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1. Introduction

One of the major topics in a course on real analysis is the representation of functions as
power series ∑

n≥0
anx

n,

where the coefficients an are real numbers and the variable x belongs to R. In these notes
we will develop the theory of power series over complete nonarchimedean fields.

Let K be a field that is complete with respect to a nontrivial nonarchimedean absolute
value | · |, such as Qp with its absolute value | · |p. We will look at power series over K
(that is, with coefficients in K) and a variable x coming from K. Such series share some
properties in common with real power series:

(1) There is a radius of convergence R (a nonnegative real number, or ∞), for which
there is convergence at x ∈ K when |x| < R and not when |x| > R.

(2) A power series is uniformly continuous on each closed disc (of positive radius) where
it converges.

(3) A power series can be differentiated termwise in its disc of convergence.

There are also some contrasts:

(1) The convergence of a power series at its radius of convergence R does not exhibit
mixed behavior: it is either convergent at all x with |x| = R or not convergent at
all x with |x| = R, unlike

∑
n≥1 x

n/n on R, where R = 1 and there is convergence
at x = −1 but not at x = 1.

(2) A power series can be expanded around a new point in its disc of convergence and
the new series has exactly the same disc of convergence as the original series. Over
R, a recentered power series often converges at some numbers outside the interval
of convergence of the original series.

2. Generalities on infinite series

Before discussing power series, we set out a few general properties of infinite series over
K. Since our eventual goal is power series, we will write infinite series as

∑
n≥0 an, with

the indexing starting at n = 0 instead of n = 1.
The most basic property of an infinite series

∑
n≥0 an over K is that it converges if and

only if |an| → 0: convergence implies the general term tends to 0 by the same reasoning
as with infinite series over R, and conversely the general term tending to 0 makes the
sequence of partial sums a Cauchy sequence in K by the strong triangle inequality, so the
series converges in K by completeness.

Theorem 2.1. If an → 0 in K then |
∑

n≥0 an| ≤ maxn≥0 |an|.
1
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Proof. Let sn = a0 + · · · + an be the nth partial sum and s =
∑

n≥0 an = limn→∞ sn. If

s = 0 then |
∑

n≥0 an| = 0 ≤ max |an|. If s 6= 0 then |s| = |sN | for N � 0 by the strong

triangle inequality: for large N we we have |s− sN | < |s|, so |s| = |sN |. Since sN has only
finitely many terms,

|sN | = |a0 + · · ·+ aN | ≤ max(|a0|, . . . , |aN |) ≤ max
n≥0
|an|. �

Theorem 2.2. If
∑

n≥0 an and
∑

n≥0 bn converge then
∑

n≥0(an+bn) =
∑

n≥0 an+
∑

n≥0 bn
and, for each c ∈ K,

∑
n≥0 can = c

∑
n≥0 an.

Proof. Let A =
∑

n≥0 an and B =
∑

n≥0 bn. Then
∑N

n=0 an → A and
∑N

n=0 bn → B as

N →∞, so by continuity of addition and multiplication with respect to | · | we have

N∑
n=0

(an + bn) =
N∑
n=0

an +
N∑
n=0

bn → A+B

and
N∑
n=0

can = c

N∑
n=0

an → cA

as N →∞. �

Theorem 2.3 (Comparison Test). If {an} is a sequence in K and there is a sequence {bn}
in R such that |an| ≤ bn for n� 0, then convergence of

∑
n≥0 bn in R implies convergence

of
∑

n≥0 an in K.

Proof. Exercise. This is true for all complete valued fields K using just the triangle inequal-
ity, not the strong triangle inequality. �

One of the subtle aspects of infinite series in the real numbers is that a convergent series
can have its terms rearranged to produce an infinite series with a different value.

Example 2.4. Set L = 1−1/2+1/3−1/4+1/5−· · · =
∑

n≥1(−1)n−1/n be the alternating

harmonic series in R. Its value is between 1 and 1− 1/2 = 1/2. (By calculus L = ln(2) ≈
.693, but we don’t need this.) Let’s rearrange the terms of the series so each positive term
is followed by two negative terms:

L′ = 1− 1

2
− 1

4
+

1

3
− 1

6
− 1

8
+

1

5
− 1

10
− 1

12
+ · · ·

To compute L′, add each positive term to the negative term immediately after it, which
will not affect the value of L′ since the terms are kept in the same order:

L′ =
1

2
− 1

4
+

1

6
− 1

8
+

1

10
− 1

12
+ · · ·

This is precisely half the alternating harmonic series, so L′ = L/2. By rearranging the
terms of a series we obtained a new series with half the value of the original series!

This example is due to Dirichlet (in an 1837 paper on number theory), and it illustrates
why care is needed when using series in R. Dirichlet proved (in that same paper) a sufficient
condition for a convergent infinite series

∑
n≥0 an to have all of its rearrangements converge

to the same value: the series is absolutely convergent, meaning
∑

n≥0 |an| converges. This
is the primary reason for the significance of absolute convergence in real analysis. Riemann
later proved that absolute convergence is not just sufficient for all rearrangements of a
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series in R to have the same value, but it is necessary as well: a series in R that is not
absolutely convergent (like the alternating harmonic series in Example 2.4) can have its
terms rearranged to converge to an arbitrary real number or to be ∞ or −∞.

While the concept of absolute convergence makes sense for an infinite series over a com-
plete nonarchimedean field K, there is no need for it because there are no difficulties with
rearrangments:

Theorem 2.5. If an → 0 in K and {a′n} is a rearrangement of {an} then a′n → 0 and∑
n≥0 a

′
n =

∑
n≥0 an.

Proof. Pick ε > 0. To prove a′n → 0 we seek an N such that n > N =⇒ |a′n| ≤ ε.
Since an → 0 there is an Ñ such that n > Ñ =⇒ |an| ≤ ε. Since {an} = {a′n}, the list

{a1, a2, . . . , aÑ} lies inside the list {a′1, a′2, . . . , a′N} for some N . Therefore n > N =⇒ a′n 6∈
{a1, a2, . . . , aÑ}, so |a′n| ≤ ε.

Set s =
∑

n≥0 an. The series
∑

n≥0 a
′
n converges in K since the general term tends to 0.

We want to show
∑

n≥0 a
′
n = s:

a′1 + · · ·+ a′n → s as n→∞.

Pick ε > 0. Since an → 0, the index set A = {n : |an| > ε} is finite. Let m be the largest
integer in A, so {n : |an| > ε} ⊂ {1, 2, . . . ,m}. Then

s−
∑
n∈A

an = s−
m∑
n=0

an +

m∑
n=0

an −
∑
n∈A

an

=
∑
n>m

an +

(
m∑
n=0

an −
∑
n∈A

an

)
.

In the first series each term has absolute value at most ε, so the series has absolute value
at most ε (Theorem 2.1). In the parentheses we have two finite sums, and the last sum
removes from the first sum all terms that have absolute value greater than ε. Therefore the
number in parentheses is a sum of finitely many terms that are each at most ε in absolute
value, so by the strong triangle inequality

(2.1)

∣∣∣∣∣s−∑
n∈A

an

∣∣∣∣∣ ≤ ε.
Next let A′ = {n : |a′n| > ε}, another finite set of indices. Set m′ = max{n : |a′n| > ε}, so

reasoning as above,

(2.2) N ≥ m′ =⇒

∣∣∣∣∣
N∑
n=0

a′n −
∑
n∈A′

a′n

∣∣∣∣∣ ≤ ε,
The finite lists of numbers {an : n ∈ A} and {a′n : n ∈ A′} are identical, since they’re both
just the terms from the same list (in original and rearranged form) having absolute value
exceeding ε. Thus

(2.3)
∑
n∈A′

a′n =
∑
n∈A

an,
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so for N ≥ m′ ∣∣∣∣∣s−
N∑
n=0

a′n

∣∣∣∣∣ =

∣∣∣∣∣s−∑
n∈A

an +
∑
n∈A

an −
N∑
n=0

a′n

∣∣∣∣∣
=

∣∣∣∣∣s−∑
n∈A

an +
∑
n∈A′

a′n −
N∑
n=0

a′n

∣∣∣∣∣
≤ max

(∣∣∣∣∣s−∑
n∈A

an

∣∣∣∣∣ ,
∣∣∣∣∣∑
n∈A′

a′n −
N∑
n=0

a′n

∣∣∣∣∣
)
.

The first term in the maximum is at most ε by (2.1) and the second term is at most ε by
(2.2). �

Another important operation on series besides rearranging terms is swapping the order
of a double series:

(2.4)
∑
m≥0

∑
n≥0

amn
?
=
∑
n≥0

∑
m≥0

amn.

To be clear, the meaning of a double series
∑

m≥0
∑

n≥0 amn is
∑

m≥0(
∑

n≥0 amn). Putting
the doubly-indexed terms amn in an infinite matrix

(2.5)


a00 a01 a02 . . .
a10 a11 a12 . . .
a20 a21 a22 . . .
...

...
...

. . .

 ,

the left side of (2.4) is the sum of the row series and the right side is the sum of the column
series.

Double series arise when justifying operations on power series like multiplication and
termwise differentiation (we will see this later). Therefore it is important to know conditions
under which the two sides of (2.4) are equal.

When a double series on one side of (2.4) converges, it is not generally true that the other
double series converges to the same value, or even converges at all. Here are examples in R
and in each Qp.

Example 2.6. Let am,n be given by the matrix below: am,0 = 1/(m+1), am,m = −1/(m+1)
for m > 0, and all other am,n are 0.

1 0 0 0 . . .
1/2 −1/2 0 0 . . .
1/3 0 −1/3 0 . . .
1/4 0 0 −1/4 . . .

...
...

...
...

. . .

 .

The row sums are
∑

n≥0 a0,n = 1 and
∑

n≥0 am,n = 0 for m ≥ 1, so
∑

m≥0
∑

n≥0 am,n = 1.

However, the first column sum
∑

m≥0 am,0 is the harmonic series, so
∑

n≥0
∑

m≥0 am,n does

not converge in R even though the later column sums
∑

m≥0 am,n each converge, consisting
of just a single nonzero term each.
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Example 2.7. In Qp consider
∑

m≥0 p
m = 1/(1− p). Writing pm as a sum of pm 1’s:

1

1− p
=
∑
m≥0

pm =
∑
m≥0

pm−1∑
n=0

1 =
∑
m≥0

∑
n≥0

amn,

where

amn =

{
1, if 0 ≤ n < pm,

0, if n ≥ pm,

so
∑

m≥0
∑

n≥0 amn = 1/(1 − p) in Qp. In
∑

n≥0
∑

m≥0 amn =
∑

n≥0

(∑
{m:pm>n} 1

)
, the

nth inner sum (for each n) does not converge since it is a sum of infinitely many 1’s.

Example 2.8. Define amn to be 1, −1 or 0 by the rules ann = 1, an+1,n = −1, and amn = 0
if m 6= n or n+ 1:

(amn) =


1 0 0 . . .
−1 1 0 . . .
0 −1 1 . . .
...

...
...

. . .

 .

In R and in Qp,
∑

m≥0
∑

n≥0 amn is the sum of row sums, which is 1, while
∑

n≥0
∑

m≥0 amn
is the sum of column sums, which is 0. The two double sums converge with different values.

In real analysis, we can guarantee the convergence of both sides of (2.4) and their equality
by conditions related to absolute convergence (see [6, pp. 143-144] for a precise statement).
In a complete nonarchimedean field K we don’t use absolute convergence, but instead
the following theorem with weaker hypotheses (see [2, Lemma 4.1.3, Prop. 4.1.4] and [5,
Theorem 3.8]).

Theorem 2.9. If amn → 0 in K as max(m,n)→∞ then both sides of (2.4) converge and

are equal, and moreover both double series equal limN→∞
∑N

m=0

∑N
n=0 amn.

Let’s be clear about what the condition “amn → 0 as max(m,n)→∞” means. Here are
three ways to think about it.

(1) As long as one of the indices in amn is big, amn is small. (Don’t confuse this with
requiring both indices to be big for amn to be small. That would mean amn → 0 as
min(m,n)→∞, often written as limm,n→∞ amn = 0.)

(2) For each ε > 0 there is an N such that if max(m,n) ≥ N then |amn| ≤ ε.
(3) Putting the doubly-indexed terms amn in an infinite matrix (amn) as in (2.5), the

terms with max(m,n) ≥ N are those outside the upper left N ×N square, so what
is happening when amn → 0 as max(m,n)→∞ is that all the terms of the matrix
lying outside a sufficiently large upper left square are as small as desired. This
implies the terms tend to 0 along each row and along each column, but it is stronger
than that.

The equality (2.4) does not hold for the double sums in Examples 2.7 and 2.8, and the
hypothesis of Theorem 2.9 is not satisfied in those examples: am,pm−1 = 1 in Example 2.7
and amm = 1 in Example 2.8, so amn 6→ 0 as max(m,n)→∞. Now we prove Theorem 2.9.

Proof. First we show
∑

m≥0
∑

n≥0 amn makes sense. The inner sum
∑

n≥0 amn, for each m,
makes sense since it is a row sum in the matrix and the terms along each row tend to 0.



6 KEITH CONRAD

Set bm =
∑

n≥0 amn, so we want to show
∑

m≥0
∑

n≥0 amn =
∑

m≥0 bm makes sense. That
is, why does bm → 0?

By Theorem 2.1, |bm| ≤ maxn≥0 |amn|. The hypothesis that limmax(m,n)→∞ amn = 0
implies for ε > 0 that there’s an N such that max(m,n) ≥ N ⇒ |amn| ≤ ε, so in particular
m ≥ N ⇒ |amn| ≤ ε for all n (if m ≥ N then max(m,n) ≥ m ≥ N). Thus m ≥ N ⇒
|bm| ≤ maxn≥0 |amn| ≤ ε, so we have proved bm → 0 as m→∞. Thus we have convergence
of
∑

m≥0 bm =
∑

m≥0
∑

n≥0 amn and

(2.6)

∣∣∣∣∣∣
∑
m≥0

∑
n≥0

amn

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
m≥0

bm

∣∣∣∣∣∣ ≤ max
m≥0
|bm| ≤ max

m≥0
max
n≥0
|amn|.

Swapping the roles of m and n shows the double series
∑

n≥0
∑

m≥0 amn also converges.

Now that we know both double series in (2.4) make sense, we show they are equal by

comparing each one to the finite sum
∑N

m=0

∑N
n=0 amn as N grows (this is the sum of terms

in the upper left (N + 1) × (N + 1) square of the matrix). Let’s consider for each N ≥ 0
the difference∑

m≥0

∑
n≥0

amn −
N∑
m=0

N∑
n=0

amn =

N∑
m=0

∑
n≥0

amn

+
∑

m≥N+1

∑
n≥0

amn

− N∑
m=0

N∑
n=0

amn.

Combining the first and third sums,

∑
m≥0

∑
n≥0

amn −
N∑
m=0

N∑
n=0

amn =

N∑
m=0

∑
n≥0

amn −
N∑
n=0

amn

+
∑

m≥N+1

∑
n≥0

amn

=

N∑
m=0

∑
n≥N+1

amn +
∑

m≥N+1

∑
n≥0

amn.(2.7)

Pick ε > 0. There is an N ≥ 0 such that max(m,n) ≥ N + 1 =⇒ |amn| ≤ ε. Then
n ≥ N + 1 =⇒ |amn| ≤ ε for each m and m ≥ N + 1 =⇒ |amn| ≤ ε for each n, so in (2.7)
both double series have absolute value at most ε (argue as in (2.6)). Hence for each ε > 0
there is an N ≥ 0 such that ∣∣∣∣∣∣

∑
m≥0

∑
n≥0

amn −
N∑
m=0

N∑
n=0

amn

∣∣∣∣∣∣ ≤ ε,
which proves limN→∞

∑N
m=0

∑N
n=0 amn =

∑
m≥0

∑
n≥0 amn. By swapping the roles of m

and n, limN→∞
∑N

n=0

∑N
m=0 amn =

∑
n≥0

∑
m≥0 amn too, and since

∑N
m=0

∑N
n=0 amn =∑N

n=0

∑N
m=0 amn we get

∑
m≥0

∑
n≥0

amn = lim
N→∞

N∑
m=0

N∑
n=0

amn =
∑
n≥0

∑
m≥0

amn. �

Corollary 2.10. If amn → 0 in K as max(m,n)→∞ then∑
m≥0

∑
n≥0

amn =
∑
`≥0

∑
m+n=`

amn,
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where the inner sum on the right runs over the finitely many pairs of nonnegative integers
(m,n) adding up to `.

Proof. By Theorem 2.9,
∑
m≥0

∑
n≥0

amn = lim
L→∞

L∑
m=0

L∑
n=0

amn. We will show the limit as L→∞

equals
∑

`≥0
∑

m+n=` amn. For m,n ≥ 0, if m+ n = ` then m ≤ ` and n ≤ `, so for L ≥ 0

(2.8)
L∑

m=0

L∑
n=0

amn −
L∑
`=0

∑
m+n=`

amn =
∑

0≤m,n≤L
m+n≥L

amn.

In the finite sum on the right, m+ n ≥ L =⇒ m ≥ L/2 or n ≥ L/2.
Pick ε > 0. By hypothesis there is an N such that if max(m,n) ≥ N then |amn| ≤ ε, so

if m+ n ≥ 2N then m or n is ≥ N , so |amn| ≤ ε. Thus if L ≥ 2N then (2.8) has absolute
value at most ε. That proves (2.8) tends to 0 as L→∞, which is what we wanted. �

If we want to write the product of two convergent series
∑

m≥0 am and
∑

n≥0 bn as a
single convergent series of two-term products ambn, it is natural to list the terms according
to increasing value of m+ n, getting

(2.9) a0b0 + (a0b1 + a1b0) + (a0b2 + a1b1 + a2b0) + · · · =
∑
`≥0

∑
m+n=`

ambn.

In R this series need not converge: if an = bn = (−1)n/
√
n+ 1, then

∑
n≥0 an and

∑
n≥0 bn

converge by the alternating series test but (2.9) does not converge since |
∑

m+n=` ambn| ≥ 1
for all `. To have (2.9) converge in R and equal (

∑
m≥0 am)(

∑
n≥0 bn), absolute convergence

of both of the original series
∑

m≥0 am and
∑

n≥0 bn is sufficient [6, pp. 146-147]. (In fact

absolute convergence of just one of the original series is sufficient [6, p. 321].) Over a
nonarchimedean complete field, let’s show no problems occur.

Corollary 2.11. If
∑

m≥0 am and
∑

n≥0 bn converge in K then∑
m≥0

am

∑
n≥0

bn

 =
∑
`≥0

∑
m+n=`

ambn.

Proof. Set s =
∑

n≥0 bn. Then∑
m≥0

am

∑
n≥0

bn

 =

∑
m≥0

am

 s

=
∑
m≥0

ams

=
∑
m≥0

am

∑
n≥0

bn


=
∑
m≥0

∑
n≥0

ambn

=
∑
m≥0

∑
n≥0

cmn
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where cmn = ambn. Let’s check cmn → 0 as max(m,n)→∞.
Since am → 0 as m → ∞ and bn → 0 as n → ∞, both sequences are bounded, say

|am| ≤ A for all m and |bn| ≤ B for all n. Then for ε > 0 there are M and N such that
m ≥ M ⇒ |am| ≤ ε and n ≥ N ⇒ |bn| ≤ ε. In the first case, |cmn| = |am||bn| ≤ |am|B ≤
εB, and in the second case |cmn| = |am||bn| ≤ A|bn| ≤ Aε, so together

max(m,n) ≥ max(M,N) =⇒ |cmn| = |am||bn| ≤ εmax(A,B).

Thus cmn → 0 as max(m,n)→∞. We can now apply Corollary 2.10:∑
m≥0

am

∑
n≥0

bn

 =
∑
m≥0

∑
n≥0

cmn =
∑
`≥0

∑
m+n=`

cmn =
∑
`≥0

∑
m+n=`

ambn. �

3. Convergence, algebra, and continuity with power series

A power series over K is an infinite series of the form

f(x) =
∑
n≥0

anx
n = lim

n→∞
(a0 + a1x+ a2x

2 + · · ·+ anx
n)

with coefficients an ∈ K and variable x in K. We will be concerned initially with describing
the set of x where the power series converges and then performing operations on power
series (e.g., addition, multiplication, and differentiation). The series obviously converges if
x = 0, with f(0) = a0.

The simplest example of a power series (aside from polynomials, which are power series
with all but finitely many coefficients equal to 0) is a geometric series

∑
n≥0 x

n, whose

convergence is easy to describe: the series converges if and only if |x| < 1, in which case∑
n≥0

xn =
1

1− x
.

This is just like the behavior of geometric series in R and does not depend on whether or
not the absolute value is archimedean or nonarchimedean.

Theorem 3.1. If
∑

n≥0 anx
n and

∑
n≥0 bnx

n both converge for an x ∈ K, then∑
n≥0

anx
n +

∑
n≥0

bnx
n =

∑
n≥0

(an + bn)xn,∑
m≥0

amx
m

∑
n≥0

bnx
n

 =
∑
`≥0

(∑̀
m=0

amb`−m

)
x`.

Proof. The formula for the sum follows from Theorem 2.2 with an and bn there replaced by
anx

n and bnx
n. The formula for the product follows from Corollary 2.11 with am and bn

there replaced by amx
m and bnx

n: if m+n = ` then amx
mbnx

n = ambnx
` = amb`−mx

`. �

The geometric series converges on the open unit disc. On what kind of set in K does a
general power series converge? In calculus you learn that a real power series has a radius of
convergence, usually found with the ratio test. But the ratio test is not always applicable (it
just seems so in calculus courses because no other technique is available). There is a formula
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for the radius of convergence R of every real power series
∑

n≥0 anx
n, due to Cauchy [1,

pp. 132, 143, 151] (1821) and rediscovered by Hadamard [3] (1888):

1

R
= lim

n→∞
n
√
|an|,

where 1/∞ = 0, 1/∞ = 0, and lim is defined next.

Definition 3.2. For a sequence {xn} ⊂ R, its limit supremum limn→∞ xn is the largest
limit point of the sequence {xn} in R ∪ {±∞}.

Don’t confuse this with the supremum supxn, which is the least upper bound of the xn’s.

Example 3.3. If xn = 1 + 1/n for n ≥ 1 then supxn = 2 and xn → 1, so the sequence has
only one limit point: limn→∞ xn = limn→∞ xn = 1.

Example 3.4. If xn = (−1)n/n for n ≥ 1 then supxn = 1/2 and xn → 0, so limn→∞ xn = 0.

Example 3.5. If xn = (−1)nn/(n + 1) for n ≥ 1, then the sequence has two limit points:
1 and −1. So limn→∞ xn does not exist but limn→∞ xn = 1.

When L := limn→∞ xn is finite, it is characterized by properties from above and below:

• for all ε > 0, xn < L+ ε for n� 0 and
• for all ε > 0, L− ε < xn for infinitely many n (not for n� 0; see Example 3.5)

We will need two more important properties of limn→∞ xn:

• limn→∞ xn =∞ if and only if a subsequence of {xn} tends to ∞ (it’s not necessary
to have xn →∞).
• If xn ≥ 0 for all n, limn→∞ xn = 0 if and only if xn → 0 as n→∞ (it’s not enough

for a subsequence to tend to 0 – try xn = 1/n for even n and xn = 1 for odd n).

Remark 3.6. We call limn→∞ xn a limit supremum from its connection to suprema of the
sequences {xk, xk+1, xk+2, . . .} where more and more initial terms are omitted:

sup
n≥1

xn ≥ sup
n≥2

xn ≥ sup
n≥3

xn ≥ · · ·

and the sequence sk = supn≥k xn in R has a limit (possibly being ±∞) since all monotonic

sequences in R have a limit in R ∪ {±∞}. The limit of the sk’s is precisely limn→∞ xn:

lim
n→∞

xn = lim
k→∞

(
sup
n≥k

xn

)
.

This is why limn→∞ xn is also written lim supn→∞ xn and is pronounced “lim sup xn”.1 For
a sequence {xn} in R, its limit in R ∪ {±∞} may not exist but limn→∞ xn always does.

The point of introducing lim here is the Cauchy–Hadamard radius of convergence formula.
It works not only over R, but also over K when it uses the absolute value on K.

Theorem 3.7. Let f(x) =
∑

n≥0 anx
n where an ∈ K. Define R ∈ [0,∞] by the formula

1

R
= lim

n→∞
n
√
|an|,

1In LaTeX, lim sup = \limsup and lim = \varlimsup.
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where 1/0 =∞ and 1/∞ = 0.2 The set of x ∈ K where f(x) converges is

{x ∈ K : |x| < R} or {x ∈ K : |x| ≤ R}.

Proof. First we will show the series converges if |x| < R and not if |x| > R. We will break
up the proof into three cases: (1) R = 0, (2) R =∞, and 0 < R <∞.

Case 1: R = 0. We want to show f(x) does not converge for x 6= 0 in K. From R = 0

we have limn→∞
n
√
|an| =∞, so some subsequence of n

√
|an| tends to ∞. For nonzero x in

K we want to show f(x) does not converge:

|x| > 0 =⇒ n
√
|an| >

1

|x|
infinitely often

=⇒ |an| >
1

|xn|
infinitely often

=⇒ |anxn| > 1 infinitely often,

so
∑

n≥0 anx
n doesn’t converge since the general term does not tend to 0.

Case 2: R = ∞. We want to show f(x) converges for all x in K. From R = ∞ we

have limn→∞
n
√
|an| = 0, so n

√
|an| → 0. Convergence of f(x) for x = 0 is obvious. For

x ∈ K − {0},

n
√
|an| <

1

2|x|
for n� 0 =⇒ |an| <

1

2n|xn|
for n� 0

=⇒ |anxn| <
1

2n
for n� 0.

Therefore the convergence of
∑

1/2n in R implies convergence of
∑
anx

n in K by the
comparison test (Theorem 2.3).

Case 3: 0 < R <∞. Convergence of f(x) at x = 0 is obvious. For 0 < |x| < R we want
to show f(x) converges. Rewriting the inequalities as 0 < |x|/R < 1, there’s an ε in (0, 1)
for which |x|/R < 1− ε < 1, so 1/R < (1− ε)/|x|. Thus

lim
n→∞

n
√
|an| <

1− ε
|x|

=⇒ n
√
|an| <

1− ε
|x|

for n� 0 =⇒ |anxn| < (1− ε)n for n� 0.

Convergence of
∑

n≥0(1−ε)n in R implies convergence of
∑

n≥0 anx
n inK by the comparison

test (Theorem 2.3).

For |x| > R we show f(x) does not converge. Since 1/|x| < 1/R = limn→∞
n
√
|an|, we

have 1/|x| < n
√
|an| infinitely often, so 1 < |anxn| infinitely often, and thus f(x) does not

converge since its general term does not tend to 0.
If x ∈ K and |x| = R, when does f(x) converge? (If R 6∈ |K×| then there is no such x,

e.g., if K = Qp and R 6∈ pZ; we’ll see an example of this later with the p-adic exponential
series for p 6= 2.) Since | · | is nonarchimedean, convergence of

∑
n≥0 anx

n in K is equivalent

to |anxn| = |an|Rn tending to 0, which depends on x only through |x|, so either f(x)
converges for all x ∈ K with |x| = R or f(x) does not converge for all such x. �

If R ∈ |K×|, to determine whether or not the “circumference” |x| = R is in the disc of
convergence of f(x) it suffices to check convergence at just one element of K with absolute
value R.

2The numbers n
√
|an| don’t include a term for n = 0.
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Example 3.8. Let f(x) =
∑

n≥0 x
n. All coefficients are 1, so R = 1. At x = 1 the series

does not converge, so the geometric series has disc of convergence {x ∈ K : |x| < 1}, which
we already knew.

In our next three examples, let K be a complete extension field of Qp, so | · | = | · |p on
the subfield Qp, and thus in particular on rational numbers in K. We call such K a p-adic
field.

Example 3.9. Let f(x) =
∑

k≥0 p
kxp

k
= x+ pxp + p2xp

2
+ · · · , so this series has nonzero

coefficients only when the exponent is a power of p. Then

1

R
= lim

n→∞
n
√
|an| = lim

k→∞
pk
√
|pk|p = lim

k→∞

1

pk/pk
.

In R, k/pk → 0 as k → ∞, so R = 1. At x = 1 the series converges, so the disc of
convergence is {x ∈ K : |x| ≤ 1}.

Example 3.10. In R, log(1 + x) =
∑

n≥1(−1)n−1xn/n converges for −1 < x ≤ 1. How
does this series behave in a p-adic field K? We have

1

R
= lim

n→∞
n

√∣∣∣∣(−1)n−1

n

∣∣∣∣ = lim
n→∞

1
n
√
|n|p

= lim
n→∞

pordp(n)/n.

Since 1 ≤ pordp(n) ≤ n, we have 1 ≤ pordp(n)/n ≤ n
√
n, and n

√
n→ 1 as n→∞, so R = 1. (In

particular, n
√
|n|p → 1 as n→∞.) At x = 1 the terms (−1)n−1xn/n = ±1/n have absolute

value 1/|n|p, which does not tend to 0 (it is 1 when n is not divisible by p), so the series
doesn’t converge at 1 and therefore the disc of convergence of

∑
n≥1(−1)n−1xn/n in K is

the open unit disc {x ∈ K : |x| < 1}.

Example 3.11. In R, ex =
∑

n≥0 x
n/n! has an infinite radius of convergence, where the

n! in the denominator helps. But p-adically n! is very small when n gets large, so having n!
in the denominator of the power series hurts the convergence. Might this series for x ∈ K
(ignoring its interpretation in R as (2.718 . . .)x) have p-adic radius of convergence 0?

Letting R be the radius of convergence,

(3.1)
1

R
= lim

n→∞
n
√
|1/n!| = lim

n→∞
n

√
|1/n!|p = lim

n→∞
pordp(n!)/n,

so we need to know the p-divisibility of n!. A formula for ordp(n!) was given by Legendre
two hundred years ago, and it can be described in two ways:

(3.2) ordp(n!) =
∑
k≥1

⌊
n

pk

⌋
=
n− sp(n)

p− 1
,

where sp(n) is the sum of the base p digits of n: if n = a0 + a1p+ · · ·+ arp
r then sp(n) =

a0 + a1 + · · · + ar. The series in (3.2) is finite since the terms are zero once pk > n.
For example, if n = p2 + 1 then the series is b(p2 + 1)/pc + b(p2 + 1)/p2c = p + 1 and
((p2 +1)−sp(p2 +1))/(p−1) = (p2 +1−2)/(p−1) = p+1: both say ordp((p

2 +1)!) = p+1.
The formulas in (3.2) are clear if n = 0, since they are 0. To derive this formula for n ≥ 1

count the highest power of p in n! = 1 · 2 · 3 · · · · · n by counting how many integers up to
n are divisible by p, by p2, by p3, and so on. Integers divisible by p just once are counted
only once, those divisible by p just twice are counted twice (they are first counted when
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we count numbers divisible by p, and then they are counted again when we count numbers
divisible by p2), and so on. The number of integers up to n divisible by pk is bn/pkc, so

ordp(n!) =
∑
k≥1

⌊
n

pk

⌋
.

Now we use the base p expansion n = a0 + a1p+ · · ·+ arp
r to write the sum in another

way: n/pk < 1 if k > r, so the sum in Legendre’s formula runs from k = 1 to k = r. Since
n

pk
=
a0
pk

+ · · ·+ ak−1
p

+ ak + ak+1p+ · · ·+ arp
r−k,

we have bn/pkc = ak + ak+1p+ · · ·+ arp
r−k. Therefore

ordp(n!) = a1 + a2p+ a3p
2 + · · ·+ arp

r−1 +

a2 + a3p+ · · ·+ arp
r−2 +

a3 + · · ·+ arp
r−3 + · · ·

and summing terms vertically,

ordp(n!) = a1 + a2(1 + p) + a3(1 + p+ p2) + · · ·+ ar(1 + p+ · · ·+ pr−1)

= a1
p− 1

p− 1
+ a2

p2 − 1

p− 1
+ a3

p3 − 1

p− 1
+ · · ·+ ar

pr − 1

p− 1

=
(a1p+ a2p

2 + · · ·+ arp
r)− (a1 + a2 + · · ·+ ar)

p− 1

=
(a0 + a1p+ a2p

2 + · · ·+ arp
r)− (a0 + a1 + a2 + · · ·+ ar)

p− 1

=
n− sp(n)

p− 1
.

From the second formula for ordp(n!) in (3.2), for n ≥ 1 we have the upper bound3

ordp(n!) <
n

p− 1
.

We will use the second formula in (3.2) to get a lower bound. The base p expansion is
n = a0 + a1p+ · · ·+ arp

r, with ar 6= 0. Since ai ≤ p− 1,

ordp(n!) =
n− (a0 + a1 + a2 + · · ·+ ar)

p− 1
≥ n− (r + 1)(p− 1)

p− 1
=

n

p− 1
− (r + 1).

To get a lower bound on this purely in terms of n, what is an upper bound on r in terms of
n? Since ar 6= 0 we have pr ≤ n < pr+1, so r ≤ logp n < r + 1, whhere logp is the classical
base p logarithm. Thus

ordp(n!) ≥ n

p− 1
− (logp n+ 1),

so
n

p− 1
− (logp n+ 1) ≤ ordp(n!) <

n

p− 1
.

Dividing by n,
1

p− 1
−

logp n+ 1

n
≤ ordp(n!)

n
<

1

p− 1
.

3The first formula in (3.2) also gives this upper bound since ordp(n!) <
∑

k≥1 n/p
k; sum the series.
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Therefore ordp(n!)/n→ 1/(p− 1) as n→∞, so

lim
n→∞

pordp(n!)/n = p1/(p−1),

which means the radius of convergence of
∑

n≥0 x
n/n! in K is

1

p1/(p−1)
=

(
1

p

)1/(p−1)
.

The real number (1/p)1/(p−1) is quite special in p-adic analysis, showing up a lot. Let’s
observe that it lies strictly between 1/p and 1 for p 6= 2, while it is 1/2 = 1/p for p = 2.

We need to see if the disc of convergence includes x ∈ K with |x| = (1/p)1/(p−1) (if there

are such x in K, e.g., there are for K = Q2 when (1/p)1/(p−1) = 1/2). For such x,∣∣∣∣xnn!

∣∣∣∣ =
(1/p)n/(p−1)

(1/p)(n−sp(n))/(p−1)
=

(
1

p

)sp(n)/(p−1)
,

where sp(n) is the sum of the base p digits of n. When n is a power of p this absolute value

is (1/p)1/(p−1), which does not tend to 0. So the disc of convergence of
∑

n≥0 x
n/n! in K is

{x ∈ K : |x| < (1/p)1/(p−1)}.
For example, when K = Qp the inequality |x|p < (1/p)1/(p−1) is the same as |x|p ≤ 1/p

for p 6= 2 and |x|2 ≤ 1/4 for p = 2. Thus
∑

n≥0 x
n/n! in Qp has disc of convergence pZp

when p 6= 2 and 4Z2 when p = 2.
It might seem strange to be fussy about the radius (1/p)1/(p−1) when it can be replaced

with 1/p or 1/4 on the p-adic numbers. The point is that Qp can be enlarged to bigger
complete fields (an analogue of going from R to C, say) and in such fields there can be

elements with absolute value between 1/p and (1/p)1/(p−1) when p 6= 2.

Theorem 3.12. If f(x) =
∑

n≥0 anx
n converges on a disc {x ∈ K : |x| ≤ r} where

r ∈ |K×| then on this disc the power series is uniformly continuous and bounded.

In this theorem we are not insisting that {x : |x| ≤ r} is the maximal disc of convergence
for the series, just that the series converges on such a disc. It will be clear in the proof why
it matters that r is the absolute value of something in K.

Proof. By hypothesis there is some t ∈ K with |t| = r and the series converges at t, so
|antn| = |an|rn → 0 as n→∞. Thus |x| ≤ r =⇒ |f(x)| ≤ maxn≥0 |an||x|n ≤ maxn≥0 |an|rn,
so f is bounded on {x ∈ K : |x| ≤ r}.

For |x| ≤ r and |y| ≤ r in K,

f(x)− f(y) =
∑
n≥1

an(xn − yn)

=
∑
n≥1

an(x− y)(xn−1 + xn−2y + · · ·+ xyn−2 + yn−1)

= (x− y)
∑
n≥1

an(xn−1 + xn−2y + · · ·+ xyn−2 + yn−1).

(The summation starts at n = 1 since the constant terms cancel in the difference.) From
the strong triangle inequality,

|xn−1 + xn−2y + · · ·+ xyn−2 + yn−1| ≤ max
0≤i≤n−1

|x|i|y|n−1−i ≤ rn−1,
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so ∣∣∣∣∣∣
∑
n≥1

an(xn−1 + xn−2y + · · ·+ xyn−2 + yn−1)

∣∣∣∣∣∣ ≤ max
n≥1
|an|rn−1 =

1

r
max
n≥1
|an|rn.

This maximum exists since |an|rn → 0. Thus

|f(x)− f(y)| ≤ |x− y|max
n≥1
|an|rn−1 = Ar|x− y|

where Ar = maxn≥1 |an|rn−1.
To show f is uniformly continuous on {x ∈ K : |x| ≤ r}, we consider two cases.

(1) If an = 0 for all n ≥ 1, so f(x) is the constant function a0, it is obviously uniformly
continuous.

(2) If some an for n ≥ 1 is not 0, then Ar > 0, so for ε > 0 setting δ = ε/Ar shows
|x− y| ≤ δ =⇒ |f(x)− f(y)| ≤ Ar|x− y| ≤ Arδ = ε. �

Corollary 3.13. If f(x) =
∑

n≥0 anx
n converges on a disc {x ∈ K : |x| ≤ r} where

r ∈ |K×| then there is a number Ar such that |f(x)− a0| ≤ Ar|x| when |x| ≤ r.

Proof. Set y = 0 in Theorem 3.12. �

Corollary 3.14. A power series
∑

n≥0 anx
n with coefficients in K is continuous on its disc

of convergence in K.

This is not a restatement of the continuity from Theorem 3.12 since the disc of conver-
gence might be of the form {x ∈ K : |x| < R} rather than of the form {x ∈ K : |x| ≤ R}.

Proof. If the radius of convergence is 0 then the series only converges at x = 0 and the
desired result is obvious (and boring). If the radius of convergence is positive and x0 is a
number in K× at which the power series converges, then the series converges on the closed
disc {x ∈ K : |x| ≤ r} where r = |x0| > 0. By Theorem 3.12 the series is uniformly
continuous on this disc, which is an open subset of K, and thus in particular the series is
continuous at x0 and at 0. As x0 was arbitrary in the disc of convergence, we are done. �

Corollary 3.15. A power series with a positive radius of convergence has only one choice
of coefficients: if

∑
n≥0 anx

n =
∑

n≥0 bnx
n for all x in a disc of positive radius then an = bn

for all n.

Proof. Using the power series
∑
cnx

n :=
∑

n≥0(an−bn)xn, we will show that if
∑
cnx

n = 0
for all small x in K then cn = 0 for all n.

Setting x = 0 in the power series, we get c0 = 0. Suppose cn = 0 for n < N , so∑
n≥N cnx

n = 0 for all small x in K. We want to show cN = 0. For small nonzero x in K,
divide by x: ∑

n≥N
cnx

n = 0 =⇒ cNx
N + cN+1x

N+1 + cN+2x
N+2 + · · · = 0

=⇒ cN + cN+1x+ cN+2x
2 + · · · = 0 since x 6= 0.

Thus
∑

n≥0 cN+nx
n = 0 for small nonzero x in K. This power series also converges at

x = 0 with value cN . A power series is continuous on its disc of convergence, so cN =
limx→0

∑
n≥0 cN+nx

n = limx→0 0 = 0. �

In real analysis, the usual proof that a power series f(x) =
∑
anx

n has unique coefficients

uses Taylor’s formula an = f (n)(0)/n!. We’ll give such a proof later in Corollary 5.6.
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4. The p-adic exponential series

In this section, K is a p-adic field: a complete extension field of Qp.
We saw in Example 3.11 that the classical exponential series

∑
n≥0 x

n/n! converges in K

only at those x with |x| < (1/p)1/(p−1).

Definition 4.1. For x ∈ K with |x| < (1/p)1/(p−1), the p-adic exponential at x is

ex = exp(x) =
∑
n≥0

xn

n!
.

We determined the disc of convergence of ex in K as part of Example 3.11: it is the disc

(4.1) Dp = Dp(K) = {x ∈ K : |x| < (1/p)1/(p−1)}.

Example 4.2. On Qp, the p-adic exponential series is defined on

Dp(Qp) =

{
pZp, if p 6= 2,

4Z2, if p = 2.

Since 1 is not in Dp, the series ex does not converge at x = 1: we denote the series as ex

by analogy with the real exponential series, but there is no p-adic number e. The number
ep for p 6= 2 (resp., e4 for p = 2) exists in Qp, but it has no pth root (resp., no fourth root
when p = 2) in Qp. Even if we pass to a larger field than Qp in which such a root can be
found, that number (after deciding which pth root or 4th root should be preferred!) has no
known significance in p-adic analysis. The bottom line is that specific transcendental real
numbers can’t be productively interpreted as p-adic numbers.

Example 4.3. In Q2 let’s compute e4 mod 27. By definition e4 =
∑

n≥0 4n/n!, and the nth

term tends to 0 as n grows. How large must n be so that |4n/n!|2 ≤ 1/27, or equivalently
ord2(4

n/n!) ≥ 7? Since

ord2

(
4n

n!

)
= 2n− ord2(n!) = 2n− (n− s2(n)) = n+ s2(n),

and s2(n) ≥ 1 for n ≥ 1, we have ord2(4
n/n!) ≥ 7 if n ≥ 6. The table below displays

ord2(4
n/n!) for smaller n.

n 0 1 2 3 4 5
s2(n) 0 1 1 2 1 2

n+ s2(n) 0 2 3 5 5 7

From the table ord2(4
n/n!) ≥ 7 for n ≥ 5, so 4n/n! ∈ 27Z2 for n ≥ 5. Thus

e4 = 1 + 4 +
42

2!
+

43

3!
+

44

4!
+ element of 27Z2.

The sum of the first five terms is 103/3 ≡ 77 mod 27, so e4 ≡ 77 ≡ 1011001 mod 27.

Theorem 4.4. For x and y in Dp, e
xey = ex+y.

Since Dp is a disc centered at 0 in a nonarchimedean field it is an additive group, so
x+ y ∈ Dp when x and y are in Dp.
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Proof. We use Corollary 2.11:

exey =
∑
m≥0

xm

m!

∑
n≥0

yn

n!

=
∑
`≥0

∑
m+n=`

1

m!

1

n!
xmyn

=
∑
`≥0

1

`!

∑
m+n=`

`!

m!n!
xmyn

=
∑
`≥0

1

`!

∑̀
m=0

`!

m!(`−m)!
xmy`−m

=
∑
`≥0

1

`!
(x+ y)`

= ex+y. �

Since exe−x = e0 = 1, the p-adic exponential series on K does not take the value 0, just
like the classical exponential series.

A striking contrast with real analysis is that the p-adic exponential series has a finite
radius of convergence, as we saw. A more striking contrast is that it preserves distances!

Theorem 4.5. If t ∈ Dp then |et − 1| = |t|. For x and y in Dp, |ex − ey| = |x− y|.

Proof. If t = 0 then et−1 = 0, so we can assume 0 < |t| < (1/p)1/(p−1). To show |et−1| = |t|,
extract the first two terms in the power series for et:

et = 1 + t+
∑
n≥2

tn

n!
=⇒ et − 1 = t+

∑
n≥2

tn

n!
.

We will show |tn/n!| < |t| for n ≥ 2. Then for finite N ≥ 2 we have |
∑N

n=1 t
n/n!| = |t|, and

letting N → ∞ we get |et − 1| = |t|. For t 6= 0, the condition |tn/n!| < |t| is equivalent to

|t|n−1 < |n!| = |n!|p, which is the same as |t| < |n!|1/(n−1)p , so for |t| < (1/p)1/(p−1) it suffices

to show (1/p)1/(p−1) ≤ |n!|1/(n−1)p :(
1

p

)1/(p−1)
≤ |n!|1/(n−1)p ⇐⇒

(
1

p

)1/(p−1)
≤
(

1

p

)(n−sp(n))/(p−1)(n−1)

⇐⇒ p1/(p−1) ≥ p(n−sp(n))/(p−1)(n−1)

⇐⇒ 1 ≥ n− sp(n)

n− 1
,

⇐⇒ sp(n) ≥ 1,

and this last inequality is true for n ≥ 2.
For |t| < (1/p)1/(p−1), |et| = |et − 1 + 1| = 1 since |et − 1| = |t| < 1, so for x, y ∈ Dp,

|ex − ey| = |ey(ex−y − 1)| = |ey||ex−y − 1| = 1|ex−y − 1| = |x− y|

using t = x− y ∈ Dp. �

Corollary 4.6. If ex = ey for x, y ∈ Dp then x = y.
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Proof. If ex = ey then 0 = |ex − ey| = |x− y|, so x = y. �

Since the ex preserves distances and sends 0 to 1, it sends Dp to 1 +Dp. In particular,

• for p 6= 2, x ∈ pZp =⇒ ex ∈ 1 + pZp,
• x ∈ 4Z2 =⇒ ex ∈ 1 + 4Z2.

The set 1 + Dp (which for K = Qp is 1 + pZp for p 6= 2 and 1 + 4Z2 for p = 2) is a
multiplicative group, as is every set of the form {x ∈ K : |x − 1| < r} where r ∈ (0, 1), so
ex is a homomorphism from the additive group Dp to the multiplicative group 1 +Dp.

5. Differentiability of power series

As in real analysis, the derivative of a function f : U → K for an open subset U of K is
defined as a limit of Newton quotients: for x ∈ U ,

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
,

where the limit is over h in K tending to 0. Familiar differentiation rules in R work in K.

Theorem 5.1. Let U be an open subset of K and f, g : U → K be differentiable functions.
Then f + g and fg are differentiable at each x ∈ U , with

(f + g)′(x) = f ′(x) + g′(x), (fg)′(x) = f(x)g′(x) + f ′(x)g(x).

At each x ∈ U where g(x) 6= 0, f/g is differentiable with

(f/g)′(x) =
g(x)f ′(x)− f(x)g′(x)

g(x)2
.

If f : U → K and g : V → K are differentiable functions with g(V ) ⊂ U , then f ◦g : V → K
is differentiable with derivative at each x ∈ V given by

(f ◦ g)′(x) = f ′(g(x))g′(x).

Proof. Exercise. �

Example 5.2. For c ∈ K, if g(x) = f(x+ c) then g′(x) = f ′(x+ c). If g(x) = f(cx) then
g′(x) = cf(cx). These are very simple uses of the chain rule that could be checked directly.

Theorem 5.3. If f(x) =
∑

n≥0 anx
n has a positive radius of convergence in K, then for

each x in the disc of convergence we have f ′(x) =
∑

n≥1 nanx
n−1.

Proof. Let R be the radius of convergence (possibly ∞). The disc of convergence for the
series is filled up by discs of the form {x ∈ K : |x| ≤ r} for 0 < r < R, where r ∈ |K×|, and
possibly also for r = R if R ∈ |K×|, so it suffices to prove the derivative formula on discs
where f converges that have the form {x ∈ K : |x| ≤ r} with r ∈ |K×|.

Fix x ∈ K with |x| ≤ r. For 0 < |h| ≤ r we have |x+ h| ≤ max(|x|, |h|) ≤ r, so f(x+ h)
is defined and

f(x+ h)− f(x) =
∑
n≥0

an(x+ h)n −
∑
n≥0

anx
n

=
∑
n≥1

an((x+ h)n − xn)

=
∑
n≥1

an

(
n∑

m=1

(
n

m

)
hmxn−m

)
.
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Each h appears in hm with m ≥ 1, so dividing through by h gives us

f(x+ h)− f(x)

h
=
∑
n≥1

an

(
n∑

m=1

(
n

m

)
hm−1xn−m

)
=
∑
n≥1

∑
m≥1

cmn,

where

cmn =

{(
n
m

)
hm−1anx

n−m, if 1 ≤ m ≤ n,
0, if m > n.

We want to change the order of the double series. To justify this by Theorem 2.9 we
check cmn → 0 in K as max(m,n) → ∞. If m > n then cmn is 0. If m ≤ n then since
|
(
n
m

)
| = |

(
n
m

)
|p ≤ 1,

|cmn| ≤
∣∣∣∣(nm

)∣∣∣∣ |h|m−1|an||x|n−m ≤ rm−1|an|rn−m = |an|rn−1 =
1

r
|an|rn,

which tends to 0 as n→∞ since the power series converges at radius r. Thus cmn → 0 as
max(m,n)→∞, so we can swap the order of the double series:

f(x+ h)− f(x)

h
=
∑
n≥1

∑
m≥1

cmn

=
∑
m≥1

∑
n≥1

cmn

=
∑
m≥1

∑
n≥m

(
n

m

)
hm−1anx

n−m

=
∑
m≥1

∑
n≥m

(
n

m

)
anx

n−m

hm−1

=
∑
n≥1

nanx
n−1 +

∑
n≥2

(
n

2

)
anx

n−2

h+ . . . ,

and this is a power series in h. We assumed 0 < |h| ≤ r, so this series converges for
|h| ≤ r (it obviously converges at h = 0). Since a power series is continuous on its disc
of convergence (Corollary 3.14), as h → 0 the power series in h tends to its constant term∑

n≥1 nanx
n−1. Thus f ′(x) exists and equals the termwise derivative

∑
n≥1 nanx

n−1. �

Remark 5.4. While differentiability implies continuity, just like in real analysis, our proof
of the differentiability of power series relied on already knowing power series are continuous
functions, at least at the origin.

Example 5.5. As in R, (ex)′ = ex for x in the disc of convergence of the exponential series
in K.

Write the higher derivatives of a function as f ′′, f ′′′, and f (n), as in real analysis.

Corollary 5.6. If f(x) =
∑

n≥0 anx
n has a positive radius of convergence in K then f is

infinitely differentiable on its disc of convergence in K and an = f (n)(0)/n! for all n ≥ 0.
In particular, f has only one choice of power series coefficients.
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The uniqueness of power series coefficients was proved earlier without derivatives in
Corollary 3.15.

Proof. Let D be the disc of convergence of f(x). By Theorem 5.3, f ′(x) =
∑

n≥1 nanx
n−1

for all x ∈ D. This is again a power series, so by Theorem 5.3 it is differentiable on D with
derivative f ′′(x) =

∑
n≥2 n(n− 1)anx

n−2. By induction, the kth derivative is

f (k)(x) =
∑
n≥k

n(n− 1) · · · (n− (k − 1))anx
n−k

for all x ∈ D. In particular, the constant term is f (k)(0) = k(k−1) · · · (k−(k−1))ak = k!ak,

so ak = f (k)(0)/k!. This shows the coefficients of the power series are determined by f as
a function around 0. �

Remark 5.7. Since n
√
|n|p → 1 (see Example 3.10), the derivative of a p-adic power series

has the same radius of convergence as the original series, just like in real analysis. However,
while in real analysis the derivative of a power series can converge on a smaller set than the
original series –

∑
n≥1 x

n/n2 has interval of convergence −1 ≤ x ≤ 1 while its derivative∑
n≥1 x

n−1/n has interval of convergence −1 ≤ x < 1 – in p-adic analysis the derivative of

a power series might converge on a larger set than the original series: on Qp,
∑

k≥0 x
pk has

disc of convergence pZp while its derivative
∑

k≥0 p
kxp

k−1 has disc of convergence Zp.

Corollary 5.8. If two power series on a disc of positive radius in K centered at the origin
have the same derivative on the disc then they differ by a constant on that disc.

Proof. Let f(x) =
∑

n≥0 anx
n and g(x) =

∑
n≥0 bnx

n converge on a common disc D around

0 with positive radius. If f ′(x) = g′(x) on D then f (n)(x) = g(n)(x) on D for all n ≥ 1.

Therefore when n ≥ 1, an = f (n)(0)/n! = g(n)(0)/n! = bn, so

f(x) = a0 +
∑
n≥1

anx
n = a0 + (g(x)− b0) = g(x) + (a0 − b0),

so f and g differ by a constant on D. �

As a special case of Corollary 5.8, if a power series on a disc centered at 0 in K has
derivative 0 then the power series is a constant function (all higher-degree coefficients are
0). In calculus, the property “derivative = 0 ⇒ constant” for functions on an interval is
proved using the Mean Value Theorem, without assuming the functions are representable
as power series. There is no Mean Value Theorem in p-adic analysis, and in fact p-adic
functions can have derivative 0 on Zp without being constant functions.

Example 5.9. Let f : Zp → Qp by

f(x) =

{
0, if x ∈ pZp,
1, if x ∈ Z×p .

This function is not constant but it is locally constant since pZp and Z×p are both open in
Qp: for each x ∈ Zp the disc x+ pZp = {y ∈ Zp : |y − x|p < 1} is in pZp if x is in pZp and
it is in Z×p if x is in Z×p . Since f is locally constant on Zp, f

′(x) = 0.

You might think the right correction to the failure of “derivative = 0 ⇒ constant” in
p-adic analysis should be “derivative = 0⇒ locally constant”, but even that has counterex-
amples, like the following.
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Example 5.10. Let f : Zp → Qp by

f

∑
n≥0

anp
n

 =
∑
n≥0

anp
2n

where an ∈ {0, 1, . . . , p−1}. This function, which spreads apart p-adic digits, is not constant
or even locally constant: if |x− y|p = 1/pm then |f(x)− f(y)|p = 1/p2m, so

|f(x)− f(y)|p = |x− y|2p
for all x and y in Zp (it is obvious if x = y and we just calculated it for x 6= y). Thus
|f(x+ h)− f(x)|p = |h|2p, so |(f(x+ h)− f(x))/h|p = |h|p. Letting h→ 0 implies f ′(x) = 0
for all x ∈ Zp even though f is not locally constant anywhere on Zp.

6. A delicate p-adic proof with π

When a geometric series converges, the formula for its value is “universal” in all fields:

|x| < 1 =⇒
∑
n≥0

xn =
1

1− x
.

For example, 2/3 has absolute value less than 1 in R and in Q2, so∑
n≥0

(
2

3

)n
=

1

1− 2/3
= 3 in R and Q2.

The termwise differentiation of series in Theorem 5.3 looks the same in real and p-adic
analysis. For example, if |x| < 1 then∑

n≥0
xn =

1

1− x
=⇒

∑
n≥1

nxn−1 =
1

(1− x)2
=⇒

∑
n≥1

nxn =
x

(1− x)2
.

Thus ∑
n≥1

n2n

3n
=

2/3

(1− 2/3)2
= 6 in R and Q2.

Such “universal” series formulas can give the impression that when an infinite series of
rational numbers converges to a rational number in R and in some Qp, the rational number
in both cases has to be the same. In that light, consider the following p-adic proof of the
irrationality of π.

Theorem 6.1. The real number π is irrational.

Proof. Assume π is rational, so we can write π in reduced form as a/b where a and b are
relatively prime positive integers. Since we know π > 3, π is not of the form 1/b or 2/b, so
a ≥ 3. Thus a has an odd prime factor or a is divisible by 4, so either π ∈ pZp for some
odd prime p or π ∈ 4Z2.

The way we will get information about the real number π is from the relation sin(π) = 0:

(6.1)
∑
k≥0

(−1)k
π2k+1

(2k + 1)!
= 0.

Assuming π is rational, the series on the left side is an infinite series of rational numbers,
and its value is 0.
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Consider now the sine series of a p-adic variable:
∑

k≥0(−1)kx2k+1/(2k+ 1)! for x ∈ Qp.
The proof that the exponential series converges on pZp for p 6= 2 and on 4Z2 for p = 2
applies also to the p-adic sine series (whose terms are just the odd-degree terms in the series
ex, up to sign). If π is rational then it belongs to pZp for an odd prime p or to 4Z2, so there
is a prime p for which the series on the left side of (6.1) converges in Qp and then we can
interpret (6.1) as an equation in Qp for that p.

Since sinx has linear term x, just like ex − 1, the proof of the first part of Theorem 4.5
carries over to the sine series: | sinx|p = |x|p for x ∈ pZp for odd p or x ∈ 4Z2 for p = 2.
Therefore the equation sin(π) = 0 in Qp implies 0 = | sin(π)|p = |π|p, so π = 0. This is a
contradiction, so π is irrational. �

That was slick! Unfortunately it is also wrong. The error is interpreting (6.1) as an
equation in some Qp just because it is valid in R and the left side makes sense in Qp. If
rn ∈ Q and

∑
n≥1 rn converges in both R and some Qp with a rational value in R, this

does not imply the value in Qp is the same number.

Example 6.2. Pick a prime p and consider the rational sequence an = 1/(1+pn) for n ≥ 1.
We have an → 0 in R and an → 1 in Qp. Set r1 = a1 = 1/(1 + p) and rn = an − an−1 for
n ≥ 2, so r1 + r2 + · · ·+ rn = an. Thus

∑
n≥1 rn = 0 in R and

∑
n≥1 rn = 1 in Qp.

Example 9.5 is more concrete example of this phenomenon: the same infinite series of
rational numbers can converge to 8/7 in R and to −8/7 in Q3.

In 1873, Hermite proved e is transcendental by an argument using integrals. In 1905
Hensel [4, pp. 555–557] devised the following incorrect p-adic proof of that fact.

Theorem 6.3. The number e is transcendental.

Proof. The argument will be by contradiction, and requires some familiarity with field
theory and the Eisenstein irreducibility criterion.

Assume e is algebraic over Q, say of degree n. Then for each prime p, e has degree at
most n over Qp. We are going to show (incorrectly) that e has degree p over Qp when
p > 2. Therefore p = [Qp(e) : Qp] ≤ n, so we get a contradiction by choosing p > n, which
we can do since there are infinitely many primes.

For p > 2, ep =
∑

n≥0 p
n/n! = 1 + p

∑
n≥1 p

n−1/n! and pn−1/n! is 1 at n = 1 and it is

in pZp for n ≥ 2 (the reader should check that), so ep = 1 + pu where u ∈ 1 + pZp ⊂ Z×p .
That shows e is a root of Xp − (1 + pu) ∈ Qp[X], so e− 1 is a root of

(6.2) (X + 1)p − (1 + pu) = Xp +

p−1∑
k=1

(
p

k

)
Xk − pu,

which is an Eisenstein polynomial with respect to p (its constant term is divisible by p
exactly once). The proof of the Eisenstein irreducibility criterion at p in Q[X] works in
the same way in Qp[X] (only for the prime p, not for other primes). Therefore (6.2) is
irreducible over Qp, so [Qp(e) : Qp] = [Qp(e− 1) : Qp] = p. Now we get a contradiction by
using p > n. �

The error in the above proof is confusing the meaning of ep in R and in Qp. They both
are written as

∑
n≥0 p

n/n!, so they appear to be the same number, but that is a mistake:

the real and p-adic limits of the finite sums
∑N

n=0 p
n/n! as N → ∞ have no reason to be

equal to each other in any real sense (pun intended).
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7. General power series and analytic functions

So far all of our power series have been centered at the origin. We can also consider power
series centered at other numbers: for α ∈ K, a power series centered at α is an infinite series

(7.1) f(x) =
∑
n≥0

an(x− α)n.

Theorem 7.1. Every power series f(x) in (7.1) has the following properties.

(1) It has a disc of convergence {x ∈ K : |x − α| < R} or {x ∈ K : |x − α| ≤ R},
where R is described by the Cauchy–Hadamard formula in Theorem 3.7 using the
coefficients an from (7.1).

(2) When R > 0, the series is continuous on its disc of convergence and uniformly
continuous on {x ∈ K : |x− α| ≤ r} inside the disc of convergence when r ∈ |K×|.

(3) When R > 0, the series can be differentiated termwise and is infinitely differentiable,

with coefficients given by Taylor’s formula at α: an = f (n)(α)/n!.
(4) Two power series centered at α that converge on a common disc centered at α and

have the same derivative on that disc differ on that disc by a constant.

Proof. Since f(x+α) is a power series centered at 0, proofs reduce to the case α = 0, which
we have already worked out: (1) is Theorem 3.7, (2) is Theorem 3.12 and Corollary 3.14,
(3) is Theorem 5.3 and Corollary 5.6, and (4) is Corollary 5.8. �

The third property above says a power series centered at α has only one choice of coeffi-
cients, based on Taylor’s formula using repeated derivatives. We next show the uniqueness
of the coefficients can be proved by a method that makes no use of differentiation.

Theorem 7.2. If D is a disc in K with positive radius and f : D → K is a function on D
expressible as a power series centered at α ∈ D, then it is so expressible in only one way:
if
∑

n≥0 an(x− α)n =
∑

n≥0 bn(x− α)n for all x ∈ D then an = bn for all n.

Proof. Setting x = α in both series we get a0 = b0. Assume for some N ≥ 1 that an = bn
for 0 ≤ n ≤ N − 1. We want to show aN = bN . For all x ∈ D,∑

n≥0
an(x− α)n =

∑
n≥0

bn(x− α)n =⇒
∑
n≥N

an(x− α)n =
∑
n≥N

bn(x− α)n

=⇒
∑
n≥N

(an − bn)(x− α)n = 0

=⇒ (x− α)N
∑
n≥N

(an − bn)(x− α)n−N = 0.(7.2)

The series
∑

n≥N (an− bn)(x−α)n−N = (aN − bN ) + (aN+1− bN+1)(x−α) + · · · converges
because it’s obvious for x = α while for x 6= α in D and n > N ,

|(an − bn)(x− α)n| → 0 =⇒ |(an − bn)(x− α)n|
|x− α|N

→ 0 =⇒ |(an − bn)(x− α)n−N | → 0.

When x 6= α in D, canceling the factor (x− α)N in (7.2) tells us that∑
n≥N

(an − bn)(x− α)n−N = 0 for x 6= α.
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This is a convergent power series on D that vanishes on D − {α}. A power series is
continuous on its disc of convergence, so the power series must vanish at α too, where its
value is aN − bN . Therefore aN = bN . �

Allowing power series centered at numbers besides 0 opens up an important way to study
the local behavior of a power series: recentering.

Example 7.3. In R,
∑

n≥0 x
n = 1/(1− x) for |x| < 1. For |a| < 1, if |x− a| < |1− a| then

1

1− x
=

1

1− a
1

1− (x− a)/(1− a)
=

1

1− a
∑
n≥0

(
x− a
1− a

)n
=
∑
n≥0

1

(1− a)n+1
(x− a)n,

which has interval of convergence {x ∈ R : |x − a| < |1 − a|} and radius of convergence
|1 − a|. For example, the power series for 1/(1 − x) centered at a = −1/2 has interval of
convergence (−2, 1), not (−1, 1) like the power series for 1/(1− x) centered at a = 0.

Example 7.4. In K,
∑

n≥0 x
n = 1/(1− x) for |x| < 1. For |a| < 1, if |x− a| < |1− a| then

1

1− x
=
∑
n≥0

1

(1− a)n+1
(x− a)n

by the same reasoning as in Example 7.3. The disc of convergence of this power series is
{x ∈ K : |x− a| < |1− a|}. Since |a| < 1, |1− a| = 1 and |x− a| < 1 if and only if |x| < 1,
by the strong triangle inequality, so the power series for 1/(1−x) centered at x = a has the
same disc of converges as the power series for 1/(1− x) centered at 0: the open unit disc.

Theorem 7.5. If f(x) =
∑

n≥0 an(x−α)n in K has disc of convergence D and β ∈ D then

we can write f as a power series centered at β: f(x) =
∑

m≥0 bm(x − β)m where bm ∈ K
and x ∈ D, and this power series centered at β also has disc of convergence D.

Proof. For each x ∈ D,

f(x) =
∑
n≥0

an(x− α)n

=
∑
n≥0

an(x− β + β − α)n

=
∑
n≥0

an

n∑
m=0

(
n

m

)
(x− β)m(β − α)n−m

=
∑
n≥0

∑
m≥0

cmn,

where

cmn =

{(
n
m

)
an(x− β)m(β − α)n−m, if m ≤ n,

0, if m > n.

For m ≤ n, |cmn| ≤ |an|max(|x−β|, |β−α|)n ≤ |an|max(|x−α|, |β−α|)n. Since f converges
at x and at β, both |an||x− α|n and |an||β − α|n tend to 0 as n→∞. Also cmn = 0 when
m > n, so cmn → 0 as max(m,n)→∞. That is sufficient to justify switching the order of
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summation in the double series above:

f(x) =
∑
m≥0

∑
n≥0

cmn

=
∑
m≥0

∑
n≥m

(
n

m

)
an(β − α)n−m

 (x− β)m

=
∑
m≥0

bm(x− β)m,

where

(7.3) bm =
∑
n≥m

(
n

m

)
an(β − α)n−m = am + (m+ 1)am+1(β − α) + · · · ,

which depends on the centers α and β but not on x.
Our computations show that if a power series centered at α has disc of convergence D

in K, then the power series can be recentered at each β in D and this recentered series
converges on all of D. If D′ is the maximal disc of convergence of the recentered series at
β, then we showed D ⊂ D′. Everything we did is symmetric in the roles of α and β: the
recentered series for f at β converging on D′ can be re-recentered to α, and that must be∑

n≥0 an(x− α)n by uniqueness of coefficients. Thus D′ ⊂ D too, so D′ = D. �

The idea of recentering a power series is a basic procedure in real and complex analysis,
because the recentered series will often converge at new points not covered by the original
series, thereby extending the domain of the function. Theorem 7.5 says this idea does not
work in complete nonarchimedean fields: a power series defined on a disc in K can’t have its
domain extended by recentering the series “near the edge of the disc”. There is no actual
edge of a disc in K, since every point in a nonarchimedean disc can be regarded as the
center, and Theorem 7.5 is consistent with that fact in its own weird way.

Theorem 7.6. Let f(x) be a power series converging on a disc D in K centered at 0. If
f(α) = 0 for some α ∈ D then we can factor out x− α: f(x) = (x− α)g(x) where g(x) is
a power series centered at 0 converging on D.

Proof. Recenter the power series for f(x) at α by Theorem 7.5: f(x) =
∑

n≥0 an(x − α)n

on D with a0 = f(α) = 0. Therefore f(x) = (x− α)g(x) where g(x) =
∑

n≥1 an(x− α)n−1.

The power series g(x) converges for each x ∈ D: this is obvious at x = α, and for x 6= α in
D we have |an(x − α)n| → 0 when n → ∞, so |an(x − α)n−1| = |an(x − α)n|/|x − α| → 0
when n→∞.

Although g was constructed as a power series centered at α, since 0 ∈ D we can express
g as a power series centered instead at 0 and the new series converges on D. �

This theorem resembles a property of polynomials: a polynomial vanishing at α can be
written as x − α times another polynomial. The proof of that is purely algebraic, but the
proof of Theorem 7.6 needs care to check the series involved converge and uses recentering,
which depends on being able to interchange the order of a double series.

Thanks to Theorem 7.5, the property of a function being representable as a power series
on a disc in K is independent of the choice of the point in the disc around which the series
is expanded.
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Definition 7.7. A function f : D → K defined on a disc D in K with positive radius is
called analytic if it is a power series centered at a number in D and converging on D. A
p-adic analytic function is an analytic function on a disc in some p-adic field.

Example 7.8. On Qp, the p-adic exponential function is analytic on pZp for p 6= 2 and on
4Z2 for p = 2.

The disc in the definition of an analytic function may have the form {x ∈ K : |x−α| < R}
or {x ∈ K : |x− α| ≤ R}, where R > 0. Both such discs are open and closed subsets of K.

Theorem 7.9. For a disc D in K let f : D → K be analytic. If f(α) = 0 for some α ∈ D
then f(x) = (x− α)g(x) where g : D → K is analytic.

Proof. As in the proof of Theorem 7.6 we can write f as a power series centered at α to
show f(x) = (x−α)g(x) on D where g is a power series centered at α that converges on D.
The power series g is analytic by definition (independent of the choice of center in D). �

Theorem 7.10. When K is a p-adic field, two analytic functions on a common disc in K
that have the same derivative differ by a constant on that disc.

Proof. Let f, g : D → K both be analytic. By Theorem 7.5 we can express them as power
series centered at the same point α in D. Then f ′ = g′ on D implies f (n) = g(n) on D
for all n ≥ 1, so the coefficients of their power series at α are equal in all positive degrees:
f (n)(α)/n! = g(n)(α)/n! for all n ≥ 1. The only difference between the two power series is
in their constant terms (n = 0), so f and g differ on D by a constant. �

Theorem 7.11. If f : D → K is analytic and not identically zero, its zeros in D are
isolated: if f(α) = 0 for an α ∈ D then for an r > 0, f(x) 6= 0 if 0 < |x− α| < r.

Proof. We carry out a more careful version of the proof of Theorem 7.6. Writing f(x) =∑
n≥0 an(x− α)n for x ∈ D, a0 = f(α) = 0 and some an is not 0, since otherwise f would

be identically zero on D. Let aN 6= 0 with N ≥ 1 minimal, so f(x) =
∑

n≥N an(x− α)n =

(x − α)Ng(x) where g(x) =
∑

n≥N an(x − α)n−N . The series g(x) converges for all x ∈ D
by the same reason used in the proof of Theorem 7.6 (there we essentially treated N as 1).

Since g(α) = aN and a power series is continuous on the disc where it converges,
limx→α g(x) = aN 6= 0. Therefore there is a small r > 0 such that |x−α| < r =⇒ g(x) 6= 0.
Then 0 < |x− α| < r =⇒ f(x) = (x− α)Ng(x) 6= 0. �

Corollary 7.12. For a sequence cn ∈ Qp such that the series f(x) =
∑

n≥0 cnx
n converges

on Zp, if the coefficients are not all zero then f has only finitely many zeros in Zp.

Proof. We will prove the contrapositive: if f has infinitely many zeros x1, x2, x3, . . . in Zp
where the xk are distinct then every cn is 0. Since Zp is compact, the sequence {xk} has a
convergent subsequence, say xki → x ∈ Zp. Then f(x) = limi→∞ f(xki) = limi→∞ 0 = 0,
and the zero x is not isolated since it is a limit of the zeros xki . Theorem 7.11 implies
f(x) = 0 for all x ∈ Zp, so all of the power coefficients of f are 0 by uniqueness of those
coefficients (Corollary 3.15 or 5.6). �

Theorems 7.9, 7.10, 7.11, and Corollary 7.12 are all true for real power series converging
on a closed and bounded interval [a, b]. In some cases the proofs are the same, e.g., using
compactness of [a, b] in place of compactness of Zp in Corollary 7.12.

The following corollary shows that the phenomenon of nonconstant power series being
periodic functions, which is well-known in real analysis (e.g., trigonometric functions), can’t
exist in p-adic analysis.
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Corollary 7.13. Let K be a p-adic field and f : D → K be analytic. If f is periodic,
meaning there is a t 6= 0 in K such that f(x) = f(x + t) for all x ∈ D, then f is constant
on D.

Part of the hypothesis is that x ∈ D =⇒ x+ t ∈ D.

Proof. From f(x) = f(x+ t) for all x ∈ D we get f(x) = f(x+nt) for every positive integer
n. In particular, for each x we have f(x) = f(x+ prt), where r ≥ 1.

Fix an x0 ∈ D, so f(x0) = f(x0 + prt) for all r ≥ 1. The function F (x) = f(x)− f(x0) is
a power series on D such that F (x0) = 0 and F (x0 + prt) = 0 for all r ≥ 1. Since prt→ 0
as r → ∞ and t 6= 0, the point x0 is not an isolated zero of F . Therefore F is identically
zero on D by Theorem 7.11, so f is a constant function. �

Remark 7.14. While nonconstant additively periodic functions do not exist over the p-
adics, there are nonconstant multiplicatively periodic functions: f(qx) = f(x) for some q 6= 0
and x ∈ K× with x 6∈ qZ. The point is that a p-adic field K does not have discrete additive
subgroups other than {0}, but the multiplicative group K× has many discrete subgroups,
namely qZ when |q| 6= 1.

8. The p-adic logarithm

In this section K is a p-adic field.
We saw in Example 3.10 that the power series

∑
n≥1(−1)n−1xn/n has disc of convergence

{x ∈ K : |x| < 1}. In real analysis this is the power series for log(1 + x), so we adopt this
notation in K as well.

Definition 8.1. For x ∈ K with |x| < 1, the p-adic logarithm at 1 + x is

log(1 + x) =
∑
n≥1

(−1)n−1
xn

n
= x− x2

2
+
x3

3
− · · · .

Equivalently, for y ∈ K with |y − 1| < 1,

log y =
∑
n≥1

(−1)n−1
(y − 1)n

n
= (y − 1)− (y − 1)2

2
+

(y − 1)3

3
− · · · .

This “log” function does not have a base in K. It is defined by its series.

Example 8.2. The logarithm on Qp has domain 1 + pZp (including when p = 2).

Example 8.3. In Q5 we will compute the first five digits of log 11, so we are seeking log 11
modulo 55. As a series,

log 11 = log(1 + 10) =
∑
n≥1

(−1)n−1
10n

n
.

We know the general term in the series tends to 0, so |(−1)n−110n/n|5 ≤ 1/55 for all large
n, but when does this bound occur and remain true thereafter? The bound is equivalent to
ord5(10n/n) ≥ 5, which says n− ord5(n) ≥ 5. A table suggests this works for n ≥ 6.

n 1 2 3 4 5 6 7 8 9 10
ord5(n) 0 0 0 0 1 0 0 0 0 1

n− ord5(n) 1 2 3 4 4 6 7 8 9 9
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To prove n− ord5(n) ≥ 5 for n ≥ 6 we will work out a lower bound on n− ord5(n) from
an upper bound on ord5(n):

5ord5(n) ≤ n =⇒ ord5(n) ≤ log5(n),

so n−ord5(n) ≥ n−log5(n). By calculus, the function g(x) = x−log5 x on(0,∞) is increasing
for x ≥ 1/ ln 5 ≈ .378, so from g(6) ≈ 4.8 and g(7) ≈ 5.7, we have n − ord5(n) ≥ g(n) ≥ 5
for n ≥ 7. Since also 6− ord5(6) = 6 > 5 we have proved ord5(10n/n) ≥ 5 for n ≥ 6. Thus

log 11 = log(1 + 10) = 10− 102

2
+

103

3
− 104

4
+

105

5
mod 55.

The sum of the first 5 terms in the series is 53380/3 ≡ 255/3 ≡ 85 mod 55, so

log 11 ≡ 85 ≡ 02300 mod 55.

Theorem 8.4. If |x− 1| < 1 in K then log′(x) = 1/x.

Proof. We can write log x as a power series in x− 1, and such series when |x− 1| < 1 can
be differentiated termwise, so

log′(x) =

∑
n≥1

(−1)n−1
(x− 1)n

n

′

=
∑
n≥1

(−1)n−1
n

n
(x− 1)n−1

=
∑
n≥1

(1− x)n−1

=
1

1− (1− x)

=
1

x
. �

The real logarithm sends products to sums: it is a group homomorphism (0,∞) → R.
The p-adic logarithm’s domain {x ∈ K : |x − 1| < 1} is also a multiplicative group: by
the strong triangle inequality, |x − 1| < 1 =⇒ |x| = |(x − 1) + 1| = 1, so |x − 1| < 1
and |y − 1| < 1 imply |xy − 1| = |(x − 1)y + (y − 1)| ≤ max(|x − 1||y|, |y − 1|) < 1 and
|1/x − 1| = |(1 − x)/x| = |1 − x| < 1. The values of the p-adic logarithm are in K, an
additive group. Is the p-adic logarithm a group homomorphism?

Theorem 8.5. If |x−1| < 1 and |y−1| < 1 in a p-adic field K then log(xy) = log x+log y.

Proof. Fix a choice of y. We consider the two expressions log(xy) and log x + log y as
functions of x on the disc {x ∈ K : |x − 1| < 1}. To prove they are equal, look at the
x-derivative of both sides. By Theorem 8.4, (log x + log y)′ = log′(x) = 1/x. By the chain
rule, (log(xy))′ = (1/(xy))y = 1/x.

Since the two derivative formulas match, we expect the functions log(xy) and log x+log y
differ by a constant: log(xy) = log x+ log y+Cy for some Cy ∈ K. Setting x = 1, we would
then see that log y = log y + Cy, so Cy = 0 and thus log(xy) = log x + log y. Since y was
fixed but arbitrary, and x was arbitrary, we have proved the desired identity.

However, this reasoning has a gap. The argument was based on knowing that two p-adic
functions on a disc with the same derivative on that disc differ by a constant, and we have



28 KEITH CONRAD

shown this holds for two functions on a disc represented by power series that meet the
hypotheses of Theorem 7.1(4) or Theorem 7.10. Both log x+log y and log(xy), as functions
of x, have power series expansions:

log x+ log y = log y +
∑
n≥1

(−1)n−1
(x− 1)n

n

and

log(xy) =
∑
n6=1

(−1)n−1
(xy − 1)n

n
=
∑
n6=1

(−1)n−1yn
(x− 1/y)n

n
.

The first series is centered at 1 and the second is centered at 1/y. Both series converge on the
disc D = {x ∈ K : |x−1| < 1}, and D contains 1/y since |1/y−1| = |1−y|/|y| = |1−y| < 1.
Thus log x+ log y and log(xy) are power series in x centered at different points of D (unless
y = 1: a trivial case), so we could use Theorem 7.10. Or by recentering, we can write the
two functions of x as power series on D centered at the same point and then use Theorem
7.1(4) (equality of derivatives does not depend on the center). �

Corollary 8.6. If |x − 1| < 1 in K then log(1/x) = − log x and log(xn) = n log x for all
n ∈ Z.

Proof. Taking the logarithm on both sides of x(1/x) = 1 we get log x+log(1/x) = log(1) = 0,
so log(1/x) = − log x. We get log(xn) = n log x for n ∈ Z+ from Theorem 8.5 by induction.
The equation is trivial for n = 0, and the case n < 0 follows from the case n > 0 since
log(x−n) = log((xn)−1) = − log(xn). �

The p-adic exponential is defined near 0 and the p-adic logarithm is defined near 1. We
saw in Theorem 4.5 that the p-adic exponential is an isometry on the disc where it converges.
The p-adic logarithm is an isometry too, but only on numbers close enough to 1.

Theorem 8.7. If |t− 1| < (1/p)1/(p−1) then | log t| = |t− 1|. If |x− 1| < (1/p)1/(p−1) and

|y − 1| < (1/p)1/(p−1) then | log x− log y| = |x− y|.

Proof. If t = 1 then log t = t− 1 = 0. For 0 < |t− 1| < (1/p)1/(p−1), extract the first term
from the power series for log t:

log t = (t− 1) +
∑
n≥2

(−1)n−1
(t− 1)n

n
.

We will show |(−1)n−1(t−1)n/n| < |t−1| for n ≥ 2. Then |t−1+
∑N

n=2(−1)n−1(t−1)n/n| =
|t− 1| for N ≥ 2, and letting N →∞ we get | log t| = |t− 1|.

The condition |(−1)n−1(t− 1)n/n| < |t− 1| is equivalent to |t− 1|n−1 < |n| = |n|p, which
for n ≥ 2 says

(8.1) |t− 1| < |n|1/(n−1)p .

Why is this inequality true? Since |t− 1| < (1/p)1/(p−1), we can verify (8.1) by showing(
1

p

)1/(p−1)
≤ |n|1/(n−1)p .

It is left to the reader to check this inequality holds for all n ≥ 2 (and equality occurs if
and only if n = p). This completes the proof of the first part.
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To show | log x − log y| = |x − y|, rewrite | log x − log y| as | log(x/y)| by Corollary 8.6.
To apply the first part to | log(x/y)|, we check∣∣∣∣xy − 1

∣∣∣∣ =
|x− y|
|y|

= |x− y| ≤ max(|x− 1|, |y − 1|) <
(

1

p

)1/(p−1)
.

Therefore | log(x/y)| = |x/y − 1| = |x− y|/|y| = |x− y|. �

Recall the disc Dp in (4.1).

Corollary 8.8. The logarithm is injective on {x ∈ K : |x− 1| < (1/p)1/(p−1)} = 1 +Dp.

Proof. If log x = log y for x and y in 1 +Dp then |x− y| = | log x− log y| = 0, so x = y. �

Example 8.9. For prime p 6= 2,

{x ∈ Qp : |x− 1|p < (1/p)1/(p−1)} = {x ∈ Qp : |x− 1|p ≤ 1/p} = 1 + pZp,

which is the full domain on which the p-adic logarithm is defined in Qp. Thus the logarithm
on 1 + pZp is injective and an isometry here: | log x− log y|p = |x− y|p. Its image is in pZp
since | log x|p = |x− 1|p ≤ 1/p.

For p = 2,

{x ∈ Q2 : |x− 1|2 < (1/2)} = {x ∈ Q2 : |x− 1|2 ≤ 1/4} = 1 + 4Z2,

so the 2-adic logarithm is injective and an isometry on 1 + 4Z2, with image in 4Z2. The
set 1 + 4Z2 is not the whole domain for the 2-adic log, whose power series converges on
1 + 2Z2. It turns out that on 1 + 2Z2 the logarithm is not an isometry or injective. The
reason is explained most easily with −1. Since −1 ∈ 1 + 2Z2 and (−1)2 = 1, taking the
logarithm of both sides shows 2 log(−1) = log(1) = 0 by Theorem 8.5, so log(−1) = 0.
Hence log(−1) = log(1) even though −1 6= 1. More generally, log(−a) = log a for all
a ∈ 1 + 2Z2. So if a ≡ 3 mod 4 then | log a|2 = | log(−a)|2 = | − a − 1|2 = |a + 1|2 since
−a ≡ 1 mod 4.

Example 8.10. The 2-adic equation log(−1) = 0, which says log(1− 2) = 0, is equivalent
to ∑

n≥1
(−1)n−1

(−2)n

n
= −

∑
n≥1

2n

n
= 0,

so in Q2

(8.2)
∑
n≥1

2n

n
= 0.

Using the partial sums s(n) = 2 + 22/2 + 23/3 + · · · + 2n/n, (8.2) says ord2(s(n)) → ∞
as n→∞. In the table below, the 2-adic valuations of ord2(s(n)) grow irregularly.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
ord2(s(n)) 1 2 2 5 8 5 5 13 9 10 10 12 12 12 12 22 17 18

Since ord2(s(n)) doesn’t directly mention 2-adic logarithms, it’s natural to ask whether
we can prove ord2(s(n))→∞ as n→∞ without using 2-adic logarithms. This can be done.
See the accepted answer at https://math.stackexchange.com/questions/2816184. The

idea is to show when n is even that
∑n

k=1 2k/k is n times a 2-adic integer, so
∑2m

k=1 2k/k

when m ≥ 1 is 2m times a 2-adic integer. Thus
∑2m

k=1 2k/k → 0 in Z2 as m → ∞, so the

series
∑

k≥1 2k/k has a subsequence among its partial sums that tends to 0. Since the whole

https://math.stackexchange.com/questions/2816184
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series converges in Q2, it equals every limit taken along a subsequence of its partial sums,
and thus the whole series is 0.

Based on a lot of numerical data, that ord2(s(n))→∞ as n→∞ appears to be express-
ible as the following lower bound.

Conjecture 8.11. When 2r ≤ n < 2r+1, ord2(s(n)) ≥ n − r, with equality if and only if
n = 2r+1 − 1.

Here is a corresponding upper bound based on numerical data.

Conjecture 8.12. When 2r ≤ n < 2r+1, ord2(s(n)) ≤ n + 2r − 2 except at n = 8, and
there is equality if n = 2r except if n is 4 or 8.

In Conjecture 8.12 we write “if” rather than “if and only if” since sometimes ord2(s(n)) =
n+ 2r − 2 when n is not a power of 2: it holds at n = 40 and n = 296.

Rewriting 2r ≤ n < 2r+1 as r ≤ log2 n < r + 1 (where log2 is the high school base-2
logarithm), the bounds in Conjectures 8.11 and 8.12 say

n− blog2 nc ≤ ord2(s(n)) ≤ n+ 2blog2 nc − 2

for all n ≥ 1 except when n = 8 in the upper bound.
Returning to general primes, the p-adic exponential and logarithm are continuous homo-

morphisms exp: pZp → 1 + pZp and log : 1 + pZp → pZp for p 6= 2 and exp: 4Z2 → 1 + 4Z2

and log : 1+4Z2 → 4Z2 for p = 2. We will show next that these are inverse functions. More
generally, on a p-adic field these functions are inverses on the discs where we proved they
are isometries.

Theorem 8.13. The functions exp: Dp → 1 + Dp and log : 1 + Dp → Dp are inverses,

where Dp = {x ∈ K : |x| < (1/p)1/(p−1)}.
Before getting into the proof of Theorem 8.13, some comments are in order to get the

right perspective about the result and its proof.
You might think the proof should be easy using derivatives. After all, setting f(x) =

log(ex), we have by the chain rule that f ′(x) = (log′(ex))(ex)′ = (1/ex)(ex) = 1, so f has
constant derivative 1. That means f(x) = x + c for some constant c. Then we can find c
by setting x = 0: f(0) = log(e0) = log(1) = 0, so c is 0 and f(x) = x, i.e., log(ex) = x,
right? This is how a proof in real analysis could go. But such reasoning in p-adic analysis
has a gap: why must a function with derivative 1 be linear? Recall by Example 5.9 that not
all functions Zp → Qp with derivative 0 have to be constant! We know that on a disc in
a p-adic field, an analytic function on the disc with derivative 1 must have the form x+ c,
since the derivative determines the function up to an additive constant. But that begs the
question: why is log(ex) analytic? That log x and ex are each analytic is not good enough:
the composition of analytic functions does not have to be analytic!

Example 8.14. Consider the 2-adic exponential and logarithm. Both log : 1 + 2Z2 → Q2

and exp: 4Z2 → Q2 are analytic (each is a power series on a disc). Since 1+2Z2 = ±(1+4Z2)
and log(−1) = 0, we have log(1 + 2Z2) = log(1 + 4Z2) ⊂ 4Z2. Also exp(4Z2) ⊂ 1 + 4Z2, so
if for x ∈ 1 + 2Z2 we set h(x) = elog x then h(1 + 2Z2) ⊂ 1 + 4Z2. Therefore we can’t have
h(x) = x for x ∈ 1 + 2Z2 with x 6∈ 1 + 4Z2. (We know it’s false at x = −1!) In fact it turns
out that for x ∈ 1 + 2Z2,

elog x =

{
x, if x ≡ 1 mod 4,

−x if x ≡ 3 mod 4.
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This composite of analytic functions is not an analytic function since it is not given by a
single power series on 1 + 2Z2.

There is a theorem giving general conditions under which a formal composition of power
series h(X) = f(g(X)) satisfies the numerical identity h(x) = f(g(x)) for x in the domain
of convergence of g(X). (See [2, pp. 99-101] for p-adic power series and [6, pp. 180-181] for
real power series; the real case uses hypotheses of absolute convergence.) The only instance
of composition of power series that we will use is for the p-adic exponential and logarithm,
so we will bypass proving a general theorem justifying formal-to-numerical composition
and give instead a proof tailor-made to the p-adic exponential and logarithm series. The
following proof of Theorem 8.13 can be safely skipped and returned to later.

Proof. Since expx is an isometry on Dp and log x is an isometry on 1 + Dp, we know
exp(Dp) ⊂ 1 +Dp and log(1 +Dp) ⊂ Dp. Therefore it makes sense to ask if log(ex) = x for

all x ∈ Dp and if elog y = y for all y in 1 +Dp.

If we prove log(ex) = x for all x ∈ Dp or elog y = y for all y ∈ 1 + Dp then the other
follows. For example, if log(ex) = x for all x ∈ Dp then for y ∈ 1 + Dp set x = log y ∈ Dp

and thus log(elog y) = log y. Both elog y and y are in 1 +Dp and log is injective on this disc

since it is an isometry there, so from log(elog y) = log y on 1+Dp we get elog y = y on 1+Dp.
We will now prove log(ex) = x for x ∈ Dp. From now on, x always runs over Dp.
The formula log(ex) =

∑
n≥1(−1)n−1(ex − 1)n/n, is not directly a power series in x, but

rather in ex − 1. For N ≥ 1, define the truncated log polynomial

LN (T ) =
N∑
n=1

(−1)n−1

n
Tn = T − 1

2
T 2 + · · ·+ (−1)N−1

N
TN .

For y ∈ 1 + Dp, LN (y − 1) → log y as N → ∞. When x ∈ Dp and we set y = ex, we get
LN (ex − 1)→ log(ex). We will now prove that LN (ex − 1)→ x as N →∞, so log(ex) = x.

Since LN (ex−1) is a polynomial in ex−1, it is a finite sum of powers of analytic functions
on Dp and therefore it is analytic on Dp (Theorem 3.1). Let the expansion of LN (ex − 1)
as a power series in x have coefficients cm,N for m ≥ 0: for x ∈ Dp,

(8.3) LN (ex − 1) =

N∑
n=1

(−1)n−1

n
(ex − 1)n =

∑
m≥0

cm,Nx
m.

We want to understand what is happening to the coefficients cm,N as N grows.
Because ex − 1 = x + x2/2! + · · · has constant term 0 and first term x, (ex − 1)n is a

power series in x with first term xn. Therefore the expression of

LN (ex − 1) = (ex − 1)− (ex − 1)2

2
+ · · ·+ (−1)N−1

(ex − 1)N

N

as a polynomial in ex − 1 shows c0,N = 0 and c1,N = 1, so

(8.4) LN (ex − 1) = x+
∑
m≥2

cm,Nx
m.

We will use derivatives to show cm,N = 0 for 2 ≤ m ≤ N . (Since LN (ex − 1) → log(ex)
as N → ∞, and anticipating that log(ex) = x, we should expect in (8.4) that many of the
cm,N ’s for m ≥ 2 should vanish as N grows.)
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Differentiate LN (ex − 1) as a function of x. Since LN (T ) is a polynomial, the rules of
differential calculus (basically the chain rule) tell us that for x ∈ Dp,

(LN (ex − 1))′ = L′N (ex − 1)(ex − 1)′ = L′N (ex − 1)ex.

Since LN (T ) has derivative
∑N

n=1(−1)n−1Tn−1,

L′N (ex − 1)ex =
N∑
n=1

(−1)n−1(ex − 1)n−1ex

=
N∑
n=1

(1− ex)n−1ex

=
1− (1− ex)N

1− (1− ex)
ex

= 1− (1− ex)N .

The power series for 1− ex starts with −x, so 1− (1− ex)N = 1 + (−1)N+1xN + · · · , which
has no terms in degrees 1 through N − 1. By (8.3), (LN (ex − 1))′ =

∑
m≥1mcm,Nx

m−1.

Therefore by uniqueness of coefficients in power series expansions (Corollary 3.15 or 5.6), the
coefficients of

∑
m≥1mcm,Nx

m−1 are 0 for 1 ≤ m− 1 ≤ N − 1, so cm,N = 0 for 2 ≤ m ≤ N .

Feeding this into (8.4),

(8.5) LN (ex − 1) = x+
∑

m≥N+1

cm,Nx
m.

Now we compute 1− (1− ex)N as a power series more explicitly:

1− (1− ex)N = 1−
N∑
k=0

(
N

k

)
(−ex)k

=

N∑
k=1

(
N

k

)
(−1)k+1ekx by Theorem 4.4

=
N∑
k=1

(
N

k

)
(−1)k+1

∑
m≥0

km

m!
xm.

We can interchange the order of summation since the sum of finitely many convergent series
can always be added termwise (you could apply Theorem 3.1 if you wish). Then

1− (1− ex)N =
∑
m≥0

(
N∑
k=1

(
N

k

)
(−1)k+1km

)
xm

m!
=
∑
m≥0

bm,N
xm

m!
,

where bm,N is an integer. Since (LN (ex − 1))′ = 1 − (1 − ex)N , and power series in x
have uniquely determined coefficients, equating coefficients of xm−1 on both sides gives us
mcm,N = bm−1,N/(m − 1)! for m ≥ 1. Therefore when m ≥ 1, cm,N = bm−1,N/m! is an
integer divided by m!. Place this formula for cm,N into (8.5):

LN (ex − 1) = x+
∑

m≥N+1

bm−1,N
m!

xm.
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Subtract x and estimate:

|LN (ex − 1)− x| ≤ max
m≥N+1

∣∣∣∣bm−1,Nm!
xm
∣∣∣∣ ≤ max

m≥N+1

∣∣∣∣xmm!

∣∣∣∣ ,
where in the last estimate we used the fact that bm−1,N is an integer. Because x ∈ Dp,
xm/m! → 0 as m → ∞ from convergence of the p-adic exponential series at x. Therefore
our upper bound on |LN (ex− 1)−x| tends to 0 as N →∞, so LN (ex− 1)→ x as N →∞.
We already saw at the start that LN (ex − 1) → log(ex) as N → ∞, so log(ex) = x by
uniqueness of limits. �

Example 8.15. For p odd, ex is an isomorphism from pZp onto 1 + pZp with inverse log y.

These isomorphisms are isometries, so ex maps pkZp onto 1 + pkZp if k ≥ 1. For p = 2, ex

is an isomorphism from 4Z2 onto 1 + 4Z2, and the image of 2kZ2 under ex is 1 + 2kZ2 if
k ≥ 2.

In R the exponential function with its infinite radius of convergence defines a global group
isomorphism from all of R to the positive reals (0,∞). In the p-adic world, the exponential
function sets up a local group isomorphism between a neighborhood of 0 (additive) and a
neighborhood of 1 (multiplicative).

Example 8.16. We saw in Example 8.3 that in Q5, log 11 ≡ 85 mod 55. Since the 5-adic
exponential is an isometry 5Z5 → 1 + 5Z5, we must have e85 ≡ 11 mod 55. Let’s check. As
a series, e85 =

∑
n≥0 85n/n!. The reader should check that 85n/n! ≡ 0 mod 55 for n ≥ 6, so

e85 ≡ 1 + 85 +
852

2
+

853

6
+

854

24
+

855

5!
mod 55

≡ 1 + 85 + 2050 + 2875 + 2500 + 1875 mod 55

≡ 11 mod 55.

9. Power series and root extractions

In this section we look at the p-adic version of power series for power functions.
One of Newton’s great discoveries was the extension of the binomial theorem from integral

to real exponents:

(1 + x)t =
∑
n≥0

(
t

n

)
xn = 1 + tx+

(
t

2

)
x2 + · · ·

for t ∈ R, which is absolutely convergent for |x| < 1 in R.4 In particular, taking t = 1/m
for m ∈ Z+,

(9.1) (1 + x)1/m =
∑
n≥0

(
1/m

n

)
xn

is m
√

1 + x, the positive real mth root of 1 + x, when −1 < x < 1.
We will look at Newton’s binomial series for p-adic x and p-adic integer exponents t, and

in particular show when t = 1/m that the mth root series (9.1) describes p-adic mth roots,
but it might not converge to the mth root you’d expect.

Theorem 9.1. For t ∈ Zp, the series
∑

n≥0
(
t
n

)
xn converges for |x|p < 1.

4For x = ±1 the series converges for some t, and of course it converges for all x when t ∈ Z+ since then
the series is a polynomial.



34 KEITH CONRAD

Proof. The binomial coefficients
(
t
n

)
are all in Zp: we can write t = limk→∞ tk where tk ∈ Z+

(e.g., tk is the kth truncation of the p-adic expansion of t), so
(
t
n

)
= limk→∞

(
tk
n

)
for each

n since
(
x
n

)
is a polynomial in x (of degree n) and polynomials are p-adically continuous.

Each
(
tk
n

)
is a positive integer by combinatorics if tk ≥ n and is 0 if 0 ≤ tk < n, so

(
t
n

)
is a

p-adic limit of integers and thus is a p-adic integer.
Since |

(
t
n

)
|p ≤ 1 for all n, the power series

∑
n≥0

(
t
n

)
xn converges when |x|p < 1.5 �

Definition 9.2. For t ∈ Zp and |x|p < 1, define (1 + x)t :=
∑

n≥0
(
t
n

)
xn.

When t is a positive integer, the series
∑

n≥0
(
t
n

)
xn is a polynomial and equals the t-th

power of 1+x by the binomial theorem. We want to justify the notation (1+x)t as a power
for other exponents t, particularly when t is a rational number in Zp.

Theorem 9.3. For t and t′ in Zp, and |x|p < 1, (1 + x)t(1 + x)t
′

= (1 + x)t+t
′
.

Proof. By Theorem 3.1,

(1 + x)t(1 + x)t
′

=
∑
n≥0

(
t

n

)
xn
∑
n≥0

(
t′

n

)
xn =

∑
n≥0

(
n∑
k=0

(
t

k

)(
t′

n− k

))
xn.

The coefficient here of xn equals
(
t+t′

n

)
as a special case of the polynomial identity in X and

Y called Vandermonde convolution:

(9.2)

(
X + Y

n

)
=

n∑
k=0

(
X

k

)(
Y

n− k

)
.

Thus (1 + x)t(1 + x)t
′

= (1 + x)t+t
′
. �

Corollary 9.4. If m is a positive integer not divisible by p and x ∈ pZp then the series

(1 + x)1/m :=
∑

n≥0
(
1/m
n

)
xn equals the unique mth root of 1 + x in 1 + pZp.

Proof. Since m is not divisible by p, Hensel’s lemma for the polynomial Tm − (1 + x) with
approximate root 1 shows 1 + x has a unique mth root in 1 + pZp. We want to show this

mth root is the series
∑

n≥0
(
1/m
n

)
xn.

Since 1/m ∈ Zp, for n ≥ 1 we have |
(
1/m
n

)
xn|p ≤ |x|p < 1, so

∑
n≥0

(
1/m
n

)
xn ≡ 1 mod p.

By Theorem 9.3, the mth power of the series (1 + x)1/m is

(1 + x)

m times︷ ︸︸ ︷
1/m+ · · ·+ 1/m = (1 + x)1 = 1 + x,

so
∑

n≥0
(
1/m
n

)
xn is the unique mth root of 1 + x that lies in 1 + pZp. �

Example 9.5. Let’s look at square roots. If p 6= 2 and x ∈ 1 + pZp, the infinite series∑
n≥0

(
1/2

n

)
xn

5For t ∈ Zp with t 6∈ N,
(
t
n

)
∈ Z×p infinitely often: if t =

∑
k≥0 akp

k then
(

t
pk

)
≡ ak mod p for all k, and

1 ≤ ak ≤ p− 1 infinitely often. So the disc of convergence of the series (1 + x)t is the open unit disc.
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is the unique square root of 1+x in 1+pZp. In Q3 and Q5 for instance,
∑

n≥0
(
1/2
n

)
(15/49)n

is a square root of 1+15/49 = 64/49 = (8/7)2, so the series is ±8/7. Since −8/7 ≡ 1 mod 3
and −8/7 ≡ 1 mod 5,

∑
n≥0

(
1/2

n

)(
15

49

)n
= −8

7

in Q3 and Q5. All terms in this series are rational, and the same series converges in R to
the positive square root of (8/7)2, which is 8/7. This is a concrete example of an infinite
series of rational numbers having different rational values in R and Q3.

Example 9.6. In Q19,
∑

n≥0
(
1/3
n

)
(19/8)n is a cube root of 1 + 19/8 = 27/8 = (3/2)3

and is not 3/2 since 3/2 6≡ 1 mod 19. The cube roots of unity in Q19 are the Teichmüller
representatives 1, ω(7), and ω(11). Since (3/2)7 ≡ 1 mod 19, the series has value (3/2)ω(7)
in Q19. The series does not converge in R.

Remark 9.7. In Q2,
∑

n≥0
(
1/2
n

)
xn does not converge on all of 2Z2 since 1/2 6∈ Z2:

(
1/2
n

)
is not a 2-adic integer for n ≥ 1, and in fact |

(
1/2
n

)
|2 = |1/2|n2/|n!|2 = 22n−s2(n). The series

converges on 8Z2, where it equals the square root of 1 + x that is ≡ 1 mod 4. For example,∑
n≥0

(
1/2
n

)
8n is a square root of 1 + 8 = 9 = 32, and its value is −3 since −3 ≡ 1 mod 4.

More generally, if t ∈ Qp − Zp, so |t|p > 1, then |
(
t
n

)
|p = |t|np/|n!|p and

∑
n≥0

(
t
n

)
xn

converges if and only if |x|p < (1/|t|p)(1/p)1/(p−1).

To relate (1 + x)t to integral powers of 1 + x when t ∈ Zp, we’ll show it depends contin-
uously on t.

Theorem 9.8. If x ∈ pZp and t and t′ are in Zp then |(1 + x)t − (1 + x)t
′ |p ≤ |t− t′|p|x|p.

Proof. The constant terms of the series (1 + x)t and (1 + x)t
′

are both 1, so

(1 + x)t − (1 + x)t
′

=
∑
n≥1

((
t

n

)
−
(
t′

n

))
xn

=⇒ |(1 + x)t − (1 + x)t
′ |p ≤ max

n≥1

∣∣∣∣( tn
)
−
(
t′

n

)∣∣∣∣
p

|x|np .

Set δ = t− t′, so by the Vandermonde identity (9.2)

(
t

n

)
=

(
t′ + δ

n

)
=

n∑
k=0

(
t′

k

)(
δ

n− k

)
=

n−1∑
k=0

(
t′

k

)(
δ

n− k

)
+

(
t′

n

)
.
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Using the identity
(
X
m

)
= X

m

(
X−1
m−1

)
for m ≥ 1,(

t

n

)
−
(
t′

n

)
=

n−1∑
k=0

(
t′

k

)
δ

n− k

(
δ − 1

n− k − 1

)
=⇒

∣∣∣∣( tn
)
−
(
t′

n

)∣∣∣∣
p

≤ max
0≤k≤n−1

|δ|p
|n− k|p

= |δ|p max

(
1

|1|p
,

1

|2|p
, . . . ,

1

|n|p

)
=⇒

∣∣∣∣(( tn
)
−
(
t′

n

))
xn
∣∣∣∣
p

≤ |δ|p max
1≤k≤n

|x|np
|k|p

≤ |δ|p max
1≤k≤n

|x|kp
|k|p

since |x|p < 1

= |t− t′|p max
1≤k≤n

∣∣∣∣xkk
∣∣∣∣
p

.

By the proof of Theorem 8.7, |xk/k|p < |x|p for k ≥ 2 if |x|p < (1/p)1/(p−1). Similar

reasoning shows |xk/k|p ≤ |x|p for k ≥ 1 if |x|p ≤ (1/p)1/(p−1), so for x ∈ pZp we have

|xk/k|p ≤ |x|p for k ≥ 1, and thus∣∣∣∣(( tn
)
−
(
t′

n

))
xn
∣∣∣∣
p

≤ |t− t′|p max
1≤k≤n

∣∣∣∣xkk
∣∣∣∣
p

≤ |t− t′|p|x|p. �

Corollary 9.9. If t ∈ Zp and {tk} ⊂ Z+ satisfies tk → t as k → ∞, then for x ∈ pZp,
(1 + x)tk → (1 + x)t as k →∞. Thus (1 + x)t is a p-adic limit of integral powers of 1 + x.

Proof. By Theorem 9.8, |(1+x)t−(1+x)tk |p ≤ |t−tk|p|x|p ≤ |t−tk|p, and |t−tk|p → 0. �

10. Strassmann’s theorem

What we have done so far with p-adic power series has been motivated by the real
case. Weird things happen, like ex having a finite p-adic radius of convergence, but p-
adic power series are broadly similar to real power series (radius of convergence, termwise
differentiability, etc.) In this section we will meet a phenomenon without an analogue in
real analysis: a way to bound the number of roots of a p-adic power series based on the
sizes of its coefficients.

Our focus will be on power series
∑

n≥0 anx
n over K that converge on the closed unit

disc {x ∈ K : |x| ≤ 1}. This convergence is equivalent to an → 0 (check convergence at
1). Taking K = Qp, for instance, Theorem 7.12 tells us that a series over Qp converging
on Zp that is not identically zero has finitely many zeros in Zp. That finiteness comes from
compactness of Zp and is purely qualitative. We will make the finiteness quantitative by
deriving an upper bound on the number of those zeros using a theorem of Strassmann from
1928.

When a power series f(x) =
∑

n≥0 anx
n with an ∈ K has an → 0 and the an’s are not

all 0, the numbers |an| have a positive maximum and there is a last time the maximum
occurs. The index farthest into the series with a coefficient of maximal absolute value will
be denoted N(f). That is,

N(f) = max{N ≥ 0 : |an| ≤ |aN | for all n ≥ 0}.
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For the power series f whose coefficients are all 0, N(f) is not defined.

Theorem 10.1 (Strassmann [8]). Let an → 0 in K and set f(x) =
∑

n≥0 anx
n for x ∈ K

with |x| ≤ 1. If the coefficients an are not all zero then f(x) = 0 for at most N(f) numbers
in the closed unit disc of K.

We can apply this to polynomials, which are power series with finitely many terms.

Example 10.2. By algebra, f(X) = 1 + pX +X2 + pX5 has at most 5 zeros in Qp. Since
N(f) = 2, Strassmann’s theorem tells us f(X) has at most 2 zeros in Zp. The true number of
zeros in Zp is 0 if p = 2 (a ∈ Z2 ⇒ f(a) ≡ 1, 2 mod 4) or p = 3 (a ∈ Z3 ⇒ f(a) ≡ 1, 2 mod 3)
and 2 if p = 5 (use Hensel’s lemma with a = 2 and a = 3).

Example 10.3. Over Qp, f(X) = 1 +X + pX2 has N(f) = 1 and thus at most 1 zero in
Zp. There is a zero in Zp from Hensel’s lemma with approximate root −1. The second root
of f(X) in Qp lies outside Zp.

Example 10.4. Strassmann’s theorem provides a second proof that the p-adic exponential
function is injective on pZp for p 6= 2. View ex on pZp as epx on Zp. The power series
epx =

∑
n≥0(p

n/n!)xn has coefficients pn/n! that tend to 0. For each y ∈ Zp set fy(x) =

epx − epy = (1− epy) + px+
∑

n≥2(p
n/n!)xn for x ∈ Zp. Since |epy − 1|p ≤ maxn≥1 |pn/n!|p

when |y|p ≤ 1 and |pn/n!|p < 1/p for n ≥ 2 by the proof of Theorem 4.5, N(fy) = 1. An
obvious solution to fy(x) = 0 is x = y, so by Strassmann’s theorem the only solution of
epx = epy for x ∈ Zp is x = y. A similar argument shows ex on 4Z2 is injective.

Strassmann’s theorem can be regarded as an analogue for nonarchimedean power series of
bounding the number of roots of a polynomial over a field by the degree of the polynomial.
In the polynomial theorem the key idea is to factor out x−α if α is a root, which lowers the
degree of the polynomial by one, and the proof of Strassmann’s theorem will have a step
just like this where the value of N(f) drops by one after removing a factor corresponding
to a root (if one exists). When dealing with power series rather than polynomials we have
to be a little more careful at the factoring step, but we have actually done most of that step
already in Theorem 7.6.

Proof. To prove Theorem 10.1 we will use induction on N(f).
When N(f) = 0, |an| < |a0| for all n ≥ 1, so a0 6= 0 and maxn≥1 |an| < |a0| because the

an’s tend to 0. For x ∈ K with |x| ≤ 1,∣∣∣∣∣∣
∑
n≥1

anx
n

∣∣∣∣∣∣ ≤ max
n≥1
|anxn| ≤ max

n≥1
|an| < |a0|,

so by the strong triangle inequality |f(x)| = |a0 +
∑

n≥1 anx
n| = |a0| > 0. Thus f has no

zero in the closed unit disc of K.
Suppose N ≥ 1 and the theorem is proved for all power series g(x) over K converging on

the closed unit disc of K with N(g) < N . If N(f) = N and f has no zero in the closed unit
disc of K then we are done (0 < N). If f has a zero α ∈ K with |α| ≤ 1, then we will show

(10.1) f(x) = (x− α)g(x)

for a power series g converging on the closed unit disc of K and N(g) = N(f)− 1 = N − 1,
so by induction g has at most N − 1 zeros in the closed unit disc of K. Then by (10.1), for
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x ∈ K with |x| ≤ 1 we have f(x) = 0 if and only if x = α or g(x) = 0, so the number of
zeros of f in the closed unit disc of K is at most 1 + (N − 1) = N .

One way to prove (10.1) is that it follows directly from Theorem 7.6. For a second way,

f(x) = f(x)− f(α)

=
∑
k≥1

ak(x
k − αk)

= (x− α)
∑
k≥1

ak(x
k−1 + xk−1α+ . . .+ xαk−2 + αk−1)

= (x− α)
∑
k≥1

k−1∑
n=0

akx
nαk−1−n

= (x− α)
∑
k≥1

∑
n≥0

ckn,(10.2)

where ckn = akx
nαk−1−n for n ≤ k − 1 and ckn = 0 for n ≥ k. If n ≤ k − 1 then

|ckn| = |akxnαk−1−n| ≤ |ak| since |x|, |α| ≤ 1, and if n > k then |ckn| = 0. Since ak → 0 in
K as k → ∞, we get ckn → 0 as max(n, k) → 0, so we can swap the order of the sums in
(10.2) by Theorem 2.9:

f(x) = (x− α)
∑
n≥0

∑
k≥1

ckn

= (x− α)
∑
n≥0

∑
k>n

ckn since ckn = 0 for k ≤ n

= (x− α)
∑
n≥0

∑
k≥n+1

akx
nαk−1−n by the definition of ckn

= (x− α)
∑
n≥0

 ∑
k≥n+1

akα
k−n−1

xn

= (x− α)g(x),

where g(x) =
∑

n≥0 bnx
n with

(10.3) bn =
∑

k≥n+1

akα
k−n−1 =

∑
k≥1

an+kα
k−1,

Then |bn| ≤ maxk≥n+1 |ak|, so from ak → 0 in K as k →∞ we get bn → 0 in K as n→∞.
Thus g(x) is a power series converging on the closed unit disc of K and (10.1) holds.

It remains to prove N(g) = N − 1. Writing g(x) =
∑

n≥0 bnx
n to retain the notation

above, proving N(g) = N − 1 means proving

(10.4) |bn| ≤ |bN−1| for all n, |bn| < |bN−1| for n ≥ N.

We will do this in two ways, both of which involve showing |bN−1| = |aN | too.
Method 1 (Power series formula for bn) Using the definition of bn in (10.3) as a power

series in α, where |α| ≤ 1,

|bn| ≤ max
k≥n+1

|ak| ≤ |aN |
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for all n. Since bN−1 = aN +aN+1α+aN+2α
2+ · · · and |aN+jα

j | ≤ |aN+j | < |aN | for j ≥ 1,
we have |bN−1| = |aN |. Thus |bn| among all n is maximized at n = N − 1. For n ≥ N ,
|bn| ≤ maxk≥n+1 |ak| ≤ maxk≥N+1 |ak| < |aN | = |bN−1|, so |bn| among all n is maximized
for the last time at n = N − 1. Thus N(g) = N − 1.

Method 2 (Recentering). We can use the formula for recentered coefficients in (7.3)
twice to express the coefficients of g in terms of the coefficients of f in (10.1). Recentering

f from 0 to α, f(x) =
∑

n≥0 anx
n =

∑
n≥0 cn(x − α)n where cn =

∑
k≥n

(
k
n

)
ak(α − 0)k−n.

Then c0 =
∑

k≥0 akα
k = f(α) = 0 (as expected) so

f(x) = (x− α)
∑
n≥1

cn(x− α)n−1 = (x− α)
∑
n≥0

cn+1(x− α)n.

Thus g(x) =
∑

n≥0 cn+1(x−α)n =
∑

n≥0 bnx
n where we recenter g from α to 0, so by (7.3)

bn =
∑
`≥n

(
`

n

)
c`+1(0− α)`−n

=
∑
`≥n

(
`

n

) ∑
k≥`+1

(
k

`+ 1

)
akα

k−(`+1)

 (−α)`−n

=
∑
`≥n

∑
k≥`+1

(
`

n

)(
k

`+ 1

)
ak(−1)`−nαk−1−n

=
∑
`≥0

∑
k≥0

d`k,

where d`k =
(
`
n

)(
k
`+1

)
ak(−1)`−nαk−1−n if ` ≥ n and k ≥ ` + 1, and d`k = 0 otherwise. We

want to change the order of this double series, which by Theorem 2.9 is justified if d`k → 0
as max(k, `)→∞.

We have |d`k| ≤ |ak|, since this is clear from the formula defining d`k if ` ≥ n and k > `,
and it’s also clear in the other cases since d`k = 0. From |ak| → 0 as k →∞ we get |d`k| → 0
as max(k, `)→∞ (the only interesting case is when ` < k, as d`k = 0 otherwise), so we can
exchange the order of the double series:

bn =
∑
k≥0

∑
`≥0

d`k

=
∑

k≥n+1

k−1∑
`=n

(
`

n

)(
k

`+ 1

)
ak(−1)`−nαk−1−n

=
∑

k≥n+1

(
k−1∑
`=n

(
`

n

)(
k

`+ 1

)
(−1)`−n

)
akα

k−1−n.(10.5)

The finite sum in parentheses is an integer, so of absolute value at most 1. Also |α| ≤ 1, so
|bn| ≤ maxk≥n+1 |ak| ≤ |aN | for all n. We will next prove |bN−1| = |aN | and |bn| < |aN | for
n ≥ N .
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The first term in (10.5) at k = n + 1 is
∑n

`=n

(
`
n

)(
n+1
`+1

)
(−1)`−nan+1α

(n+1)−1−n = an+1,
so at n = N − 1,

bN−1 = aN +
∑

k≥N+1

(
k−1∑

`=N−1

(
`

N − 1

)(
k

`+ 1

)
(−1)`−(N−1)

)
akα

k−1−(N−1).

Since |ak| < |aN | when k ≥ N + 1, by the strong triangle inequality |bN−1| = |aN |. If
n ≥ N then |bn| ≤ maxk≥N+1 |ak| < |aN |. Thus |bn| is maximized for the last time at
n = N − 1. �

The formulas for bn by the two methods, in (10.3) and (10.5), are actually the same
formula. To convert (10.5) into (10.3), rewrite (10.5) as a sum over k ≥ 1:

bn =
∑
k≥1

(
k+n−1∑
`=n

(
`

n

)(
k + n

`+ 1

)
(−1)`−n

)
an+kα

k−1

=
∑
k≥1

(
k−1∑
`=0

(
`+ n

n

)(
k + n

`+ n+ 1

)
(−1)`

)
an+kα

k−1.

Comparing this to (10.3), we want to show the inner sum in parentheses is 1:

k−1∑
`=0

(
`+ n

n

)(
k + n

`+ n+ 1

)
(−1)` =

k−1∑
`=0

(`+ n)!

n!`!

(k + n)!

(`+ n+ 1)!(k − `− 1)!
(−1)`

=
(k + n)!

n!

k−1∑
`=0

1

`!(k − `− 1)!

(−1)`

`+ n+ 1

=
(k + n)!

(k − 1)!n!

k−1∑
`=0

(k − 1)!

`!(k − `− 1)!

(−1)`

`+ n+ 1

=
(k + n)!

(k − 1)!(n+ 1)!

k−1∑
`=0

(
k − 1

`

)
(n+ 1)(−1)`

`+ n+ 1

=

(
k + n

n+ 1

) k−1∑
`=0

(
k − 1

`

)
(n+ 1)(−1)`

`+ n+ 1
.

That this equals 1 was posed as a question on MathOverflow [9], where multiple proofs can
be found (set m, n, and k in [9] equal to k − 1, n+ 1, and ` here).

Remark 10.5. The number of roots of a polynomial over a field need not equal its degree,
but equality does occur in degree 1: ax+ b = 0 if and only if x = −b/a (if a 6= 0). Similarly,
if N(f) = 1 in Strassmann’s theorem then there really is a root of f(x) in the closed unit
disc of K. This can be proved using a version of Hensel’s lemma for power series.6

Strassmann’s theorem extends to closed discs in K of radius different from 1 by a simple
scaling argument, as follows.

6See Section 8 of https://kconrad.math.uconn.edu/blurbs/gradnumthy/hensel.pdf.

https://kconrad.math.uconn.edu/blurbs/gradnumthy/hensel.pdf
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Corollary 10.6. Let f(x) =
∑

n≥0 anx
n converge on the closed disc {x ∈ K : |x| ≤ r}

where r ∈ |K×|. If the coefficients an are not all zero then the number of solutions to
f(x) = 0 with |x| ≤ r is at most

Nr(f) = max{N ≥ 0 : |an|rn ≤ |aN |rN for all n ≥ 0}.
The integer Nr(f) exists since, by hypothesis, |an|rn → 0 as n→∞.

Proof. Let c ∈ K with |c| = r and set g(x) = f(cx) =
∑

n≥0 anc
nxn. This is a power series

converging on the closed unit disc in K and N(g) = Nr(f) since |ancn| = |an|rn. The zeros
of f in {x ∈ K : |x| ≤ r} are in bijection with the zeros of g in {x ∈ K : |x| ≤ 1} by
x 7→ x/c, so we are done by Strassmann’s theorem. �

For c ∈ K× such that |c| > 1, the discs {x ∈ K : |x| ≤ |c|m} as m → ∞ through Z+

exhaust K. Therefore a power series f(x) with coefficients in K that has an infinite radius
of convergence on K has at most countably many zeros in K: each zero of f(x) in K lies
in one of the discs {x ∈ K : |x| ≤ |c|m} for m ∈ Z+ and each of these discs contains finitely
many zeros of f(x).

Corollary 10.7. If two power series converge on a closed disc {x ∈ K : |x| ≤ r} where
r ∈ |K×| and are equal infinitely often on this disc then they are equal everywhere on this
disc.

Proof. The difference of the two power series is a power series with infinitely many zeros
in the disc and thus the difference has all coefficients equal to 0 by Corollary 10.6, so the
difference is identically zero on the disc. �

While Strassmann’s theorem doesn’t look like anything in real analysis, it can be regarded
as a non-archimedean analogue of a result from complex analysis: Rouché’s theorem. In its
most basic form, Rouché’s theorem says that if 0 < R < R′ and f(z) and g(z) are complex
power series converging on the open disc {z ∈ C : |z| < R′} and |f(z) − g(z)| < |f(z)|
for all z ∈ C with |z| = R, then f and g have the same number of zeros in the open
disc {z ∈ C : |z| < R}. To make Strassmann’s theorem resemble this, we introduce some
notation.

Definition 10.8. For a power series f(x) =
∑

n≥0 anx
n with an → 0, set |f | = maxn≥0 |an|.

Clearly |f | ≥ 0 with equality if and only if f = 0, and easily |f + g| ≤ max(|f |, |g|), and
|fg| ≤ |f ||g| by the coefficient formulas in Theorem 3.1. Surprisingly, the last inequality is
actually an equality! Although it is not needed, we will prove it anyway.

Theorem 10.9. For power series f and g over K with coefficients tending to 0, |fg| =
|f ||g|.
Proof. If f = 0 or g = 0 then the equality is obvious, so we can assume f and g each have
some nonzero coefficients: |f | > 0 and |g| > 0.

Write f(x) =
∑

m≥0 amx
m and g(x) =

∑
n≥0 bnx

n. Set |f | = |aM | with M maximal and

|g| = |bN | with N maximal: |am| < |aM | for m > M and |bn| < |bN | for n > N . Since
|fg| ≤ |f ||g|, to prove |fg| = |f ||g| we seek a coefficient in fg with absolute value |f ||g| and
we will find it in degree M +N .

The coefficient of xM+N in fg is
∑M+N

m=0 ambM+N−m. The term in this sum at m = M
is aMbN . If 0 ≤ m < M then M +N −m > N , so

|ambM+N−m| = |am||bM+N−m| ≤ |f ||bM+N−n| = |aM ||bM+N−n| < |aM ||bN |.
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For M < m ≤M +N ,

|ambM+N−m| = |am||bM+N−m| ≤ |am||g| = |am||bN | < |aM ||bN |.
Thus |ambM+N−m| < |aMbN | for 0 ≤ m ≤ M + N with m 6= M , so by the strong triangle
inequality we get ∣∣∣∣∣

M+N∑
m=0

ambM+N−m

∣∣∣∣∣ = |aMbN | = |aM ||bN | = |f ||g|. �

Theorem 10.10. Let f and g be nonzero power series over K with coefficients tending to
0. If |f − g| < |f | then N(g) = N(f).

Proof. Write f(x) =
∑

n≥0 anx
n and g(x) =

∑
n≥0 bnx

n. Set N = N(f), so |f | = |aN |.
The inequality |f − g| < |f | says |an − bn| < |aN | for all n, so |bn| = |(bn − an) + an| ≤

max(|bn − an|, |an|) ≤ |aN |. If n > N then |bn| < |aN | since |bn − an| and |an| are both less
than |aN |. If n = N then |bN | = |(bN − aN ) + aN | = |aN | since |bN − aN | < |aN |. Thus
|bn| ≤ |bN | for all n and |bn| < |bN | for n > N , so N(g) = N = N(f). �

Example 10.11. If f(x) =
∑

n≥0 anx
n is a nonzero power series and has coefficients tending

to 0, and g(x) is the polynomial
∑N(f)

n=0 anx
n, then |f − g| < |f | and trivially N(g) = N(f).

For a nonzero polynomial, bounding the number of its roots by its degree turns out
to be sharp: if f(x) is a polynomial of degree d with coefficients in a field F , there is a
field E containing F in which f(x) has d zeros, if the zeros are counted with multiplicity.
In a similar way the bound in Strassmann’s theorem is sharp: there is a complete field
L ⊃ K in which f(x) has N(f) zeros in the closed unit disc of L (if zeros are counted with
multiplicity). Therefore Theorem 10.10 is saying that if f and g are nonzero power series
converging on the closed unit disc of K and |f−g| < |f | then f and g have the same number
of zeros in the closed unit disc of some complete field L ⊃ K, which is similar to Rouché’s
theorem.
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