MAXIMAL COMPACT SUBGROUPS OF $\mathrm{GL}_{n}\left(\mathbf{Q}_{p}\right)$

KEITH CONRAD

1. Introduction

It is a classical theorem that for $n \geq 1$, each compact subgroup of $\mathrm{GL}_{n}(\mathbf{R})$ is conjugate to a subgroup of the compact group $\mathrm{O}_{n}(\mathbf{R})$, the real orthogonal group:

$$
\begin{equation*}
\mathrm{O}_{n}(\mathbf{R})=\left\{A \in \mathrm{GL}_{n}(\mathbf{R}): A A^{\top}=I_{n}\right\} . \tag{1.1}
\end{equation*}
$$

This isn't be true with \mathbf{R} replaced by \mathbf{Q}_{p} because every matrix in $\mathrm{O}_{n}\left(\mathbf{Q}_{p}\right)$ has determinant ± 1 but the scalar diagonal matrices $\mathbf{Z}_{p}^{\times} I_{n}$ form a compact subgroup of $\mathrm{GL}_{n}\left(\mathbf{Q}_{p}\right)$ conjugate only to themselves (they're in the center) and most of them don't have determinant ± 1. Moreover, the groups $\mathrm{O}_{n}\left(\mathbf{Q}_{p}\right)$ are usually not compact (see the appendix).

The correct p-adic analogue of each compact subgroup of $\mathrm{GL}_{n}(\mathbf{R})$ being conjugate to a subgroup of $\mathrm{O}_{n}(\mathbf{R})$ is that each compact subgroup of $\mathrm{GL}_{n}\left(\mathbf{Q}_{p}\right)$ is conjugate to a subgroup of the compact group $\mathrm{GL}_{n}\left(\mathbf{Z}_{p}\right)$. Our exposition of this result will follow [1, pp. LG 4.30LG 4.32] closely except for the proof of Lemma 2.6 below (its statement is [1, Lemma 1]).

It is worth briefly describing how all compact subgroups of $\mathrm{GL}_{n}(\mathbf{R})$ are proved to be conjugate to a subgroup of $\mathrm{O}_{n}(\mathbf{R})$, even though the real and p-adic proofs are different. The group $\mathrm{O}_{n}(\mathbf{R})$ can be characterized either as all $A \in \mathrm{GL}_{n}(\mathbf{R})$ such that $A A^{\top}=I_{n}$, as in (1.1), or more geometrically as all $A \in \mathrm{GL}_{n}(\mathbf{R})$ that preserve the dot product:

$$
\begin{equation*}
\mathrm{O}_{n}(\mathbf{R})=\left\{A \in \mathrm{GL}_{n}(\mathbf{R}): A v \cdot A w=v \cdot w \text { for all } v \text { and } w \text { in } \mathbf{R}^{n}\right\} . \tag{1.2}
\end{equation*}
$$

The dot product is just one example of an inner product on \mathbf{R}^{n}, and all inner products can be turned into the dot product by a linear change of variables. With this in mind, if we are given a compact subgroup H of $\mathrm{GL}_{n}(\mathbf{R})$, integration on H (with respect to an invariant measure) can be used to create an inner product $\langle\cdot, \cdot\rangle$ on \mathbf{R}^{n} that is H-invariant: $\langle h(v), h(w)\rangle=\langle v, w\rangle$ for all $h \in H$. By a linear change of variables this inner product can be turned into the dot product on \mathbf{R}^{n}, and that linear change of variables is an $A \in \mathrm{GL}_{n}(\mathbf{R})$ that conjugates H into $\mathrm{O}_{n}(\mathbf{R})$.

The p-adic substitute for the dot product on \mathbf{R}^{n} (which is preserved by $\mathrm{O}_{n}(\mathbf{R})$) is the subgroup \mathbf{Z}_{p}^{n} of \mathbf{Q}_{p}^{n}. For each $A \in \operatorname{GL}_{n}\left(\mathbf{Q}_{p}\right)$, we can act A on $\mathbf{Z}_{p}^{n}=\sum_{i=1}^{n} \mathbf{Z}_{p} e_{i}$ (here and below, the e_{i} 's are the standard basis of n-space) and get $A\left(\mathbf{Z}_{p}^{n}\right)=\sum_{i=1}^{n} \mathbf{Z}_{p} A\left(e_{i}\right)$, which may or may not be \mathbf{Z}_{p}^{n} again.
Theorem 1.1. $\mathrm{GL}_{n}\left(\mathbf{Z}_{p}\right)=\left\{A \in \mathrm{GL}_{n}\left(\mathbf{Q}_{p}\right): A\left(\mathbf{Z}_{p}^{n}\right)=\mathbf{Z}_{p}^{n}\right\}$.
This theorem, characterizing $\mathrm{GL}_{n}\left(\mathbf{Z}_{p}\right)$, is the p-adic analogue of (1.2).
Proof. Suppose $A\left(\mathbf{Z}_{p}^{n}\right)=\mathbf{Z}_{p}^{n}$. The standard basis of \mathbf{Q}_{p}^{n} is inside \mathbf{Z}_{p}^{n}. so from $A\left(\mathbf{Z}_{p}^{n}\right)=\mathbf{Z}_{p}^{n}$ we get $A\left(e_{i}\right) \in \mathbf{Z}_{p}^{n}$ for all i, so the columns of A are in \mathbf{Z}_{p}^{n}. Also $\mathbf{Z}_{p}^{n}=A^{-1}\left(\mathbf{Z}_{p}^{n}\right)$, so the columns of A^{-1} are in \mathbf{Z}_{p}^{n} too. Thus A and A^{-1} are both matrices with \mathbf{Z}_{p}-entries, so $A \in \mathrm{GL}_{n}\left(\mathbf{Z}_{p}\right)$.

Conversely, suppose $A \in \mathrm{GL}_{n}\left(\mathbf{Z}_{p}\right)$. Then A has \mathbf{Z}_{p}-entries, so $A\left(e_{i}\right) \in \mathbf{Z}_{p}^{n}$. Since $A\left(\mathbf{Z}_{p}^{n}\right)$ is the \mathbf{Z}_{p}-linear combinations of the vectors $A\left(e_{i}\right), A\left(\mathbf{Z}_{p}^{n}\right) \subset \mathbf{Z}_{p}^{n}$. Also A^{-1} has \mathbf{Z}_{p}-entries, so $A^{-1}\left(\mathbf{Z}_{p}^{n}\right) \subset \mathbf{Z}_{p}^{n}$, or equivalently $\mathbf{Z}_{p}^{n} \subset A\left(\mathbf{Z}_{p}^{n}\right)$. Hence $A\left(\mathbf{Z}_{p}^{n}\right)=\mathbf{Z}_{p}^{n}$.

Theorem 1.2. The group $\mathrm{GL}_{n}\left(\mathbf{Z}_{p}\right)$ is compact and open in $\mathrm{GL}_{n}\left(\mathbf{Q}_{p}\right)$.
Proof. We can view $\mathrm{GL}_{n}\left(\mathbf{Z}_{p}\right)$ as the intersection

$$
\operatorname{GL}_{n}\left(\mathbf{Z}_{p}\right)=\mathrm{M}_{n}\left(\mathbf{Z}_{p}\right) \cap\left\{g \in \mathrm{M}_{n}\left(\mathbf{Q}_{p}\right): \operatorname{det} g \in \mathbf{Z}_{p}^{\times}\right\} .
$$

Inside $\mathrm{M}_{n}\left(\mathbf{Q}_{p}\right), \mathrm{M}_{n}\left(\mathbf{Z}_{p}\right)$ is open (it is the sup-norm unit ball with respect to the standard basis of $\mathrm{M}_{n}\left(\mathbf{Q}_{p}\right)$, and since the determinant det: $\mathrm{M}_{n}\left(\mathbf{Q}_{p}\right) \rightarrow \mathbf{Q}_{p}$ is continuous (it is a polynomial function of the matrix entries) and \mathbf{Z}_{p}^{\times}is open in \mathbf{Q}_{p} the set $\left\{g \in \mathbf{M}_{n}\left(\mathbf{Q}_{p}\right): \operatorname{det} g \in \mathbf{Z}_{p}^{\times}\right\}$ is open in $\mathrm{M}_{n}\left(\mathbf{Q}_{p}\right)$. Therefore $\mathrm{GL}_{n}\left(\mathbf{Z}_{p}\right)$ is the intersection of two open sets in $\mathrm{M}_{n}\left(\mathbf{Q}_{p}\right)$, so it is open here. Then since $\mathrm{GL}_{n}\left(\mathbf{Z}_{p}\right) \subset \mathrm{GL}_{n}\left(\mathbf{Q}_{p}\right)$ and $\mathrm{GL}_{n}\left(\mathbf{Q}_{p}\right)$ is open in $\mathrm{M}_{n}\left(\mathbf{Q}_{p}\right)$ (since $\left.\mathrm{GL}_{n}\left(\mathbf{Q}_{p}\right)=\operatorname{det}^{-1}\left(\mathbf{Q}_{p}^{\times}\right)\right), \mathrm{GL}_{n}\left(\mathbf{Z}_{p}\right)$ is open in $\mathrm{GL}_{n}\left(\mathbf{Q}_{p}\right)$.

To show $\mathrm{GL}_{n}\left(\mathbf{Z}_{p}\right)$ is compact, we first observe that $\mathrm{M}_{n}\left(\mathbf{Z}_{p}\right)$ is compact (it is the closed unit ball of $\mathrm{M}_{n}\left(\mathbf{Q}_{p}\right)$ in the sup-norm with respect to the standard basis of $\left.\mathrm{M}_{n}\left(\mathbf{Q}_{p}\right)\right)$. Then $\mathrm{GL}_{n}\left(\mathbf{Z}_{p}\right)$ is the inverse image of \mathbf{Z}_{p}^{\times}for det: $\mathrm{M}_{n}\left(\mathbf{Z}_{p}\right) \rightarrow \mathbf{Z}_{p}$. This is continuous and \mathbf{Z}_{p}^{\times} is closed in \mathbf{Z}_{p}, so the inverse image $\mathrm{GL}_{n}\left(\mathbf{Z}_{p}\right)$ is closed in a compact space $\mathrm{M}_{n}\left(\mathbf{Z}_{p}\right)$ and therefore is compact.

While $\mathrm{GL}_{n}\left(\mathbf{Z}_{p}\right)$ is like $\mathrm{O}_{n}(\mathbf{R})$ because both are compact, note that $\mathrm{O}_{n}(\mathbf{R})$ is not open in $\mathrm{GL}_{n}(\mathbf{R})$: spaces that are related to Euclidean space are usually not compact and open, while the totally disconnected nature of p-adic spaces makes compactness and openness fairly common properties together.

2. Lattices in \mathbf{Q}_{p}^{n}

In \mathbf{R}^{n}, a lattice is defined to be the \mathbf{Z}-span of a basis of \mathbf{R}^{n}, with the standard lattice of \mathbf{R}^{n} being \mathbf{Z}^{n}. We are going to work with \mathbf{Z}_{p}^{n} as the analogue in \mathbf{Q}_{p}^{n} of \mathbf{Z}^{n} in $\mathbf{R}^{n}: \mathbf{Z}_{p}^{n}$ is the \mathbf{Z}_{p}-span of the standard basis of \mathbf{Q}_{p}^{n}, just as \mathbf{Z}^{n} is the \mathbf{Z}-span of the standard basis of \mathbf{R}^{n}.
Definition 2.1. A lattice in \mathbf{Q}_{p}^{n} is the \mathbf{Z}_{p}-span of a basis of \mathbf{Q}_{p}^{n}.
The most basic example of a lattice in \mathbf{Q}_{p}^{n} is \mathbf{Z}_{p}^{n}, which will be called the standard lattice in \mathbf{Q}_{p}^{n}.
Remark 2.2. In $\mathbf{Q}_{p}^{2}, \mathbf{Z}_{p} \times\{0\}$ is not a lattice. Note it does not contain a basis for \mathbf{Q}_{p}^{2}.
For $A \in \mathrm{GL}_{n}\left(\mathbf{Q}_{p}\right), A\left(\mathbf{Z}_{p}^{n}\right)$ is the \mathbf{Z}_{p}-span of $A\left(e_{1}\right), \ldots, A\left(e_{n}\right)$, which is a basis of \mathbf{Q}_{p}^{n}, so $A\left(\mathbf{Z}_{p}^{n}\right)$ is a lattice in \mathbf{Q}_{p}^{n}.
Theorem 2.3. In \mathbf{R}^{n}, all lattices are of the form $A\left(\mathbf{Z}^{n}\right)$ where $A \in \mathrm{GL}_{n}(\mathbf{R})$. In \mathbf{Q}_{p}^{n}, all lattices are of the form $A\left(\mathbf{Z}_{p}^{n}\right)$ where $A \in \mathrm{GL}_{n}\left(\mathbf{Q}_{p}\right)$.
Proof. If $A \in \mathrm{GL}_{n}(\mathbf{R})$ is such that $A=\left[\mathbf{v}_{1} \cdots \mathbf{v}_{n}\right]$ where each \mathbf{v}_{i} represents a column of A, then the \mathbf{v}_{i} 's are linearly independent over \mathbf{R} and

$$
A\left(\mathbf{Z}^{n}\right)=A\left(\mathbf{Z} e_{1}+\cdots+\mathbf{Z} e_{n}\right)=\mathbf{Z} \mathbf{v}_{1}+\cdots+\mathbf{Z} \mathbf{v}_{n}=\sum_{i=1}^{n} \mathbf{Z} \mathbf{v}_{i}
$$

is the \mathbf{Z}-span of a basis of \mathbf{R}^{n}. Conversely, if $L=\mathbf{Z} \mathbf{v}_{1}+\cdots+\mathbf{Z} \mathbf{v}_{n}$ is the \mathbf{Z}-span of a basis of \mathbf{R}^{n} then the matrix $A=\left[\mathbf{v}_{1} \cdots \mathbf{v}_{n}\right]$ is in $\mathrm{GL}_{n}(\mathbf{R})$ and $L=\mathbf{Z} A\left(e_{1}\right)+\cdots+\mathbf{Z} A\left(e_{n}\right)=A\left(\mathbf{Z}^{n}\right)$.

If we replace \mathbf{Z} with \mathbf{Z}_{p}, the proof goes through for the p-adic case in the same way.
Since \mathbf{Z}^{n} is discrete, Theorem 2.3 tells us every lattice L in \mathbf{R}^{n} is discrete. Likewise, since \mathbf{Z}_{p}^{n} is compact and open in \mathbf{Q}_{p}^{n} every lattice in \mathbf{Q}_{p}^{n} is compact and open. (If we use quotient vector spaces, the dichotomy between lattices in \mathbf{R}^{n} and \mathbf{Q}_{p}^{n} takes on a more appealing form: when V is \mathbf{R}^{n} or \mathbf{Q}_{p}^{n} and L is a lattice in V, L is discrete and V / L is compact for
real V while L is compact and V / L is discrete for p-adic $V ; V / L$ being discrete is another way of saying L is open in V.)

The following definition, inspired by Theorem 1.1, gives the counterpart to lattices in \mathbf{Q}_{p}^{n} of the role $\mathrm{GL}_{n}\left(\mathbf{Z}_{p}\right)$ plays for the standard lattice \mathbf{Z}_{p}^{n}.

Definition 2.4. For each lattice L in \mathbf{Q}_{p}^{n}, set

$$
K_{L}=\left\{g \in \mathrm{GL}_{n}\left(\mathbf{Q}_{p}\right): g(L)=L\right\}
$$

For example, $K_{\mathbf{Z}_{p}^{n}}=\mathrm{GL}_{n}\left(\mathbf{Z}_{p}\right)$. When $g(L)=L$, we will say " g fixes L," but that only means L is fixed as a set, not that g fixes every element of L. Because all lattices in \mathbf{Q}_{p}^{n} can be obtained from the standard lattice via a matrix in $\mathrm{GL}_{n}\left(\mathbf{Q}_{p}\right)$ (Theorem 2.3), the K_{L} 's for different L 's are related to each other:

Theorem 2.5. For a lattice L in \mathbf{Q}_{p}^{n}, there is some $g \in \mathrm{GL}_{n}\left(\mathbf{Q}_{p}\right)$ such that $K_{L}=$ $g \mathrm{GL}_{n}\left(\mathbf{Z}_{p}\right) g^{-1}$. Conversely, for $g \in \mathrm{GL}_{n}\left(\mathbf{Q}_{p}\right)$ the group $g \mathrm{GL}_{n}\left(\mathbf{Z}_{p}\right) g^{-1}$ is K_{L} for some lattice L in \mathbf{Q}_{p}^{n}.

In particular, K_{L} is compact and open in $\mathrm{GL}_{n}\left(\mathbf{Q}_{p}\right)$.
Proof. For a lattice L, by Theorem 2.3 we can write $L=g\left(\mathbf{Z}_{p}^{n}\right)$ for some $g \in \mathrm{GL}_{n}\left(\mathbf{Q}_{p}\right)$. Then

$$
\begin{aligned}
K_{L} & =\left\{h \in \mathrm{GL}_{n}\left(\mathbf{Q}_{p}\right): h(L)=L\right\} \\
& =\left\{h \in \mathrm{GL}_{n}\left(\mathbf{Q}_{p}\right): h g\left(\mathbf{Z}_{p}^{n}\right)=g\left(\mathbf{Z}_{p}^{n}\right)\right\} \\
& =\left\{h \in \mathrm{GL}_{n}\left(\mathbf{Q}_{p}\right): g^{-1} h g\left(\mathbf{Z}_{p}^{n}\right)=\mathbf{Z}_{p}^{n}\right\} \\
& =\left\{h \in \mathrm{GL}_{n}\left(\mathbf{Q}_{p}\right): g^{-1} h g \in \mathrm{GL}_{n}\left(\mathbf{Z}_{p}\right)\right\} \\
& =g \operatorname{GL}_{n}\left(\mathbf{Z}_{p}\right) g^{-1}
\end{aligned}
$$

Conjugation by g on $\mathrm{GL}_{n}\left(\mathbf{Q}_{p}\right)$ is continuous with continuous inverse, so since $\mathrm{GL}_{n}\left(\mathbf{Z}_{p}\right)$ is compact and open in $\mathrm{GL}_{n}\left(\mathbf{Q}_{p}\right)$ by Theorem 1.2, its conjugate subgroup K_{L} is compact and open in $\mathrm{GL}_{n}\left(\mathbf{Q}_{p}\right)$.

Reading the above computations in reverse shows $g \mathrm{GL}_{n}\left(\mathbf{Z}_{p}\right) g^{-1}=K_{g\left(\mathbf{Z}_{p}^{n}\right)}$.
In the language of group actions, the group $\mathrm{GL}_{n}\left(\mathbf{Q}_{p}\right)$ acts on the set of all lattices in \mathbf{Q}_{p}^{n} by $g \cdot L=g(L)$. Theorem 2.3 says this action has a single orbit, and Theorem 1.1 says the stabilizer subgroup of \mathbf{Z}_{p}^{n} is $\mathrm{GL}_{n}\left(\mathbf{Z}_{p}\right)$, while K_{L} is defined as the stabilizer subgroup of L. Points in the same orbit of a group action have conjugate stabilizer subgroups (with a conjugating element being one that sends one point to the other), so Theorem 2.5 makes sense in terms of group actions.

To prove every compact subgroup H of $\mathrm{GL}_{n}\left(\mathbf{Q}_{p}\right)$ is inside a conjugate of $\mathrm{GL}_{n}\left(\mathbf{Z}_{p}\right)$, Theorem 2.5 says that is the same as showing H is inside a K_{L}, i.e., H fixes some lattice in \mathbf{Q}_{p}^{n}. That is what we are actually going to show. To create a lattice in \mathbf{Q}_{p}^{n} fixed by H, we will start with a lattice and then make an H-fixed lattice by "averaging" (really, summing) over the lattices $h(L)$ for $h \in H$. Compactness of H will tell us $\#\{h(L): h \in H\}$ is finite. To show a finite sum of lattices is a lattice, the following characterization of lattices is more convenient than the definition of a lattice.

Lemma 2.6. A subgroup L of \mathbf{Q}_{p}^{n} is a lattice if and only if L has a finite spanning set over \mathbf{Z}_{p} and L contains a basis of \mathbf{Q}_{p}^{n}.

This means: if there is a finite set of vectors whose \mathbf{Z}_{p}-span is L (not assuming it is a basis) and L contains a basis of \mathbf{Q}_{p}^{n}, then L is a lattice, and conversely.

Proof. (\Rightarrow) : By the definition of a lattice, L is the \mathbf{Z}_{p}-span of a basis of \mathbf{Q}_{p}^{n}, so L has a finite spanning set over \mathbf{Z}_{p} and contains a basis of \mathbf{Q}_{p}^{n}.
(\Leftarrow) : Since L has a finite spanning set, $L=\sum_{i=1}^{m} \mathbf{Z}_{p} v_{i}$ for some v_{i} 's in \mathbf{Q}_{p}^{n}. The \mathbf{Q}_{p}-span of the v_{i} 's has dimension at most m, and this span is \mathbf{Q}_{p}^{n} since L contains a basis of \mathbf{Q}_{p}^{n}. Therefore $n \leq m$.

If $n<m$ then the v_{i} 's have a nontrivial \mathbf{Q}_{p}-linear relation, say

$$
c_{1} v_{1}+\cdots+c_{m} v_{m}=0
$$

with $c_{i} \in \mathbf{Q}_{p}$ not all 0 . We can turn this into a \mathbf{Z}_{p}-linear relation by dividing this equation by the c_{i} with maximal absolute value. That gives such a relation with \mathbf{Z}_{p}-coefficients and the v_{i}-coefficient is 1 . Therefore v_{i} is in the \mathbf{Z}_{p}-span of the other v_{j} 's, so we can remove it and still have a spanning set of L over \mathbf{Z}_{p}. Repeating this process, the bound $n \leq m$ tells us that eventually we will reach $m=n$, and at that point our spanning set can't be linearly dependent over \mathbf{Q}_{p} (otherwise we could shrink it still further, but we must have $n \leq m$). So we have reached a spanning set of L over \mathbf{Z}_{p} that has size n and is linearly independent over \mathbf{Q}_{p}, and thus L is the \mathbf{Z}_{p}-span of a basis of \mathbf{Q}_{p}^{n}, so L is a lattice.
Remark 2.7. In [1], Lemma 2.6 is proved using properties of modules over a PID. The proof above avoided relying on \mathbf{Z}_{p} being a PID.

Lemma 2.8. Let L_{1}, \ldots, L_{r} be lattices in \mathbf{Q}_{p}^{n} and let $L=L_{1}+\cdots+L_{r}$. Then L is a lattice in \mathbf{Q}_{p}^{n}.

Proof. We use Lemma 2.6. First, L contains a basis of \mathbf{Q}_{p} since each L_{i} does. Each L_{i} has a finite spanning set over \mathbf{Z}_{p}, so L has one as well: just use the union of the spanning sets of the L_{i} 's.

3. Maximality properties of $\mathrm{GL}_{n}\left(\mathbf{Z}_{p}\right)$

Theorem 3.1. Let H be a compact subgroup of $\mathrm{GL}_{n}\left(\mathbf{Q}_{p}\right)$. Then:
(1) There exists a lattice M in \mathbf{Q}_{p}^{n} such that $H \subset K_{M}$.
(2) There exists $g \in \mathrm{GL}_{n}\left(\mathbf{Q}_{p}\right)$ such that $H \subset g \mathrm{GL}_{n}\left(\mathbf{Z}_{p}\right) g^{-1}$.

Proof. (1): Choose a lattice L in \mathbf{Q}_{p}^{n} (for example, $L=\mathbf{Z}_{p}^{n}$). The intersection $H_{L}=H \cap K_{L}$ is the subgroup of H that sends L onto L. Since K_{L} is open in $\operatorname{GL}_{n}\left(\mathbf{Q}_{p}\right), H_{L}$ is open in H. Hence H_{L} has finite index in H (every open subgroup of a compact group has finite index, because the coset decomposition by the subgroup is an open covering that has a finite subcovering). Therefore we can write

$$
H=\bigcup_{\sigma \in S} \sigma H_{L},
$$

where S is a finite set. For $h \in H$, write $h=\sigma g$ for some $\sigma \in S$ and $g \in H_{L}$. Then $h(L)=\sigma(g(L))=\sigma(L)$, so

$$
\{h(L): h \in H\}=\{\sigma(L): \sigma \in S\}
$$

is finite. Let

$$
M=\sum_{\sigma \in S} \sigma(L),
$$

which is a finite sum of lattices. By Lemma $2.8, M$ is a lattice. We now show M is fixed by H, so $H \subset K_{M}$. For $h \in H$, write $h \sigma=\sigma_{h} g_{h}$ for $\sigma_{h} \in S$ and $g_{h} \in H_{L}$. Then

$$
h(M)=\sum_{\sigma \in S} h \sigma(L)=\sum_{\sigma \in S} \sigma_{h} g_{h}(L)=\sum_{\sigma \in S} \sigma_{h}(L)=M,
$$

where in the last step we use the fact that $\left\{\sigma_{h}: \sigma \in S\right\}$ is a set of representatives for the left H_{L}-cosets of H.
(2): By Theorem 2.5, $K_{M}=g \mathrm{GL}_{n}\left(\mathbf{Z}_{p}\right) g^{-1}$ for some $g \in \mathrm{GL}_{n}\left(\mathbf{Q}_{p}\right)$ (use any g such that $\left.M=g\left(\mathbf{Z}_{p}^{n}\right)\right)$. So $H \subset K_{M}=g \mathrm{GL}_{n}\left(\mathbf{Z}_{p}\right) g^{-1}$, as required.

Now we want to show $\mathrm{GL}_{n}\left(\mathbf{Z}_{p}\right)$ is a maximal compact subgroup: it is not strictly contained in a larger compact subgroup of $\mathrm{GL}_{n}\left(\mathbf{Q}_{p}\right)$. (In the $n=1$ case this is clear: $\mathrm{GL}_{1}\left(\mathbf{Z}_{p}\right)=\mathbf{Z}_{p}^{\times}$ is a maximal compact subgroup of $\mathrm{GL}_{1}\left(\mathbf{Q}_{p}\right)=\mathbf{Q}_{p}^{\times}$since each element of \mathbf{Q}_{p}^{\times}not of absolute value 1 has unbounded powers. We don't have an absolute value on $\mathrm{GL}_{n}\left(\mathbf{Q}_{p}\right)$ for $n>1$ to generalize that argument.) Since every compact subgroup of $\mathrm{GL}_{n}\left(\mathbf{Q}_{p}\right)$ is in some K_{L}, what we want is the same as showing there are no containment relations among different K_{L} 's.

We need a lemma from linear algebra, having nothing to do with p-adic fields.
Lemma 3.2. Let V be a nonzero finite-dimensional vector space over a field F and let $W \subset V$ be a subspace such that $A(W)=W$ for all $A \in \operatorname{Aut}_{F}(V)=\mathrm{GL}(V)$. Then $W=0$ or $W=V$.

Proof. Set $n=\operatorname{dim} V>0$. We will prove the contrapositive: if W is not 0 or V then $A(W) \neq W$ for some $A \in \mathrm{GL}(V)$. Of course we can take $n>1$.

Set $d=\operatorname{dim} W$ and suppose $0<d<n$. Pick a basis $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{d}\right\}$ of W and extend it to a basis $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{d}, \ldots, \mathbf{e}_{n}\right\}$ of V. Pick $\mathbf{f}_{1} \in V-W$ and extend it to a basis $\left\{\mathbf{f}_{1}, \ldots, \mathbf{f}_{n}\right\}$ of V. Define $A: V \rightarrow V$ by

$$
A\left(\sum c_{j} \mathbf{e}_{j}\right)=\sum c_{j} \mathbf{f}_{j}
$$

Since A sends a basis to a basis, $A \in \mathrm{GL}(V)$. We have $A(W) \neq W$ since $A\left(\mathbf{e}_{1}\right)=\mathbf{f}_{1} \notin W$.
The proof of the following theorem contains most of the hard work in this discussion.
Theorem 3.3. Let L and L^{\prime} be two lattices in \mathbf{Q}_{p}^{n} and suppose $K_{L} \subset K_{L^{\prime}}$. Then there exists $\lambda \in \mathbf{Q}_{p}^{\times}$such that $L=\lambda L^{\prime}$, and $K_{L}=K_{L^{\prime}}$.

Proof. Let

$$
L=\sum_{i=1}^{n} \mathbf{Z}_{p} \mathbf{e}_{i} \quad \text { and } \quad L^{\prime}=\sum_{j=1}^{n} \mathbf{Z}_{p} \mathbf{f}_{j}
$$

for some bases $\left\{\mathbf{e}_{i}\right\}$ and $\left\{\mathbf{f}_{j}\right\}$ of \mathbf{Q}_{p}^{n}. For $\lambda \in \mathbf{Q}_{p}^{\times}, K_{\lambda L^{\prime}}=K_{L^{\prime}}$, so replacing L^{\prime} with a nonzero scalar multiple doesn't affect the hypotheses of the theorem. We will do two scalings on L^{\prime} to make things easier to analyze. Neither replacement changes $K_{L^{\prime}}$.

First we show that $\lambda L^{\prime} \subset L$ for some $\lambda \in \mathbf{Q}_{p}^{\times}$. The \mathbf{e}_{i} 's and \mathbf{f}_{j} 's are bases of \mathbf{Q}_{p}^{n}, so we can write

$$
\mathbf{f}_{j}=\sum_{i=1}^{n} a_{i j} \mathbf{e}_{i}
$$

where $a_{i j} \in \mathbf{Q}_{p}$. Then for $\lambda \neq 0$ small, we have $\lambda a_{i j} \in \mathbf{Z}_{p}$ for all i, j. So $\lambda \mathbf{f}_{j} \in L$ for all j and thus $\lambda L^{\prime} \subset L$. We may replace L^{\prime} with λL^{\prime} and thus can suppose $L^{\prime} \subset L$.

Next we want to show by further scaling that we can also arrange $L^{\prime} \not \subset p L$ while still having $L^{\prime} \subset L$. We know that, being a lattice, L^{\prime} is open in \mathbf{Q}_{p}^{n}. Then since $0 \in L^{\prime}$, $p^{N} \mathbf{e}_{i} \in L^{\prime}$ for all i and for some N. So $p^{N} L \subset L^{\prime} \subset L$. Multiplication by p makes a lattice smaller (as a set), so $p^{N+1} L$ is a proper subset of L^{\prime}. Since L^{\prime} is inside $L=p^{0} L$ but is not inside $p^{N+1} L$, there is a maximum $r \geq 0$ such that $L^{\prime} \subset p^{r} L$; that is, $L^{\prime} \subset p^{r} L$ but $L^{\prime} \not \subset p^{r+1} L$. This implies

$$
\frac{1}{p^{r}} L^{\prime} \subset L \quad \text { and } \quad \frac{1}{p^{r}} L^{\prime} \not \subset p L
$$

We replace L^{\prime} with $\left(1 / p^{r}\right) L^{\prime}$, which does not change the stabilizer group ($K_{\frac{1}{p^{r} L^{\prime}}}=K_{L^{\prime}}$), so now we have $L^{\prime} \subset L$ and $L^{\prime} \not \subset p L$.

From the two relations on L and L^{\prime},

$$
\begin{equation*}
p L \subsetneq L^{\prime}+p L \subset L \tag{3.1}
\end{equation*}
$$

We are going to show $L^{\prime}+p L=L$, and then use the containment $K_{L^{\prime}} \subset K_{L}$ (which has yet to be applied) to show $L^{\prime}=L$. Reduce (3.1) modulo $p L$: set $V=L / p L$ and $W=\left(L^{\prime}+p L\right) / p L$, so $W \subset V$ and $W \neq 0$. Multiplication by p kills V and W, so V and W are naturally \mathbf{F}_{p}-vector spaces and $V=\oplus_{i=1}^{n}\left(\mathbf{Z}_{p} / p \mathbf{Z}_{p}\right) \overline{\mathbf{e}}_{i}$ is n-dimensional over \mathbf{F}_{p}. We want to prove $W=V$, so then $L^{\prime}+p L=L$. Lemma 3.2 is the result we need.

For each $g \in K_{L}, g(L)=L$ and $g(p L)=p \cdot g(L)=p L$, so g makes sense as a function

$$
\bar{g}: L / p L \longrightarrow L / p L
$$

that is \mathbf{F}_{p}-linear. So we have a reduction map

$$
\begin{equation*}
K_{L} \longrightarrow \operatorname{Aut}_{\mathbf{F}_{p}}(L / p L) \cong \operatorname{GL}_{n}\left(\mathbf{F}_{p}\right) \tag{3.2}
\end{equation*}
$$

by $g \mapsto \bar{g}$. It is a homomorphism: $\overline{g_{1} g_{2}}=\bar{g}_{1} \bar{g}_{2}$. We show (3.2) is onto (which in the $n=1$ case is the familiar surjectivity of $\mathbf{Z}_{p}^{\times} \longrightarrow \mathbf{F}_{p}^{\times}$by $a \mapsto a \bmod p$, unlike that of $\mathbf{Z}^{\times} \longrightarrow \mathbf{F}_{p}^{\times}$). Let $\varphi \in \operatorname{Aut}_{\mathbf{F}_{p}}(L / p L)$, so

$$
\varphi: L / p L \longrightarrow L / p L
$$

is \mathbf{F}_{p}-linear. Since

$$
L / p L=\sum_{i=1}^{n} \mathbf{F}_{p} \overline{\mathbf{e}}_{i}
$$

we have

$$
\varphi\left(\overline{\mathbf{e}}_{j}\right)=\sum_{i=1}^{n} \bar{a}_{i j} \overline{\mathbf{e}}_{i}
$$

where $a_{i j} \in \mathbf{Z}_{p}$ reduces to the coefficients of \mathbf{e}_{i}. Set $A=\left(a_{i j}\right) \in \mathrm{M}_{n}\left(\mathbf{Z}_{p}\right)$. Since

$$
\operatorname{det}(\bar{A})=\operatorname{det}\left(\bar{a}_{i j}\right) \not \equiv 0 \bmod p
$$

$\operatorname{det} A \in \mathbf{Z}_{p}^{\times}$, so $A \in \mathrm{GL}_{n}\left(\mathbf{Z}_{p}\right)$.
Now define $\Phi: \mathbf{Q}_{p}^{n} \longrightarrow \mathbf{Q}_{p}^{n}$ to have matrix A in the basis $\left\{\mathbf{e}_{i}\right\}$:

$$
\Phi\left(\mathbf{e}_{j}\right)=\sum_{i=1}^{n} a_{i j} \mathbf{e}_{i} \in L
$$

Then $\Phi(L) \subset L$. With respect to the basis $\left\{\mathbf{e}_{i}\right\}$, the matrix representation of Φ is $\left(a_{i j}\right) \in$ $\mathrm{GL}_{n}\left(\mathbf{Z}_{p}\right)$. Let $\left(b_{i j}\right)=\left(a_{i j}\right)^{-1} \in \mathrm{GL}_{n}\left(\mathbf{Z}_{p}\right)$ and define $\Psi: \mathbf{Q}_{p}^{n} \longrightarrow \mathbf{Q}_{p}^{n}$ by

$$
\Psi\left(\mathbf{e}_{j}\right)=\sum_{i=1}^{n} b_{i j} \mathbf{e}_{i} \in L
$$

Then Φ and Ψ are inverses on \mathbf{Q}_{p}^{n} and $\Psi(L) \subset L$. Applying Φ to both sides gives $L \subset \Phi(L)$. Thus $\Phi(L)=L$, so $\Phi \in K_{L}$ and (by reducing coefficients) we have $\bar{\Phi}=\varphi$. This proves $K_{L} \rightarrow \operatorname{Aut}_{\mathbf{F}_{p}}(L / p L)$ is onto.

Now we're in a position to use Lemma 3.2. For each $\varphi \in \operatorname{Aut}_{\mathbf{F}_{p}}(L / p L)=\mathrm{GL}(V)$, there is a $\Phi \in K_{L}$ that reduces to φ. Since $K_{L} \subset K_{L^{\prime}}(!), \Phi\left(L^{\prime}\right) \subset L^{\prime}$, so

$$
\Phi\left(L^{\prime}+p L\right) \subset L^{\prime}+p L
$$

Reduce this containment modulo $p L$ to get $\varphi(W) \subset W$. Since φ is invertible on V, φ preserves dimensions, so $\varphi(W)=W$. This holds for all $\varphi \in \operatorname{Aut}_{\mathbf{F}_{p}}(L / p L)$, so $W=0$ or $W=V$ by Lemma 3.2. Since $W \neq 0, W=V$. Thus

$$
\left(L^{\prime}+p L\right) / p L=L / p L
$$

so $L^{\prime}+p L=L$. Hence " $\bmod p$ " we have $L^{\prime}=L$, and we want to prove there is actual equality of the two lattices in \mathbf{Q}_{p}^{n}.

We already have $L^{\prime} \subset L$, so we will show that $L \subset L^{\prime}$. We will do this in two ways. The first way will use an approximation method of the same kind we used twice already to show a locally compact normed vector space over a locally compact valued field is finitedimensional and to show $n=e f$ for p-adic fields (that was the argument that went from $\mathcal{O}_{K} \subset M+p \mathcal{O}_{K}$ to $\left.\mathcal{O}_{K}=M\right)$. The second way will involve no limits at all and will be purely algebraic (it in fact is the proof of a special case of Nakayama's lemma from commutative algebra).

Since $L=L^{\prime}+p L$, we can feed L into the right side to get

$$
L=L^{\prime}+p\left(L^{\prime}+p L\right) \subset L^{\prime}+p^{2} L,
$$

and then by induction

$$
L \subset L^{\prime}+p^{m} L
$$

for all $m \geq 1$. Thus to each $v \in L$ we can find a sequence of $v_{m}^{\prime} \in L^{\prime}$ with $v-v_{m}^{\prime} \in p^{m} L$, so $v_{m}^{\prime} \rightarrow v$ as $m \rightarrow \infty$ (use the sup-norm with respect to the basis $\left\{\mathbf{e}_{j}\right\}$ here to see this concretely). Thus L lies in the closure of L^{\prime}. Being a lattice in $\mathbf{Q}_{p}^{n}, L^{\prime}$ is compact, and therefore closed, so $L \subset L^{\prime}$.

For our second proof, recall

$$
L=\sum_{i=1}^{n} \mathbf{Z}_{p} \mathbf{e}_{i} \quad \text { and } \quad L^{\prime}=\sum_{j=1}^{n} \mathbf{Z}_{p} \mathbf{f}_{j} .
$$

From $L=L^{\prime}+p L$, we can write

$$
\mathbf{e}_{i}=\sum_{j=1}^{n} a_{i j} \mathbf{f}_{j}+\sum_{j=1}^{n} b_{i j} \mathbf{e}_{j}
$$

for all i, where $a_{i j}$ and $b_{i j}$ are p-adic integers with $\left|b_{i j}\right|_{p}<1$. We now have the system of equations

$$
\left(\begin{array}{c}
\mathbf{e}_{1} \\
\vdots \\
\mathbf{e}_{n}
\end{array}\right)=\left(a_{i j}\right)\left(\begin{array}{c}
\mathbf{f}_{1} \\
\vdots \\
\mathbf{f}_{n}
\end{array}\right)+\left(b_{i j}\right)\left(\begin{array}{c}
\mathbf{e}_{1} \\
\vdots \\
\mathbf{e}_{n}
\end{array}\right) .
$$

Set $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$, so $A \in \mathrm{M}_{n}\left(\mathbf{Z}_{p}\right)$ and $B \in \mathrm{M}_{n}\left(p \mathbf{Z}_{p}\right)$. Then

$$
\left(\begin{array}{c}
\mathbf{e}_{1} \\
\vdots \\
\mathbf{e}_{n}
\end{array}\right)=A\left(\begin{array}{c}
\mathbf{f}_{1} \\
\vdots \\
\mathbf{f}_{n}
\end{array}\right)+B\left(\begin{array}{c}
\mathbf{e}_{1} \\
\vdots \\
\mathbf{e}_{n}
\end{array}\right),
$$

so

$$
\left(I_{n}-B\right)\left(\begin{array}{c}
\mathbf{e}_{1} \tag{3.3}\\
\vdots \\
\mathbf{e}_{n}
\end{array}\right)=A\left(\begin{array}{c}
\mathbf{f}_{1} \\
\vdots \\
\mathbf{f}_{n}
\end{array}\right)
$$

The matrix $I_{n}-B$ is in $\mathrm{M}_{n}\left(\mathbf{Z}_{p}\right)$ and reduces modulo p to $I_{n}-B \equiv I_{n} \bmod p$, so $\operatorname{det}\left(I_{n}-B\right) \equiv$ $1 \bmod p$. Hence $I_{n}-B \in \mathrm{GL}_{n}\left(\mathbf{Z}_{p}\right)$. Multiplying both sides of (3.3) by $\left(I_{n}-B\right)^{-1}$ shows us that all the \mathbf{e}_{i} 's are in L^{\prime}, so $L \subset L^{\prime}$ and we are done.

Theorem 3.4. The group $\mathrm{GL}_{n}\left(\mathbf{Z}_{p}\right)$ is a maximal compact subgroup of $\mathrm{GL}_{n}\left(\mathbf{Q}_{p}\right)$, and the maximal compact subgroups of $\mathrm{GL}_{n}\left(\mathbf{Q}_{p}\right)$ are precisely the conjugates of $\mathrm{GL}_{n}\left(\mathbf{Z}_{p}\right)$. Furthermore, every compact subgroup of $\mathrm{GL}_{n}\left(\mathbf{Q}_{p}\right)$ is contained in a maximal compact subgroup of $\mathrm{GL}_{n}\left(\mathbf{Q}_{p}\right)$.

Proof. Suppose $\mathrm{GL}_{n}\left(\mathbf{Z}_{p}\right)$ is contained in a compact subgroup H of $\mathrm{GL}_{n}\left(\mathbf{Q}_{p}\right)$. Theorem 1.2 shows that there exists a lattice M such that $H \subset K_{M}$. Hence $\mathrm{GL}_{n}\left(\mathbf{Z}_{p}\right) \subset K_{M}$, but $\mathrm{GL}_{n}\left(\mathbf{Z}_{p}\right)=K_{\mathbf{Z}_{p}^{n}}$, so by Theorem 3.3, $\mathrm{GL}_{n}\left(\mathbf{Z}_{p}\right)=K_{M}$. Then $H \subset K_{M}=\mathrm{GL}_{n}\left(\mathbf{Z}_{p}\right) \subset H$, so $H=\mathrm{GL}_{n}\left(\mathbf{Z}_{p}\right)$. Conjugation preserves containments, so every conjugate of $\mathrm{GL}_{n}\left(\mathbf{Z}_{p}\right)$ is a maximal compact subgroup of $\mathrm{GL}_{n}\left(\mathbf{Q}_{p}\right)$.

By Theorem 3.1, every compact subgroup H of $\mathrm{GL}_{n}\left(\mathbf{Q}_{p}\right)$ is contained in $g \mathrm{GL}_{n}\left(\mathbf{Z}_{p}\right) g^{-1}$ for some $g \in \mathrm{GL}_{n}\left(\mathbf{Q}_{p}\right)$, so the conjugates of $\mathrm{GL}_{n}\left(\mathbf{Z}_{p}\right)$ are maximal in $\mathrm{GL}_{n}\left(\mathbf{Q}_{p}\right)$ and every compact subgroup is contained in one of these maximal compact subgroups.

The proofs above generalize with essentially no change to $\mathrm{GL}_{n}(K)$ for a p-adic field K (which in fact is the setting that is handled in [1]):

Theorem 3.5. The maximal compact subgroups of $\mathrm{GL}_{n}(K)$ are the conjugates of $\mathrm{GL}_{n}\left(\mathcal{O}_{K}\right)$ and every compact subgroup of $\mathrm{GL}_{n}(K)$ is contained in a conjugate of $\mathrm{GL}_{n}\left(\mathcal{O}_{K}\right)$.

In the proof, lattices in K^{n} are used. A lattice in K^{n}, by definition, is the \mathcal{O}_{K}-span of a basis of K^{n}. There are two points worth making about how the proof over \mathbf{Q}_{p} adapts to the more general case:
(1) Lemma 2.6 goes through in K^{n} by the same argument used in \mathbf{Q}_{p}^{n}, so a finite sum of lattices in K^{n} is a lattice by the same proof used for lattices in \mathbf{Q}_{p}^{n} (Lemma 2.8).
(2) If L is a lattice in K^{n}, and π is a prime in $\mathcal{O}_{K}, L / \pi L$ is a vector space over the residue field $\mathbf{k}=\mathcal{O}_{K} / \pi \mathcal{O}_{K}$ of K (and not just an \mathbf{F}_{p}-vector space as before). Any element of $\mathrm{GL}_{n}(K)$ that sends L onto itself induces a \mathbf{k}-linear automorphism of $L / \pi L$ and all such automorphisms arise in this way. The proof of that is identical to the \mathbf{Q}_{p}-case.
Replacing $\mathrm{GL}_{n}(K)$ with other matrix groups over K, there could be more than one conjugacy class of maximal compact subgroups. For example, although in $\mathrm{SL}_{n}(\mathbf{R})$ all maximal compact subgroups are conjugate to a subgroup of $\mathrm{SO}_{n}(\mathbf{R})$, the group $\mathrm{SL}_{n}(K)$ has n conjugacy classes of maximal compact subgroups. Taking $n=2$, the two conjugacy classes of maximal compact subgroups of $\mathrm{SL}_{2}(K)$ are $\mathrm{SL}_{2}\left(\mathcal{O}_{K}\right)$ and $\left(\begin{array}{cc}\pi & 0 \\ 0 & 1\end{array}\right) \mathrm{SL}_{2}\left(\mathcal{O}_{K}\right)\left(\begin{array}{ll}\pi & 0 \\ 0 & 1\end{array}\right)^{-1}$, where π is a prime of K.

Appendix A. Orthogonal groups over \mathbf{Q}_{p}

The group $\mathrm{O}_{n}(\mathbf{R})$ is compact because in $\mathrm{M}_{n}(\mathbf{R})$ it is closed (the condition $A A^{\top}=I_{n}$ is a finite system of polynomial equations on the matrix entries) and bounded (the rows of A are mutually orthogonal unit vectors, or equivalently the columns of A are mutually orthogonal unit vectors since $A^{\top} A=I_{n}$ is also a defining property of $\mathrm{O}_{n}(\mathbf{R})$). If we work over \mathbf{C} instead of \mathbf{R}, the group $\mathrm{O}_{1}(\mathbf{C})=S^{1}$ is compact, but $\mathrm{O}_{n}(\mathbf{C})$ for $n \geq 2$ is not compact because matrix entries can be unbounded: for arbitrary $z \in \mathbf{C}$, we can solve $w^{2}=1-z^{2}$ for some w in \mathbf{C}, and the matrix $\left(\underset{\underset{w}{z}}{\underset{\sim}{w}} \underset{-}{w}\right.$) is in $\mathrm{O}_{2}(\mathbf{C})$. For $n \geq 3$, using that 2×2 matrix as the upper left block with 1's on the rest of the main diagonal gives us matrices in $\mathrm{O}_{n}(\mathbf{C})$ with unbounded entries.

When $n=1, \mathrm{O}_{n}\left(\mathbf{Q}_{p}\right)=\{ \pm 1\}$ is compact (and it's smaller than the maximal compact subgroup \mathbf{Z}_{p}^{\times}of $\left.\mathrm{GL}_{1}\left(\mathbf{Q}_{p}\right)=\mathbf{Q}_{p}^{\times}\right)$. The compactness of $\mathrm{O}_{2}\left(\mathbf{Q}_{p}\right)$ depends on $p \bmod 4$.

Theorem A.1. If $p \not \equiv 1 \bmod 4$ then $\mathrm{O}_{2}\left(\mathbf{Q}_{p}\right)$ is compact and is a subgroup of $\mathrm{GL}_{2}\left(\mathbf{Z}_{p}\right)$.

Proof. The group $\mathrm{O}_{2}\left(\mathbf{Q}_{p}\right)$ is closed since its defining condition $A A^{\top}=I_{2}$ is polynomial equations on the matrix entries. It remains to show the entries of a matrix in $\mathrm{O}_{2}\left(\mathbf{Q}_{p}\right)$ are bounded.

The rows (and columns) of a matrix in $\mathrm{O}_{2}\left(\mathbf{Q}_{p}\right)$ have entries x and y in \mathbf{Q}_{p} that satisfy $x^{2}+y^{2}=1$. We'll show when $p \not \equiv 1 \bmod 4$ that such x and y must be in \mathbf{Z}_{p}. If $y \in \mathbf{Z}_{p}$ then $x \in \mathbf{Z}_{p}$ since $x^{2}=1-y^{2} \in \mathbf{Z}_{p}$, and if $x \in \mathbf{Z}_{p}$ then $y \in \mathbf{Z}_{p}$. So if x or y is not in \mathbf{Z}_{p} then neither is in \mathbf{Z}_{p}, and $|x|_{p}=|y|_{p}$ by $x^{2}+y^{2}=1$ and the non-Archimedean triangle inequality.

Writing $|x|_{p}=|y|_{p}=p^{r}$ where $r \geq 1, x=u / p^{r}$ and $y=v / p^{r}$ where $u, v \in \mathbf{Z}_{p}^{\times}$. Then $1=x^{2}+y^{2}=\left(u^{2}+v^{2}\right) / p^{2 r}$, so $u^{2}+v^{2}=p^{2 r} \equiv 0 \bmod p^{2}$. Therefore $-1 \equiv(u / v)^{2} \bmod p^{2}$, which for prime p forces $p \equiv 1 \bmod 4$ (it doesn't hold for $p=2$ since $-1 \bmod 4$ is not a square even though $-1 \bmod 2$ is a square). So when $p \not \equiv 1 \bmod 4$, all matrices in $\mathrm{O}_{2}\left(\mathbf{Q}_{p}\right)$ have entries in \mathbf{Z}_{p} and thus these matrices are bounded. Since the determinant of an orthogonal matrix is ± 1, we have shown $\mathrm{O}_{2}\left(\mathbf{Q}_{p}\right) \subset \mathrm{GL}_{2}\left(\mathbf{Z}_{p}\right)$.

Theorem A.2. If $p \equiv 1 \bmod 4$ then $\mathrm{O}_{2}\left(\mathbf{Q}_{p}\right)$ is not compact.
Proof. We are going to think of $\mathrm{O}_{2}\left(\mathbf{Q}_{p}\right)$ in the sense of (1.2), as matrices preserving the dot product on \mathbf{Q}_{p}^{2} :

$$
\mathrm{O}_{2}\left(\mathbf{Q}_{p}\right)=\left\{A \in \mathrm{GL}_{2}\left(\mathbf{Q}_{p}\right): A v \cdot A w=v \cdot w \text { for all } v \text { and } w \text { in } \mathbf{Q}_{p}^{2}\right\}
$$

For $p \equiv 1 \bmod 4,-1$ is a square in \mathbf{Z}_{p}^{\times}, say $-1=a^{2}$. The vectors $v=\binom{a}{1}$ and $w=\binom{-a}{1}$ in \mathbf{Q}_{p}^{2} are a basis and $v \cdot v=0, w \cdot w=0$, and $v \cdot w=-a^{2}+1=2$, so for x and y in \mathbf{Q}_{p},

$$
(x v+y w) \cdot(x v+y w)=x^{2}(v \cdot v)+2 x y v \cdot w+y^{2}(w \cdot w)=4 x y
$$

For each $c \in \mathbf{Q}_{p}^{\times}$, the linear map $A_{c}: \mathbf{Q}_{p}^{2} \rightarrow \mathbf{Q}_{p}^{2}$ where $A_{c}(x v+y w)=c x v+(1 / c) y w$ (the matrix of A_{c} in the basis $\{v, w\}$ is $\left(\begin{array}{cc}c & 0 \\ 0 & 1 / c\end{array}\right)$) preserves the dot product:

$$
A_{c}(x v+y w) \cdot A_{c}(x v+y w)=4(c x)((1 / c) y)=4 x y=(x v+y w) \cdot(x v+y w)
$$

so $A_{c} \in \mathrm{O}_{2}\left(\mathbf{Q}_{p}\right)$ (in fact, $A_{c} \in \mathrm{SO}_{2}\left(\mathbf{Q}_{p}\right)$ since $\operatorname{det}\left(A_{c}\right)=1$), and since c is unbounded the group $\mathrm{O}_{2}\left(\mathbf{Q}_{p}\right)$ is not compact.

The compactness or noncompactness of $\mathrm{O}_{n}\left(\mathbf{Q}_{p}\right)$ for $n \geq 3$ is as follows, and will be explained below:

- for $n=3$ and $4, \mathrm{O}_{n}\left(\mathbf{Q}_{2}\right)$ is compact and $\mathrm{O}_{3}\left(\mathbf{Z}_{2}\right) \subset \mathrm{GL}_{3}\left(\mathbf{Z}_{2}\right)$, but $\mathrm{O}_{4}\left(\mathbf{Z}_{2}\right) \not \subset \mathrm{GL}_{4}\left(\mathbf{Z}_{2}\right)$,
- $\mathrm{O}_{n}\left(\mathbf{Q}_{2}\right)$ is noncompact when $n \geq 5$,
- for $p \neq 2$ and $n \geq 3, \mathrm{O}_{n}\left(\mathbf{Q}_{p}\right)$ is not compact.

To prove compactness of $\mathrm{O}_{n}\left(\mathbf{Q}_{2}\right)$ for $n=3$ and $n=4$, we'll use the following lemma about 2-adic absolute values of sums of 2,3 , and 4 squares in \mathbf{Q}_{2}.

Lemma A.3. On \mathbf{Q}_{2}, let $|\cdot|$ denote $|\cdot|_{2}$. For x and y in \mathbf{Q}_{2},

$$
\left|x^{2}+y^{2}\right|= \begin{cases}\left|x^{2}\right|, & \text { if }|x|>|y| \\ \frac{1}{2}\left|x^{2}\right|, & \text { if }|x|=|y|\end{cases}
$$

For $x, y, z \in \mathbf{Q}_{2}$,

$$
\left|x^{2}+y^{2}+z^{2}\right|= \begin{cases}\left|x^{2}\right|, & \text { if }|x|>|y|,|z| \quad \text { or if }|x|=|y|=|z| \\ \frac{1}{2}\left|x^{2}\right|, & \text { if }|x|=|y|>|z|\end{cases}
$$

For $x, y, z, w \in \mathbf{Q}_{2}$,

$$
\left|x^{2}+y^{2}+z^{2}+t^{2}\right|= \begin{cases}\left|x^{2}\right|, & \text { if }|x|>|y|,|z|,|t| \text { or if }|x|=|y|=|z|>|t|, \\ \frac{1}{2}\left|x^{2}\right|, & \text { if }|x|=|y|>|z|,|t|, \\ \frac{1}{4}\left|x^{2}\right|, & \text { if }|x|=|y|=|z|=|t| .\end{cases}
$$

Proof. If $|x|>|y|$, then $\left|x^{2}\right|>\left|y^{2}\right|$, so $\left|x^{2}+y^{2}\right|=\left|x^{2}\right|=|x|^{2}$ by the non-Archimedean triangle inequality.

If $|x|=|y|$, first assume the common value is 0 , i.e., x and y are 0 . Then $x^{2}+y^{2}=0$, so $\left|x^{2}+y^{2}\right|=0=\frac{1}{2}\left|x^{2}\right|$. If the common value is not 0 , let it be $1 / 2^{r}$. Then $x=2^{r} u$ and $y=2^{r} v$ for u and v in \mathbf{Z}_{2}^{\times}, so $x^{2}+y^{2}=4^{r}\left(u^{2}+v^{2}\right)$. Since $u^{2}, v^{2} \equiv 1 \bmod 4,\left|u^{2}+v^{2}\right|=1 / 2$. Thus $\left|x^{2}+y^{2}\right|=\left(1 / 4^{r}\right)(1 / 2)=\frac{1}{2}\left|x^{2}\right|$.

Now we look at a sum of three squares. If $|x|,|y|$, and $|z|$ have a maximum uniquely at $|x|$, then $\left|x^{2}+y^{2}+z^{2}\right|=\left|x^{2}\right|$ by the non-Archimedean triangle inequality.

If $|x|,|y|$, and $|z|$ have a maximum at x and y but not at z, then $\left|x^{2}+y^{2}\right|=\frac{1}{2}\left|x^{2}\right|$ by the case of sums of two squares, and we'll show $\frac{1}{2}\left|x^{2}\right|>\left|z^{2}\right|$: it is obvious if $z=0$, and if $z \neq 0$ then $|x|=|y| \geq 2|z|$ (since nonzero 2-adic absolute values are integral powers of 2), so $\left|x^{2}\right| \geq 4\left|z^{2}\right|$, so $\frac{1}{2}\left|x^{2}\right| \geq 2\left|z^{2}\right|>\left|z^{2}\right|$. Thus $\left|x^{2}+y^{2}\right|>\left|z^{2}\right|$, so $\left|x^{2}+y^{2}+z^{2}\right|=\left|x^{2}+y^{2}\right|=\frac{1}{2}\left|x^{2}\right|$.

If $|x|=|y|=|z|=0$, then $\left|x^{2}+y^{2}+z^{2}\right|=0=\left|x^{2}\right|$. If $|x|=|y|=|z| \neq 0$, then $x=2^{r} u$, $y=2^{r} v$, and $z=2^{r} w$ for some $r \in \mathbf{Z}$ and u, v, and w in \mathbf{Z}_{2}^{\times}, so $x^{2}+y^{2}+z^{2}=4^{r}\left(u^{2}+v^{2}+w^{2}\right)$. Since $u^{2}+v^{2}+w^{2} \equiv 1+1+1 \equiv 3 \bmod 4,\left|x^{2}+y^{2}+z^{2}\right|=1 / 4^{r}=\left|x^{2}\right|$.

The last case is a sum of four squares. If $|x|,|y|,|z|$, and $|t|$ have a maximum uniquely at $|x|$, then $\left|x^{2}+y^{2}+z^{2}+t^{2}\right|=\left|x^{2}\right|$ by the non-Archimedean triangle inequality.

Suppose the maximum absolute value is only at x and y. Then $|z|,|t| \leq(1 / 2)|x|$, so $\left|z^{2}+t^{2}\right| \leq(1 / 4)\left|x^{2}\right|<(1 / 2)\left|x^{2}\right|=\left|x^{2}+y^{2}\right|$ by the formula for a sum of two squares. Thus $\left|x^{2}+y^{2}+z^{2}+t^{2}\right|=\left|x^{2}+y^{2}\right|=\frac{1}{2}\left|x^{2}\right|$.

Suppose the maximum absolute value is at x, y, and z but not at t. Then $\left|x^{2}+y^{2}+z^{2}\right|=$ $\left|x^{2}\right|>\left|t^{2}\right|$ by the case of a sum of three squares, so $\left|x^{2}+y^{2}+z^{2}+t^{2}\right|=\left|x^{2}+y^{2}+z^{2}\right|=\left|x^{2}\right|$.

Finally, suppose $|x|=|y|=|z|=|t|$. If the common absolute value is 0 , so all the numbers are 0 , then $\left|x^{2}+y^{2}+z^{2}+t^{2}\right|=0=\frac{1}{4}\left|x^{2}\right|$. If the common absolute value is not 0 , then we can write $x=2^{r} u, y=2^{r} v, z=2^{r} w$, and $t=2^{r} s$ for some $r \in \mathbf{Z}$ and u, v, w, s in \mathbf{Z}_{2}^{\times}. Thus

$$
x^{2}+y^{2}+z^{2}+t^{2}=4^{r}\left(u^{2}+v^{2}+w^{2}+s^{2}\right)
$$

and $u^{2}+v^{2}+w^{2}+s^{2} \equiv 1+1+1+1 \equiv 4 \bmod 8$, so $\left|x^{2}+y^{2}+z^{2}+t^{2}\right|=\left(1 / 4^{r}\right)(1 / 4)=\frac{1}{4}\left|x^{2}\right|$.
Theorem A.4. The groups $\mathrm{O}_{3}\left(\mathbf{Q}_{2}\right)$ and $\mathrm{O}_{4}\left(\mathbf{Q}_{2}\right)$ are compact, with $\mathrm{O}_{3}\left(\mathbf{Z}_{3}\right) \subset \mathrm{GL}_{3}\left(\mathbf{Z}_{2}\right)$ and $\mathrm{O}_{4}\left(\mathbf{Z}_{2}\right) \not \subset \mathrm{GL}_{4}\left(\mathbf{Z}_{2}\right)$, respectively.

Proof. The groups $\mathrm{O}_{3}\left(\mathbf{Q}_{2}\right)$ and $\mathrm{O}_{4}\left(\mathbf{Q}_{2}\right)$ are closed in $\mathrm{M}_{3}\left(\mathbf{Q}_{2}\right)$ and $\mathrm{M}_{4}\left(\mathbf{Q}_{2}\right)$, since the matrix entries are solutions to some polynomial equations. We'll show the matrix entries are all bounded, so the orthogonal groups are compact. It will turn out matrices in $\mathrm{O}_{3}\left(\mathbf{Q}_{2}\right)$ have entries in \mathbf{Z}_{2} and matrices in $\mathrm{O}_{4}\left(\mathbf{Q}_{2}\right)$ have entries in $\frac{1}{2} \mathbf{Z}_{2}$.

As in the proof of Lemma A.3, we'll use $|\cdot|$ for $|\cdot|_{2}$.
The 3×3 case. Each column of a matrix in $\mathrm{O}_{3}\left(\mathbf{Q}_{2}\right)$ is a triple (x, y, z) where $x^{2}+y^{2}+z^{2}=$ 1 , so $\left|x^{2}+y^{2}+z^{2}\right|=1$. Without loss of generality, let $\max (|x|,|y|,|z|)=|x|$.

From Lemma A.3, if $|x|,|y|$, and $|z|$ have a maximum at 1 or 3 of these numbers then $1=\left|x^{2}+y^{2}+z^{2}\right|=\left|x^{2}\right|$, so all three of x, y, and z are in \mathbf{Z}_{2}.

If the maximum absolute value occurs at exactly two of the numbers, then $1=\frac{1}{2}\left|x^{2}\right|$, so $\left|x^{2}\right|=2$, which is impossible. Thus $\mathrm{O}_{3}\left(\mathbf{Z}_{2}\right) \subset \mathrm{M}_{3}\left(\mathbf{Z}_{2}\right)$. Since orthogonal matrices have determinant ± 1, and $\pm 1 \in \mathbf{Z}_{2}^{\times}, \mathrm{O}_{3}\left(\mathbf{Q}_{2}\right) \subset \mathrm{GL}_{3}\left(\mathbf{Z}_{2}\right)$.

The 4×4 case. The matrix

$$
\left(\begin{array}{cccc}
1 / 2 & 1 / 2 & -1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2 & 1 / 2 & -1 / 2 \\
1 / 2 & -1 / 2 & -1 / 2 & -1 / 2 \\
1 / 2 & -1 / 2 & 1 / 2 & 1 / 2
\end{array}\right)
$$

is in $\mathrm{O}_{4}\left(\mathbf{Q}_{2}\right)$, so $\mathrm{O}_{4} \not \subset \mathrm{GL}_{4}\left(\mathbf{Z}_{2}\right)$. To show all entries of matrices in $\mathrm{O}_{4}\left(\mathbf{Q}_{2}\right)$ are in $\frac{1}{2} \mathbf{Z}_{2}$, we'll show that if $\left|x^{2}+y^{2}+z^{2}+t^{2}\right|=1$ then $x, y, z, t \in \frac{1}{2} \mathbf{Z}_{2}$.

If $\left|x^{2}+y^{2}+z^{2}+t^{2}\right|=1$ and $\max (|x|,|y|,|z|,|t|)=|x|$, then by the formula in Lemma A. 3 for $\left|x^{2}+y^{2}+z^{2}+t^{2}\right|$ we have either (i) $\left|x^{2}\right|=1$ or (ii) $\frac{1}{4}\left|x^{2}\right|=1$ (the equation $\frac{1}{2}\left|x^{2}\right|=1$ is impossible). For (i), we have $|y|,|z|,|t| \leq|x|=1$, so $x, y, z, t \in \mathbf{Z}_{2}$. For (ii), we have $|y|,|z|,|t| \leq|x|=2$, so $x, y, z, t \in \frac{1}{2} \mathbf{Z}_{2}$.

Here is an application of this theorem to matrix groups over \mathbf{Q}.
Corollary A.5. Every entry of a matrix in $\mathrm{O}_{3}(\mathbf{Q})$ has an odd denominator, and every entry of a matrix in $\mathrm{O}_{4}(\mathbf{Q})$ has a denominator that is odd or an odd multiple of 2 .

Proof. Since $\mathrm{O}_{3}(\mathbf{Q})$ is contained in $\mathrm{O}_{3}\left(\mathbf{Q}_{2}\right)$, every matrix in $\mathrm{O}_{3}(\mathbf{Q})$ has entries in \mathbf{Z}_{2} and thus the entries are rational numbers with odd denominators. Similarly, since $\mathrm{O}_{4}(\mathbf{Q}) \subset \mathrm{O}_{4}\left(\mathbf{Q}_{2}\right)$, the entries of a matrix in $\mathrm{O}_{4}\left(\mathbf{Q}_{2}\right)$ are in $\frac{1}{2} \mathbf{Z}_{2}$, so the denominators are divisible by 2 at most once.

Our last task is to prove $\mathrm{O}_{n}\left(\mathbf{Q}_{2}\right)$ is noncompact for $n \geq 5$ and $\mathrm{O}_{n}\left(\mathbf{Q}_{p}\right)$ is noncompact when $p \neq 2$ and $n \geq 3$. This is explained in a common way by the next theorem.

Theorem A.6. If $Q\left(x_{1}, \ldots, x_{n}\right)$ is a nondegenerate quadratic form on \mathbf{Q}_{p}^{n} and there is a nonzero solution to $Q(v)=0$, then $\mathrm{O}_{Q}\left(\mathbf{Q}_{p}\right)$ is noncompact.
Proof. See https://mathoverflow.net/questions/370940.
Apply this theorem to $x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}$, which is a nondegenerate quadratic form on \mathbf{Q}_{p}^{n} (both for $p=2$ and $p \neq 2$) and it has a nontrivial zero if $p=2$ and $n \geq 5$ and also if $p \neq 2$ and $n \geq 3:^{1}$ for $p=2,-7=\alpha^{2}$ for some $\alpha \in \mathbf{Z}_{2}^{\times}$and $\alpha^{2}+2^{2}+1+1+1=0(\mathrm{pad}$ the solution with extra 0 's on the left if $n>5$), while for $p \neq 2, x^{2}+y^{2}+1=0$ for some x and y in \mathbf{Z}_{p} (pad with extra 0 's if $n>3$) since the congruence $-1 \equiv x_{0}^{2}+y_{0}^{2} \bmod p$ has a solution where $x_{0} \not \equiv 0 \bmod p$, and this can be lifted to a p-adic solution by Hensel's lemma.

Here is an analogous compactness theorem for orthogonal groups over \mathbf{Q}_{p}.
Theorem A.7. If $Q\left(x_{1}, \ldots, x_{n}\right)$ is a nondegenerate quadratic form on \mathbf{Q}_{p}^{n} and the only solution to $Q(v)=0$ on \mathbf{Q}_{p}^{n} is $v=\mathbf{0}$, then $\mathrm{O}_{Q}\left(\mathbf{Q}_{p}\right)$ is compact.
Proof. See https://mathoverflow.net/questions/90117.
The quadratic form $x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}$ on \mathbf{Q}_{p}^{n} fits the conditions of Theorem A. 7 if $p=2$ and $n \leq 4$, if $p \equiv 3 \bmod 4$ and $n \leq 2$, and if $p \equiv 1 \bmod 4$ and $n=1$. So this theorem recovers the compactness of $\mathrm{O}_{2}\left(\mathbf{Q}_{p}\right)$ for $p \not \equiv 1 \bmod 4$ in Theorem A. 1 and the compactness of $\mathrm{O}_{3}\left(\mathbf{Q}_{2}\right)$ and $\mathrm{O}_{4}\left(\mathbf{Q}_{2}\right)$ in Theorem A.4, but it doesn't tell us the more refined information about when $\mathrm{O}_{n}\left(\mathbf{Q}_{p}\right) \subset \mathrm{GL}_{n}\left(\mathbf{Z}_{p}\right)$ in Theorems A. 1 and A.4.

References

[1] J.-P. Serre, "Lie Algebras and Lie Groups," 2nd ed., Springer-Verlag, New York, 1965.

[^0]
[^0]: ${ }^{1}$ Also if $p \equiv 1 \bmod 4$ and $n=2$ since -1 is a square in \mathbf{Z}_{p}^{\times}.

