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1. Introduction

It is a classical theorem that for n ≥ 1, each compact subgroup of GLn(R) is conjugate
to a subgroup of the compact group On(R), the real orthogonal group:

(1.1) On(R) = {A ∈ GLn(R) : AA> = In}.

This isn’t be true with R replaced by Qp because every matrix in On(Qp) has determinant
±1 but the scalar diagonal matrices Z×p In form a compact subgroup of GLn(Qp) conjugate
only to themselves (they’re in the center) and most of them don’t have determinant ±1.
Moreover, the groups On(Qp) are usually not compact (see the appendix).

The correct p-adic analogue of each compact subgroup of GLn(R) being conjugate to a
subgroup of On(R) is that each compact subgroup of GLn(Qp) is conjugate to a subgroup
of the compact group GLn(Zp). Our exposition of this result will follow [1, pp. LG 4.30–
LG 4.32] closely except for the proof of Lemma 2.6 below (its statement is [1, Lemma 1]).

It is worth briefly describing how all compact subgroups of GLn(R) are proved to be
conjugate to a subgroup of On(R), even though the real and p-adic proofs are different.
The group On(R) can be characterized either as all A ∈ GLn(R) such that AA> = In, as
in (1.1), or more geometrically as all A ∈ GLn(R) that preserve the dot product:

(1.2) On(R) = {A ∈ GLn(R) : Av ·Aw = v · w for all v and w in Rn}.

The dot product is just one example of an inner product on Rn, and all inner products
can be turned into the dot product by a linear change of variables. With this in mind,
if we are given a compact subgroup H of GLn(R), integration on H (with respect to an
invariant measure) can be used to create an inner product 〈·, ·〉 on Rn that is H-invariant:
〈h(v), h(w)〉 = 〈v, w〉 for all h ∈ H. By a linear change of variables this inner product can
be turned into the dot product on Rn, and that linear change of variables is an A ∈ GLn(R)
that conjugates H into On(R).

The p-adic substitute for the dot product on Rn (which is preserved by On(R)) is the
subgroup Znp of Qn

p . For each A ∈ GLn(Qp), we can act A on Znp =
∑n

i=1 Zpei (here and

below, the ei’s are the standard basis of n-space) and get A(Znp ) =
∑n

i=1 ZpA(ei), which
may or may not be Znp again.

Theorem 1.1. GLn(Zp) = {A ∈ GLn(Qp) : A(Znp ) = Znp}.

This theorem, characterizing GLn(Zp), is the p-adic analogue of (1.2).

Proof. Suppose A(Znp ) = Znp . The standard basis of Qn
p is inside Znp . so from A(Znp ) = Znp

we get A(ei) ∈ Znp for all i, so the columns of A are in Znp . Also Znp = A−1(Znp ), so the

columns of A−1 are in Znp too. Thus A and A−1 are both matrices with Zp-entries, so
A ∈ GLn(Zp).

Conversely, suppose A ∈ GLn(Zp). Then A has Zp-entries, so A(ei) ∈ Znp . Since A(Znp )

is the Zp-linear combinations of the vectors A(ei), A(Znp ) ⊂ Znp . Also A−1 has Zp-entries,

so A−1(Znp ) ⊂ Znp , or equivalently Znp ⊂ A(Znp ). Hence A(Znp ) = Znp . �
1
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Theorem 1.2. The group GLn(Zp) is compact and open in GLn(Qp).

Proof. We can view GLn(Zp) as the intersection

GLn(Zp) = Mn(Zp) ∩
{
g ∈ Mn(Qp) : det g ∈ Z×p

}
.

Inside Mn(Qp), Mn(Zp) is open (it is the sup-norm unit ball with respect to the standard ba-
sis of Mn(Qp)), and since the determinant det : Mn(Qp)→ Qp is continuous (it is a polyno-
mial function of the matrix entries) and Z×p is open in Qp the set

{
g ∈ Mn(Qp) : det g ∈ Z×p

}
is open in Mn(Qp). Therefore GLn(Zp) is the intersection of two open sets in Mn(Qp), so
it is open here. Then since GLn(Zp) ⊂ GLn(Qp) and GLn(Qp) is open in Mn(Qp) (since

GLn(Qp) = det−1(Q×p )), GLn(Zp) is open in GLn(Qp).
To show GLn(Zp) is compact, we first observe that Mn(Zp) is compact (it is the closed

unit ball of Mn(Qp) in the sup-norm with respect to the standard basis of Mn(Qp)). Then
GLn(Zp) is the inverse image of Z×p for det : Mn(Zp) → Zp. This is continuous and Z×p
is closed in Zp, so the inverse image GLn(Zp) is closed in a compact space Mn(Zp) and
therefore is compact. �

While GLn(Zp) is like On(R) because both are compact, note that On(R) is not open
in GLn(R): spaces that are related to Euclidean space are usually not compact and open,
while the totally disconnected nature of p-adic spaces makes compactness and openness
fairly common properties together.

2. Lattices in Qn
p

In Rn, a lattice is defined to be the Z-span of a basis of Rn, with the standard lattice of
Rn being Zn. We are going to work with Znp as the analogue in Qn

p of Zn in Rn: Znp is the
Zp-span of the standard basis of Qn

p , just as Zn is the Z-span of the standard basis of Rn.

Definition 2.1. A lattice in Qn
p is the Zp-span of a basis of Qn

p .

The most basic example of a lattice in Qn
p is Znp , which will be called the standard lattice

in Qn
p .

Remark 2.2. In Q2
p, Zp × {0} is not a lattice. Note it does not contain a basis for Q2

p.

For A ∈ GLn(Qp), A(Znp ) is the Zp-span of A(e1), . . . , A(en), which is a basis of Qn
p , so

A(Znp ) is a lattice in Qn
p .

Theorem 2.3. In Rn, all lattices are of the form A(Zn) where A ∈ GLn(R). In Qn
p , all

lattices are of the form A(Znp ) where A ∈ GLn(Qp).

Proof. If A ∈ GLn(R) is such that A = [v1 · · ·vn] where each vi represents a column of A,
then the vi’s are linearly independent over R and

A(Zn) = A(Ze1 + · · ·+ Zen) = Zv1 + · · ·+ Zvn =

n∑
i=1

Zvi

is the Z-span of a basis of Rn. Conversely, if L = Zv1 + · · ·+Zvn is the Z-span of a basis of
Rn then the matrix A = [v1 · · ·vn] is in GLn(R) and L = ZA(e1) + · · ·+ ZA(en) = A(Zn).

If we replace Z with Zp, the proof goes through for the p-adic case in the same way. �

Since Zn is discrete, Theorem 2.3 tells us every lattice L in Rn is discrete. Likewise, since
Znp is compact and open in Qn

p every lattice in Qn
p is compact and open. (If we use quotient

vector spaces, the dichotomy between lattices in Rn and Qn
p takes on a more appealing

form: when V is Rn or Qn
p and L is a lattice in V , L is discrete and V/L is compact for
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real V while L is compact and V/L is discrete for p-adic V ; V/L being discrete is another
way of saying L is open in V .)

The following definition, inspired by Theorem 1.1, gives the counterpart to lattices in Qn
p

of the role GLn(Zp) plays for the standard lattice Znp .

Definition 2.4. For each lattice L in Qn
p , set

KL = {g ∈ GLn(Qp) : g(L) = L} .

For example, KZn
p

= GLn(Zp). When g(L) = L, we will say “g fixes L,” but that only
means L is fixed as a set, not that g fixes every element of L. Because all lattices in Qn

p can
be obtained from the standard lattice via a matrix in GLn(Qp) (Theorem 2.3), the KL’s
for different L’s are related to each other:

Theorem 2.5. For a lattice L in Qn
p , there is some g ∈ GLn(Qp) such that KL =

gGLn(Zp)g
−1. Conversely, for g ∈ GLn(Qp) the group gGLn(Zp)g

−1 is KL for some
lattice L in Qn

p .
In particular, KL is compact and open in GLn(Qp).

Proof. For a lattice L, by Theorem 2.3 we can write L = g(Znp ) for some g ∈ GLn(Qp).
Then

KL = {h ∈ GLn(Qp) : h(L) = L}
=

{
h ∈ GLn(Qp) : hg(Znp ) = g(Znp )

}
=

{
h ∈ GLn(Qp) : g−1hg(Znp ) = Znp

}
=

{
h ∈ GLn(Qp) : g−1hg ∈ GLn(Zp)

}
= gGLn(Zp)g

−1.

Conjugation by g on GLn(Qp) is continuous with continuous inverse, so since GLn(Zp) is
compact and open in GLn(Qp) by Theorem 1.2, its conjugate subgroup KL is compact and
open in GLn(Qp).

Reading the above computations in reverse shows gGLn(Zp)g
−1 = Kg(Zn

p )
. �

In the language of group actions, the group GLn(Qp) acts on the set of all lattices in
Qn
p by g · L = g(L). Theorem 2.3 says this action has a single orbit, and Theorem 1.1 says

the stabilizer subgroup of Znp is GLn(Zp), while KL is defined as the stabilizer subgroup of
L. Points in the same orbit of a group action have conjugate stabilizer subgroups (with a
conjugating element being one that sends one point to the other), so Theorem 2.5 makes
sense in terms of group actions.

To prove every compact subgroup H of GLn(Qp) is inside a conjugate of GLn(Zp),
Theorem 2.5 says that is the same as showing H is inside a KL, i.e., H fixes some lattice in
Qn
p . That is what we are actually going to show. To create a lattice in Qn

p fixed by H, we
will start with a lattice and then make an H-fixed lattice by “averaging” (really, summing)
over the lattices h(L) for h ∈ H. Compactness of H will tell us #{h(L) : h ∈ H} is finite.
To show a finite sum of lattices is a lattice, the following characterization of lattices is more
convenient than the definition of a lattice.

Lemma 2.6. A subgroup L of Qn
p is a lattice if and only if L has a finite spanning set over

Zp and L contains a basis of Qn
p .

This means: if there is a finite set of vectors whose Zp-span is L (not assuming it is a
basis) and L contains a basis of Qn

p , then L is a lattice, and conversely.
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Proof. (⇒): By the definition of a lattice, L is the Zp-span of a basis of Qn
p , so L has a

finite spanning set over Zp and contains a basis of Qn
p .

(⇐): Since L has a finite spanning set, L =
∑m

i=1 Zpvi for some vi’s in Qn
p . The Qp-span

of the vi’s has dimension at most m, and this span is Qn
p since L contains a basis of Qn

p .
Therefore n ≤ m.

If n < m then the vi’s have a nontrivial Qp-linear relation, say

c1v1 + · · ·+ cmvm = 0

with ci ∈ Qp not all 0. We can turn this into a Zp-linear relation by dividing this equation
by the ci with maximal absolute value. That gives such a relation with Zp-coefficients and
the vi-coefficient is 1. Therefore vi is in the Zp-span of the other vj ’s, so we can remove it
and still have a spanning set of L over Zp. Repeating this process, the bound n ≤ m tells
us that eventually we will reach m = n, and at that point our spanning set can’t be linearly
dependent over Qp (otherwise we could shrink it still further, but we must have n ≤ m).
So we have reached a spanning set of L over Zp that has size n and is linearly independent
over Qp, and thus L is the Zp-span of a basis of Qn

p , so L is a lattice. �

Remark 2.7. In [1], Lemma 2.6 is proved using properties of modules over a PID. The
proof above avoided relying on Zp being a PID.

Lemma 2.8. Let L1, . . . , Lr be lattices in Qn
p and let L = L1 + · · ·+Lr. Then L is a lattice

in Qn
p .

Proof. We use Lemma 2.6. First, L contains a basis of Qp since each Li does. Each Li has
a finite spanning set over Zp, so L has one as well: just use the union of the spanning sets
of the Li’s. �

3. Maximality properties of GLn(Zp)

Theorem 3.1. Let H be a compact subgroup of GLn(Qp). Then:

(1) There exists a lattice M in Qn
p such that H ⊂ KM .

(2) There exists g ∈ GLn(Qp) such that H ⊂ gGLn(Zp)g
−1.

Proof. (1): Choose a lattice L in Qn
p (for example, L = Znp ). The intersection HL = H∩KL

is the subgroup of H that sends L onto L. Since KL is open in GLn(Qp), HL is open in
H. Hence HL has finite index in H (every open subgroup of a compact group has finite
index, because the coset decomposition by the subgroup is an open covering that has a
finite subcovering). Therefore we can write

H =
⋃
σ∈S

σHL,

where S is a finite set. For h ∈ H, write h = σg for some σ ∈ S and g ∈ HL. Then
h(L) = σ(g(L)) = σ(L), so

{h(L) : h ∈ H} = {σ(L) : σ ∈ S}
is finite. Let

M =
∑
σ∈S

σ(L),

which is a finite sum of lattices. By Lemma 2.8, M is a lattice. We now show M is fixed
by H, so H ⊂ KM . For h ∈ H, write hσ = σhgh for σh ∈ S and gh ∈ HL. Then

h(M) =
∑
σ∈S

hσ(L) =
∑
σ∈S

σhgh(L) =
∑
σ∈S

σh(L) = M,
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where in the last step we use the fact that {σh : σ ∈ S} is a set of representatives for the
left HL-cosets of H.

(2): By Theorem 2.5, KM = gGLn(Zp)g
−1 for some g ∈ GLn(Qp) (use any g such that

M = g(Znp )). So H ⊂ KM = gGLn(Zp)g
−1, as required. �

Now we want to show GLn(Zp) is a maximal compact subgroup: it is not strictly contained
in a larger compact subgroup of GLn(Qp). (In the n = 1 case this is clear: GL1(Zp) = Z×p
is a maximal compact subgroup of GL1(Qp) = Q×p since each element of Q×p not of absolute
value 1 has unbounded powers. We don’t have an absolute value on GLn(Qp) for n > 1 to
generalize that argument.) Since every compact subgroup of GLn(Qp) is in some KL, what
we want is the same as showing there are no containment relations among different KL’s.

We need a lemma from linear algebra, having nothing to do with p-adic fields.

Lemma 3.2. Let V be a nonzero finite-dimensional vector space over a field F and let
W ⊂ V be a subspace such that A(W ) = W for all A ∈ AutF (V ) = GL(V ). Then W = 0
or W = V .

Proof. Set n = dimV > 0. We will prove the contrapositive: if W is not 0 or V then
A(W ) 6= W for some A ∈ GL(V ). Of course we can take n > 1.

Set d = dimW and suppose 0 < d < n. Pick a basis {e1, . . . , ed} of W and extend it to
a basis {e1, . . . , ed, . . . , en} of V . Pick f1 ∈ V −W and extend it to a basis {f1, . . . , fn} of
V . Define A : V → V by

A
(∑

cjej

)
=
∑

cjfj .

SinceA sends a basis to a basis, A ∈ GL(V ). We haveA(W ) 6= W sinceA(e1) = f1 /∈W . �

The proof of the following theorem contains most of the hard work in this discussion.

Theorem 3.3. Let L and L′ be two lattices in Qn
p and suppose KL ⊂ KL′. Then there

exists λ ∈ Q×p such that L = λL′, and KL = KL′.

Proof. Let

L =
n∑
i=1

Zpei and L′ =
n∑
j=1

Zpfj

for some bases {ei} and {fj} of Qn
p . For λ ∈ Q×p , KλL′ = KL′ , so replacing L′ with a nonzero

scalar multiple doesn’t affect the hypotheses of the theorem. We will do two scalings on L′

to make things easier to analyze. Neither replacement changes KL′ .
First we show that λL′ ⊂ L for some λ ∈ Q×p . The ei’s and fj ’s are bases of Qn

p , so we
can write

fj =

n∑
i=1

aijei

where aij ∈ Qp. Then for λ 6= 0 small, we have λaij ∈ Zp for all i, j. So λfj ∈ L for all j
and thus λL′ ⊂ L. We may replace L′ with λL′ and thus can suppose L′ ⊂ L.

Next we want to show by further scaling that we can also arrange L′ 6⊂ pL while still
having L′ ⊂ L. We know that, being a lattice, L′ is open in Qn

p . Then since 0 ∈ L′,

pNei ∈ L′ for all i and for some N . So pNL ⊂ L′ ⊂ L. Multiplication by p makes a lattice
smaller (as a set), so pN+1L is a proper subset of L′. Since L′ is inside L = p0L but is
not inside pN+1L, there is a maximum r ≥ 0 such that L′ ⊂ prL; that is, L′ ⊂ prL but
L′ 6⊂ pr+1L. This implies

1

pr
L′ ⊂ L and

1

pr
L′ 6⊂ pL.
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We replace L′ with (1/pr)L′, which does not change the stabilizer group (K 1
pr
L′ = KL′), so

now we have L′ ⊂ L and L′ 6⊂ pL.
From the two relations on L and L′,

(3.1) pL ( L′ + pL ⊂ L.

We are going to show L′ + pL = L, and then use the containment KL′ ⊂ KL (which
has yet to be applied) to show L′ = L. Reduce (3.1) modulo pL: set V = L/pL and
W = (L′ + pL)/pL, so W ⊂ V and W 6= 0. Multiplication by p kills V and W , so V and
W are naturally Fp-vector spaces and V = ⊕ni=1(Zp/pZp)ei is n-dimensional over Fp. We
want to prove W = V , so then L′ + pL = L. Lemma 3.2 is the result we need.

For each g ∈ KL, g(L) = L and g(pL) = p · g(L) = pL, so g makes sense as a function

ḡ : L/pL −→ L/pL

that is Fp-linear. So we have a reduction map

(3.2) KL −→ AutFp(L/pL) ∼= GLn(Fp)

by g 7→ ḡ. It is a homomorphism: g1g2 = ḡ1ḡ2. We show (3.2) is onto (which in the n = 1
case is the familiar surjectivity of Z×p −→ F×p by a 7→ a mod p, unlike that of Z× −→ F×p ).
Let ϕ ∈ AutFp(L/pL), so

ϕ : L/pL −→ L/pL

is Fp-linear. Since

L/pL =
n∑
i=1

Fpēi,

we have

ϕ(ēj) =
n∑
i=1

āij ēi,

where aij ∈ Zp reduces to the coefficients of ei. Set A = (aij) ∈ Mn(Zp). Since

det(Ā) = det(āij) 6≡ 0 mod p,

detA ∈ Z×p , so A ∈ GLn(Zp).
Now define Φ : Qn

p −→ Qn
p to have matrix A in the basis {ei}:

Φ(ej) =

n∑
i=1

aijei ∈ L.

Then Φ(L) ⊂ L. With respect to the basis {ei}, the matrix representation of Φ is (aij) ∈
GLn(Zp). Let (bij) = (aij)

−1 ∈ GLn(Zp) and define Ψ : Qn
p −→ Qn

p by

Ψ(ej) =

n∑
i=1

bijei ∈ L.

Then Φ and Ψ are inverses on Qn
p and Ψ(L) ⊂ L. Applying Φ to both sides gives L ⊂ Φ(L).

Thus Φ(L) = L, so Φ ∈ KL and (by reducing coefficients) we have Φ̄ = ϕ. This proves
KL → AutFp(L/pL) is onto.

Now we’re in a position to use Lemma 3.2. For each ϕ ∈ AutFp(L/pL) = GL(V ), there
is a Φ ∈ KL that reduces to ϕ. Since KL ⊂ KL′ (!), Φ(L′) ⊂ L′, so

Φ(L′ + pL) ⊂ L′ + pL.
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Reduce this containment modulo pL to get ϕ(W ) ⊂ W . Since ϕ is invertible on V , ϕ
preserves dimensions, so ϕ(W ) = W . This holds for all ϕ ∈ AutFp(L/pL), so W = 0 or
W = V by Lemma 3.2. Since W 6= 0, W = V . Thus

(L′ + pL)/pL = L/pL,

so L′ + pL = L. Hence “mod p” we have L′ = L, and we want to prove there is actual
equality of the two lattices in Qn

p .
We already have L′ ⊂ L, so we will show that L ⊂ L′. We will do this in two ways.

The first way will use an approximation method of the same kind we used twice already to
show a locally compact normed vector space over a locally compact valued field is finite-
dimensional and to show n = ef for p-adic fields (that was the argument that went from
OK ⊂M+pOK to OK = M). The second way will involve no limits at all and will be purely
algebraic (it in fact is the proof of a special case of Nakayama’s lemma from commutative
algebra).

Since L = L′ + pL, we can feed L into the right side to get

L = L′ + p(L′ + pL) ⊂ L′ + p2L,

and then by induction
L ⊂ L′ + pmL

for all m ≥ 1. Thus to each v ∈ L we can find a sequence of v′m ∈ L′ with v − v′m ∈ pmL,
so v′m → v as m → ∞ (use the sup-norm with respect to the basis {ej} here to see this
concretely). Thus L lies in the closure of L′. Being a lattice in Qn

p , L′ is compact, and
therefore closed, so L ⊂ L′.

For our second proof, recall

L =
n∑
i=1

Zpei and L′ =
n∑
j=1

Zpfj .

From L = L′ + pL, we can write

ei =
n∑
j=1

aijfj +
n∑
j=1

bijej

for all i, where aij and bij are p-adic integers with |bij |p < 1. We now have the system of
equations e1

...
en

 = (aij)

f1
...
fn

+ (bij)

e1
...

en

 .

Set A = (aij) and B = (bij), so A ∈ Mn(Zp) and B ∈ Mn(pZp). Thene1
...

en

 = A

f1
...
fn

+B

e1
...

en

 ,

so

(3.3) (In −B)

e1
...

en

 = A

f1
...
fn

 .

The matrix In−B is in Mn(Zp) and reduces modulo p to In−B ≡ In mod p, so det(In−B) ≡
1 mod p. Hence In−B ∈ GLn(Zp). Multiplying both sides of (3.3) by (In−B)−1 shows us
that all the ei’s are in L′, so L ⊂ L′ and we are done. �
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Theorem 3.4. The group GLn(Zp) is a maximal compact subgroup of GLn(Qp), and the
maximal compact subgroups of GLn(Qp) are precisely the conjugates of GLn(Zp). Further-
more, every compact subgroup of GLn(Qp) is contained in a maximal compact subgroup of
GLn(Qp).

Proof. Suppose GLn(Zp) is contained in a compact subgroup H of GLn(Qp). Theorem
1.2 shows that there exists a lattice M such that H ⊂ KM . Hence GLn(Zp) ⊂ KM , but
GLn(Zp) = KZn

p
, so by Theorem 3.3, GLn(Zp) = KM . Then H ⊂ KM = GLn(Zp) ⊂ H,

so H = GLn(Zp). Conjugation preserves containments, so every conjugate of GLn(Zp) is a
maximal compact subgroup of GLn(Qp).

By Theorem 3.1, every compact subgroup H of GLn(Qp) is contained in gGLn(Zp)g
−1

for some g ∈ GLn(Qp), so the conjugates of GLn(Zp) are maximal in GLn(Qp) and every
compact subgroup is contained in one of these maximal compact subgroups. �

The proofs above generalize with essentially no change to GLn(K) for a p-adic field K
(which in fact is the setting that is handled in [1]):

Theorem 3.5. The maximal compact subgroups of GLn(K) are the conjugates of GLn(OK)
and every compact subgroup of GLn(K) is contained in a conjugate of GLn(OK).

In the proof, lattices in Kn are used. A lattice in Kn, by definition, is the OK-span of
a basis of Kn. There are two points worth making about how the proof over Qp adapts to
the more general case:

(1) Lemma 2.6 goes through in Kn by the same argument used in Qn
p , so a finite sum

of lattices in Kn is a lattice by the same proof used for lattices in Qn
p (Lemma 2.8).

(2) If L is a lattice in Kn, and π is a prime in OK , L/πL is a vector space over the
residue field k = OK/πOK of K (and not just an Fp-vector space as before). Any
element of GLn(K) that sends L onto itself induces a k-linear automorphism of
L/πL and all such automorphisms arise in this way. The proof of that is identical
to the Qp-case.

Replacing GLn(K) with other matrix groups over K, there could be more than one
conjugacy class of maximal compact subgroups. For example, although in SLn(R) all
maximal compact subgroups are conjugate to a subgroup of SOn(R), the group SLn(K)
has n conjugacy classes of maximal compact subgroups. Taking n = 2, the two conjugacy
classes of maximal compact subgroups of SL2(K) are SL2(OK) and ( π 0

0 1 ) SL2(OK)( π 0
0 1 )−1,

where π is a prime of K.

Appendix A. Orthogonal groups over Qp

The group On(R) is compact because in Mn(R) it is closed (the condition AA> = In
is a finite system of polynomial equations on the matrix entries) and bounded (the rows
of A are mutually orthogonal unit vectors, or equivalently the columns of A are mutually
orthogonal unit vectors since A>A = In is also a defining property of On(R)). If we work
over C instead of R, the group O1(C) = S1 is compact, but On(C) for n ≥ 2 is not compact
because matrix entries can be unbounded: for arbitrary z ∈ C, we can solve w2 = 1 − z2
for some w in C, and the matrix ( z w

w −z ) is in O2(C). For n ≥ 3, using that 2× 2 matrix as
the upper left block with 1’s on the rest of the main diagonal gives us matrices in On(C)
with unbounded entries.

When n = 1, On(Qp) = {±1} is compact (and it’s smaller than the maximal compact
subgroup Z×p of GL1(Qp) = Q×p ). The compactness of O2(Qp) depends on p mod 4.

Theorem A.1. If p 6≡ 1 mod 4 then O2(Qp) is compact and is a subgroup of GL2(Zp).
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Proof. The group O2(Qp) is closed since its defining condition AA> = I2 is polynomial
equations on the matrix entries. It remains to show the entries of a matrix in O2(Qp) are
bounded.

The rows (and columns) of a matrix in O2(Qp) have entries x and y in Qp that satisfy
x2 + y2 = 1. We’ll show when p 6≡ 1 mod 4 that such x and y must be in Zp. If y ∈ Zp
then x ∈ Zp since x2 = 1 − y2 ∈ Zp, and if x ∈ Zp then y ∈ Zp. So if x or y is not in
Zp then neither is in Zp, and |x|p = |y|p by x2 + y2 = 1 and the non-Archimedean triangle
inequality.

Writing |x|p = |y|p = pr where r ≥ 1, x = u/pr and y = v/pr where u, v ∈ Z×p . Then

1 = x2 + y2 = (u2 + v2)/p2r, so u2 + v2 = p2r ≡ 0 mod p2. Therefore −1 ≡ (u/v)2 mod p2,
which for prime p forces p ≡ 1 mod 4 (it doesn’t hold for p = 2 since −1 mod 4 is not a
square even though −1 mod 2 is a square). So when p 6≡ 1 mod 4, all matrices in O2(Qp)
have entries in Zp and thus these matrices are bounded. Since the determinant of an
orthogonal matrix is ±1, we have shown O2(Qp) ⊂ GL2(Zp). �

Theorem A.2. If p ≡ 1 mod 4 then O2(Qp) is not compact.

Proof. We are going to think of O2(Qp) in the sense of (1.2), as matrices preserving the dot
product on Q2

p:

O2(Qp) = {A ∈ GL2(Qp) : Av ·Aw = v · w for all v and w in Q2
p}.

For p ≡ 1 mod 4, −1 is a square in Z×p , say −1 = a2. The vectors v =
(
a
1

)
and w =

(−a
1

)
in Q2

p are a basis and v · v = 0, w · w = 0, and v · w = −a2 + 1 = 2, so for x and y in Qp,

(xv + yw) · (xv + yw) = x2(v · v) + 2xyv · w + y2(w · w) = 4xy.

For each c ∈ Q×p , the linear map Ac : Q2
p → Q2

p where Ac(xv+ yw) = cxv+ (1/c)yw (the

matrix of Ac in the basis {v, w} is ( c 0
0 1/c )) preserves the dot product:

Ac(xv + yw) ·Ac(xv + yw) = 4(cx)((1/c)y) = 4xy = (xv + yw) · (xv + yw),

so Ac ∈ O2(Qp) (in fact, Ac ∈ SO2(Qp) since det(Ac) = 1), and since c is unbounded the
group O2(Qp) is not compact. �

The compactness or noncompactness of On(Qp) for n ≥ 3 is as follows, and will be
explained below:

• for n = 3 and 4, On(Q2) is compact and O3(Z2) ⊂ GL3(Z2), but O4(Z2) 6⊂ GL4(Z2),
• On(Q2) is noncompact when n ≥ 5,
• for p 6= 2 and n ≥ 3, On(Qp) is not compact.

To prove compactness of On(Q2) for n = 3 and n = 4, we’ll use the following lemma
about 2-adic absolute values of sums of 2, 3, and 4 squares in Q2.

Lemma A.3. On Q2, let | · | denote | · |2. For x and y in Q2,

|x2 + y2| =

{
|x2|, if |x| > |y|,
1
2 |x

2|, if |x| = |y|.

For x, y, z ∈ Q2,

|x2 + y2 + z2| =

{
|x2|, if |x| > |y|, |z| or if |x| = |y| = |z|,
1
2 |x

2|, if |x| = |y| > |z|.
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For x, y, z, w ∈ Q2,

|x2 + y2 + z2 + t2| =


|x2|, if |x| > |y|, |z|, |t| or if |x| = |y| = |z| > |t|,
1
2 |x

2|, if |x| = |y| > |z|, |t|,
1
4 |x

2|, if |x| = |y| = |z| = |t|.

Proof. If |x| > |y|, then |x2| > |y2|, so |x2 + y2| = |x2| = |x|2 by the non-Archimedean
triangle inequality.

If |x| = |y|, first assume the common value is 0, i.e., x and y are 0. Then x2 + y2 = 0,
so |x2 + y2| = 0 = 1

2 |x
2|. If the common value is not 0, let it be 1/2r. Then x = 2ru and

y = 2rv for u and v in Z×2 , so x2 +y2 = 4r(u2 +v2). Since u2, v2 ≡ 1 mod 4, |u2 +v2| = 1/2.
Thus |x2 + y2| = (1/4r)(1/2) = 1

2 |x
2|.

Now we look at a sum of three squares. If |x|, |y|, and |z| have a maximum uniquely at
|x|, then |x2 + y2 + z2| = |x2| by the non-Archimedean triangle inequality.

If |x|, |y|, and |z| have a maximum at x and y but not at z, then |x2 + y2| = 1
2 |x

2| by

the case of sums of two squares, and we’ll show 1
2 |x

2| > |z2|: it is obvious if z = 0, and if
z 6= 0 then |x| = |y| ≥ 2|z| (since nonzero 2-adic absolute values are integral powers of 2), so
|x2| ≥ 4|z2|, so 1

2 |x
2| ≥ 2|z2| > |z2|. Thus |x2+y2| > |z2|, so |x2+y2+z2| = |x2+y2| = 1

2 |x
2|.

If |x| = |y| = |z| = 0, then |x2 + y2 + z2| = 0 = |x2|. If |x| = |y| = |z| 6= 0, then x = 2ru,
y = 2rv, and z = 2rw for some r ∈ Z and u, v, and w in Z×2 , so x2+y2+z2 = 4r(u2+v2+w2).
Since u2 + v2 + w2 ≡ 1 + 1 + 1 ≡ 3 mod 4, |x2 + y2 + z2| = 1/4r = |x2|.

The last case is a sum of four squares. If |x|, |y|, |z|, and |t| have a maximum uniquely
at |x|, then |x2 + y2 + z2 + t2| = |x2| by the non-Archimedean triangle inequality.

Suppose the maximum absolute value is only at x and y. Then |z|, |t| ≤ (1/2)|x|, so
|z2 + t2| ≤ (1/4)|x2| < (1/2)|x2| = |x2 + y2| by the formula for a sum of two squares. Thus
|x2 + y2 + z2 + t2| = |x2 + y2| = 1

2 |x
2|.

Suppose the maximum absolute value is at x, y, and z but not at t. Then |x2 +y2 +z2| =
|x2| > |t2| by the case of a sum of three squares, so |x2 +y2 +z2 + t2| = |x2 +y2 +z2| = |x2|.

Finally, suppose |x| = |y| = |z| = |t|. If the common absolute value is 0, so all the
numbers are 0, then |x2 + y2 + z2 + t2| = 0 = 1

4 |x
2|. If the common absolute value is not 0,

then we can write x = 2ru, y = 2rv, z = 2rw, and t = 2rs for some r ∈ Z and u, v, w, s in
Z×2 . Thus

x2 + y2 + z2 + t2 = 4r(u2 + v2 + w2 + s2)

and u2+v2+w2+s2 ≡ 1+1+1+1 ≡ 4 mod 8, so |x2+y2+z2+t2| = (1/4r)(1/4) = 1
4 |x

2|. �

Theorem A.4. The groups O3(Q2) and O4(Q2) are compact, with O3(Z3) ⊂ GL3(Z2) and
O4(Z2) 6⊂ GL4(Z2), respectively.

Proof. The groups O3(Q2) and O4(Q2) are closed in M3(Q2) and M4(Q2), since the matrix
entries are solutions to some polynomial equations. We’ll show the matrix entries are all
bounded, so the orthogonal groups are compact. It will turn out matrices in O3(Q2) have
entries in Z2 and matrices in O4(Q2) have entries in 1

2Z2.
As in the proof of Lemma A.3, we’ll use | · | for | · |2.
The 3× 3 case. Each column of a matrix in O3(Q2) is a triple (x, y, z) where x2+y2+z2 =

1, so |x2 + y2 + z2| = 1. Without loss of generality, let max(|x|, |y|, |z|) = |x|.
From Lemma A.3, if |x|, |y|, and |z| have a maximum at 1 or 3 of these numbers then

1 = |x2 + y2 + z2| = |x2|, so all three of x, y, and z are in Z2.
If the maximum absolute value occurs at exactly two of the numbers, then 1 = 1

2 |x
2|,

so |x2| = 2, which is impossible. Thus O3(Z2) ⊂ M3(Z2). Since orthogonal matrices have
determinant ±1, and ±1 ∈ Z×2 , O3(Q2) ⊂ GL3(Z2).
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The 4× 4 case. The matrix
1/2 1/2 −1/2 1/2
1/2 1/2 1/2 −1/2
1/2 −1/2 −1/2 −1/2
1/2 −1/2 1/2 1/2


is in O4(Q2), so O4 6⊂ GL4(Z2). To show all entries of matrices in O4(Q2) are in 1

2Z2, we’ll

show that if |x2 + y2 + z2 + t2| = 1 then x, y, z, t ∈ 1
2Z2.

If |x2 + y2 + z2 + t2| = 1 and max(|x|, |y|, |z|, |t|) = |x|, then by the formula in Lemma
A.3 for |x2 +y2 +z2 + t2| we have either (i) |x2| = 1 or (ii) 1

4 |x
2| = 1 (the equation 1

2 |x
2| = 1

is impossible). For (i), we have |y|, |z|, |t| ≤ |x| = 1, so x, y, z, t ∈ Z2. For (ii), we have
|y|, |z|, |t| ≤ |x| = 2, so x, y, z, t ∈ 1

2Z2. �

Here is an application of this theorem to matrix groups over Q.

Corollary A.5. Every entry of a matrix in O3(Q) has an odd denominator, and every
entry of a matrix in O4(Q) has a denominator that is odd or an odd multiple of 2.

Proof. Since O3(Q) is contained in O3(Q2), every matrix in O3(Q) has entries in Z2 and thus
the entries are rational numbers with odd denominators. Similarly, since O4(Q) ⊂ O4(Q2),
the entries of a matrix in O4(Q2) are in 1

2Z2, so the denominators are divisible by 2 at most
once. �

Our last task is to prove On(Q2) is noncompact for n ≥ 5 and On(Qp) is noncompact
when p 6= 2 and n ≥ 3. This is explained in a common way by the next theorem.

Theorem A.6. If Q(x1, . . . , xn) is a nondegenerate quadratic form on Qn
p and there is a

nonzero solution to Q(v) = 0, then OQ(Qp) is noncompact.

Proof. See https://mathoverflow.net/questions/370940. �

Apply this theorem to x21 + x22 + · · · + x2n, which is a nondegenerate quadratic form on
Qn
p (both for p = 2 and p 6= 2) and it has a nontrivial zero if p = 2 and n ≥ 5 and also if

p 6= 2 and n ≥ 3:1 for p = 2, −7 = α2 for some α ∈ Z×2 and α2 + 22 + 1 + 1 + 1 = 0 (pad
the solution with extra 0’s on the left if n > 5), while for p 6= 2, x2 + y2 + 1 = 0 for some x
and y in Zp (pad with extra 0’s if n > 3) since the congruence −1 ≡ x20 + y20 mod p has a
solution where x0 6≡ 0 mod p, and this can be lifted to a p-adic solution by Hensel’s lemma.

Here is an analogous compactness theorem for orthogonal groups over Qp.

Theorem A.7. If Q(x1, . . . , xn) is a nondegenerate quadratic form on Qn
p and the only

solution to Q(v) = 0 on Qn
p is v = 0, then OQ(Qp) is compact.

Proof. See https://mathoverflow.net/questions/90117. �

The quadratic form x21 + x22 + · · ·+ x2n on Qn
p fits the conditions of Theorem A.7 if p = 2

and n ≤ 4, if p ≡ 3 mod 4 and n ≤ 2, and if p ≡ 1 mod 4 and n = 1. So this theorem
recovers the compactness of O2(Qp) for p 6≡ 1 mod 4 in Theorem A.1 and the compactness
of O3(Q2) and O4(Q2) in Theorem A.4, but it doesn’t tell us the more refined information
about when On(Qp) ⊂ GLn(Zp) in Theorems A.1 and A.4.
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