ESTIMATING DEFINITE INTEGRALS OF ¢ IN TWO WAYS

KEITH CONRAD

g important since its graph defines the bell curve in probability theory®,

which relates the area under its graph to the normal distribution. However, e~ has no

The function e~

concrete antiderivative, so f; et dt when a < b is found by approximations.

Y

FIGURE 1. Plot of y = et

We will approximate fOT e~ dt when T > 0 in two ways, power series and integration by
parts, and apply each to estimate f03 e~ dt. The methods are taken from a 19th century

astronomy book [1, pp. 154-155], where fOT e~ dt is used in calculations related not to
probability, but to light refraction (how light rays pass through our atmosphere). We will
bound errors in these approximations as in [1], where the author writes in the preface

When approximate methods are employed ... their degree of accuracy is
carefully determined by ... converging series, and only such terms [are| ne-
glected as can be shown to be insensitive in the cases to which the formulas
are to be applied.

Method 1: Series.
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1The standard bell curve is actually the graph of \/%6_9/2 rather than e_tQ, but we’ll work with e~ to
avoid extra constant factors in our calculations.
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When T > 0 this is an alternating series whose successive terms decrease in absolute
value, so

T N n2n+1
2 (—1) T
dt = -~ + R
/0 ° n;) n!(2n + 1) + AN

where
(_1)N+1T2(N+1)+1 T2N+3

|Ry| < '(N+1)!(2(N+1)+1) - (N +1)!I(2N +3)°

N (71)n32n+1

Take T = 3, so f03e_t2 dt = sy + Ry, where sy = Z
n

———— and <
= n!(2n + 1) and |Bn| <

32N+3

N+ DI2N £ 3)° The table below presents these values when N = 10, 20, 30, and 40.

N SN |Ry| bound
10 60.7 1127.9
20 993 3.1377
30 .88620908 6.8491
40 | .886207348260 | 5.89- 10~

Using the error bound when N = 40,

3
(2) .88620734820 < / e dt < .88620734832,
0
which gives us the first 9 decimal places in the integral: .886207348.

Method 2: Integration by parts.
Apply integration by parts to f(;f e~ dt with u = e~ and dv = dt, so du = —2te~t" dt

and v =t:
T 2 t=T T 2 T 2

(3) / e dt = wv —/ vdu=Te T +2/ t2e”" dt.
0 t=0 0 0

Use integration by parts again in the new integral, with u = e~ as before and dv = t2 dt,

so du = —2te~"" dt and v = t3/3:
t=T T 3 T
T 2
— / vdu=—e 1"+ / te~" dt.
t=0 0 3 3 0

T 2
/ 2V dt = wv
0
T 3 T
T 2
/ e_t2 dt = Te_T2 + 2 (e_T2 + = / t3e_t2 dt)
0 3 3 Jo

Substituting this into (3),
2 22 T
(4) =Te T + gTB‘efT2 + 3/ the " dt.
0

We’ve faced fOT et dt, fOT 26—t dt, and now fOT the= dt. Let’s just consider the general

integral
T 2
I, = / et dt
0
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with an even exponent 2n, where n > 0. Use integration by parts on this with u = e~

and dv = t2" dt, so du = —2te™" dt and v = 2771 /(2n + 1):
t=T

T T 2n+1 T
I, = / 2ne ™ dt = w - / vdu = = e T 2/ 24D o=t gy
0 =0 0 2n + 1 2TL =+ 1 0
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(5) " onr1t Tonyiint

We’ll use this recursion to recover (3) and (4) and go further:

T 2
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0
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The general pattern here is
T t2 T2N 2” 2+1 ~
6 dt =e 2" R
(6) /06 ¢ 7;1.3-5--.(271“) + i

where the sum over 0 < n < N has all positive terms (it is not an alternating series) and

2N+1 2N+1

1-3-5---(2N +1)

By =15 N T

T 2

Ingi =
) 0

The remainder Ry is positive. To bound it from above, let’s bound the integrand
on [0,7]. Call that integrand fn(t).
calculation left to the reader shows

fa(t) = 22N e (N 41— ¢2),

£2(N+1) o —t*

It vanishes at ¢ = 0, is positive when ¢t > 0, and a

so fy(t) >0 when 0 <t <+VN+1, fy(VN+1) =0, and fy(t) <0 when t > VN + 1.
Thus fy is increasing when 0 < ¢t < v/N + 1 and is maximized at ¢t = v/ N + 1, so when

T < +/N +1 (equivalently, N +1 > T?) and 0 < ¢t < T, we have
0< fN(t) < fN(T) _ TQ(N-H)e_TQ'
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Therefore

T T
Ni1>T? :>/ (2AN+1) 12 dt<T2(N+1)€_T2/ dt = T2N+3~T?
0 0
SO

[ 2N+1 4 2(N+1) —t2
Ry = t “Udt
N 1'3-5---(2N+1)/0 ¢
2N+1
<
=35 2N +1)
(QTQ)N‘H
135 (2N +1)
when N +1 > T2. This bound on Ry (with fixed T') tends to 0 as N — oo, so letting

. . T _42 . e . s
N — oo in (6) gives us a second formula for [, e™* dt using an infinite series of positive
T2

2
2N+3e T

= Te*T2

terms with a factor e~ out front:

AT DR
; T35 20+ )

e 2 4 22 . 23 24 9 25
= T+:T T T T
¢ ( T3 T3 T35 T390 T3s7o0.w

Compare this to (1), which is an alternating series.

T11_|_...

N
~ ~ ~ 2n
In (6) set T'= 3, so f03 e dt = Sy + Ry, where 5y = e~ g 32+l
=0

—1-3-5---(2n+1)
18N+1
1-3-5---(2N +1)

20, 30, and 40 (so N +1>32=09).

and 0 < EN < 3e7? . The table below has these values when N = 10,

N :SVN RN bound
10 .6712 1.7305
20 .885960 .0064787

30 .8862073445 1.702-10°7
40 | .886207348259518 | 1.676 - 10713

Using the error bound when N = 40,

3
.886207348259350 < / e dt < .886207348259685,
0

which gives us the first 12 decimal places in the integral: .886207348259. Our previous
estimate, with N = 40 in (2), gave us the first 9 decimal places in this integral.
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