_p\}$ where $t^{p-1} = x$, so if $K(\alpha)/K$ were Galois then $t = (\alpha + t) - \alpha$ would be in $K(\alpha)$, but $t^{p-1} = x \Rightarrow [K(t) : K] = p - 1$, so t and α have relatively prime degrees over K and thus (since p - 1 > 1) $t \notin K(\alpha)$.

Remark 2. When $a \in F - F^p$, $T^{p^r} - a$ is irreducible for all $r \ge 1$, so for a root α_r of $T^{p^r} - xT - a$, $K(\alpha_r)$ is a separable extension of K with degree p^r and the residue field of $K(\alpha_r)$ is inseparable over k. The extension $K(\alpha_r)/K$ is not Galois when $p^r > 2$.

Example 3. We can modify the construction in Example 1 to get a *Galois* extension of K with an inseparable residue field extension. What was important about using $T^p - xT - a$ in Example 1 is that its T-coefficient is divisible by x and is not zero in \mathcal{O}_K . Set

$$f(T) = T^p - x^{p-1}T - a$$

As in Example 1, f(T) is irreducible and separable in K[T] since $\overline{f}(T) = T^p - a$ is irreducible in F[T] and $f'(T) = -x^{p-1}$ is a nonzero constant in K, so (f(T), f'(T)) = 1 in K[T].

Let $L = K(\beta)$ where β is a root of f(T), so L is separable over K of degree p. By the same reasoning as in Example 1, the residue field extension is $k(\overline{\beta})/k$, which is (purely) inseparable of degree p. The extension L/K is Galois since the roots of f(T) are $\{\beta + cx : c \in \mathbf{F}_p\}$, and that's where it's important that the coefficient of T is $-x^{p-1}$.

Replacing T by xT in f(T), L can also be viewed as the splitting field of $T^p - T - a/x^p$ over K.