ESTIMATING DEFINITE INTEGRALS OF $e^{-t^{2}}$ IN TWO WAYS

KEITH CONRAD

The function $e^{-t^{2}}$ is important since its graph defines the bell curve in probability theory ${ }^{1}$, which relates the area under its graph to the normal distribution. However, $e^{-t^{2}}$ has no concrete antiderivative, so $\int_{a}^{b} e^{-t^{2}} d t$ when $a<b$ is found by approximations.

Figure 1. Plot of $y=e^{-t^{2}}$.
We will approximate $\int_{0}^{T} e^{-t^{2}} d t$ when $T>0$ in two ways, power series and integration by parts, and apply each to estimate $\int_{0}^{3} e^{-t^{2}} d t$. The methods are taken from a 19th century astronomy book [1, pp. 154-155], where $\int_{0}^{T} e^{-t^{2}} d t$ is used in calculations related not to probability, but to light refraction (how light rays pass through our atmosphere). We will bound errors in these approximations as in [1], where the author writes in the preface

When approximate methods are employed ... their degree of accuracy is carefully determined by ... converging series, and only such terms [are] neglected as can be shown to be insensitive in the cases to which the formulas are to be applied.

Method 1: Series.
Since $e^{x}=\sum_{n \geq 0} \frac{x^{n}}{n!}$ for all $x, e^{-t^{2}}=\sum_{n \geq 0} \frac{\left(-t^{2}\right)^{n}}{n!}=\sum_{n \geq 0} \frac{(-1)^{n}}{n!} t^{2 n}$. By termwise integration,

$$
\begin{align*}
\int_{0}^{T} e^{-t^{2}} d t & =\int_{0}^{T}\left(\sum_{n \geq 0} \frac{(-1)^{n}}{n!} t^{2 n}\right) d t \\
& =\sum_{n \geq 0} \frac{(-1)^{n}}{n!} \int_{0}^{T} t^{2 n} d t \\
& =\sum_{n \geq 0} \frac{(-1)^{n} T^{2 n+1}}{n!(2 n+1)} \tag{1}\\
& =T-\frac{T^{3}}{3}+\frac{T^{5}}{2 \cdot 5}-\frac{T^{7}}{6 \cdot 7}+\frac{T^{9}}{24 \cdot 9}-\frac{T^{11}}{120 \cdot 11}+\cdots
\end{align*}
$$

[^0]When $T>0$ this is an alternating series whose successive terms decrease in absolute value, so

$$
\int_{0}^{T} e^{-t^{2}} d t=\sum_{n=0}^{N} \frac{(-1)^{n} T^{2 n+1}}{n!(2 n+1)}+R_{N}
$$

where

$$
\left|R_{N}\right| \leq\left|\frac{(-1)^{N+1} T^{2(N+1)+1}}{(N+1)!(2(N+1)+1)}\right|=\frac{T^{2 N+3}}{(N+1)!(2 N+3)}
$$

Take $T=3$, so $\int_{0}^{3} e^{-t^{2}} d t=s_{N}+R_{N}$, where $s_{N}=\sum_{n=0}^{N} \frac{(-1)^{n} 3^{2 n+1}}{n!(2 n+1)}$ and $\left|R_{N}\right| \leq$ $\frac{3^{2 N+3}}{(N+1)!(2 N+3)}$. The table below presents these values when $N=10,20,30$, and 40 .

N	s_{N}	$\left\|R_{N}\right\|$ bound
10	60.7	1127.9
20	.993	3.1377
30	.88620908	6.8491
40	.886207348260	$5.89 \cdot 10^{-11}$

Using the error bound when $N=40$,

$$
\begin{equation*}
.88620734820<\int_{0}^{3} e^{-t^{2}} d t<.88620734832 \tag{2}
\end{equation*}
$$

which gives us the first 9 decimal places in the integral: . 886207348 .
Method 2: Integration by parts.
Apply integration by parts to $\int_{0}^{T} e^{-t^{2}} d t$ with $u=e^{-t^{2}}$ and $d v=d t$, so $d u=-2 t e^{-t^{2}} d t$ and $v=t$:

$$
\begin{equation*}
\int_{0}^{T} e^{-t^{2}} d t=\left.u v\right|_{t=0} ^{t=T}-\int_{0}^{T} v d u=T e^{-T^{2}}+2 \int_{0}^{T} t^{2} e^{-t^{2}} d t \tag{3}
\end{equation*}
$$

Use integration by parts again in the new integral, with $u=e^{-t^{2}}$ as before and $d v=t^{2} d t$, so $d u=-2 t e^{-t^{2}} d t$ and $v=t^{3} / 3$:

$$
\int_{0}^{T} t^{2} e^{-t^{2}} d t=\left.u v\right|_{t=0} ^{t=T}-\int_{0}^{T} v d u=\frac{T^{3}}{3} e^{-T^{2}}+\frac{2}{3} \int_{0}^{T} t^{4} e^{-t^{2}} d t
$$

Substituting this into (3),

$$
\begin{align*}
\int_{0}^{T} e^{-t^{2}} d t & =T e^{-T^{2}}+2\left(\frac{T^{3}}{3} e^{-T^{2}}+\frac{2}{3} \int_{0}^{T} t^{3} e^{-t^{2}} d t\right) \\
& =T e^{-T^{2}}+\frac{2}{3} T^{3} e^{-T^{2}}+\frac{2^{2}}{3} \int_{0}^{T} t^{4} e^{-t^{2}} d t \tag{4}
\end{align*}
$$

We've faced $\int_{0}^{T} e^{-t^{2}} d t, \int_{0}^{T} t^{2} e^{-t^{2}} d t$, and now $\int_{0}^{T} t^{4} e^{-t^{2}} d t$. Let's just consider the general integral

$$
I_{n}=\int_{0}^{T} t^{2 n} e^{-t^{2}} d t
$$

with an even exponent $2 n$, where $n \geq 0$. Use integration by parts on this with $u=e^{-t^{2}}$ and $d v=t^{2 n} d t$, so $d u=-2 t e^{-t^{2}} d t$ and $v=t^{2 n+1} /(2 n+1)$:

$$
I_{n}=\int_{0}^{T} t^{2 n} e^{-t^{2}} d t=\left.u v\right|_{t=0} ^{t=T}-\int_{0}^{T} v d u=\frac{T^{2 n+1}}{2 n+1} e^{-T^{2}}+\frac{2}{2 n+1} \int_{0}^{T} t^{2(n+1)} e^{-t^{2}} d t,
$$

so

$$
\begin{equation*}
I_{n}=\frac{T^{2 n+1}}{2 n+1} e^{-T^{2}}+\frac{2}{2 n+1} I_{n+1} \tag{5}
\end{equation*}
$$

We'll use this recursion to recover (3) and (4) and go further:

$$
\begin{aligned}
\int_{0}^{T} e^{-t^{2}} d t & =I_{0} \\
& =T e^{-T^{2}}+2 I_{1} \\
& =T e^{-T^{2}}+2\left(\frac{T^{3}}{3} e^{-T^{2}}+\frac{2}{3} I_{2}\right) \\
& =T e^{-T^{2}}+\frac{2}{3} T^{3} e^{-T^{2}}+\frac{2^{2}}{3} I_{2} \\
& =T e^{-T^{2}}+\frac{2}{3} T^{3} e^{-T^{2}}+\frac{2^{2}}{3}\left(\frac{T^{5}}{5} e^{-T^{2}}+\frac{2}{5} I_{3}\right) \\
& =T e^{-T^{2}}+\frac{2}{3} T^{3} e^{-T^{2}}+\frac{2^{2}}{3 \cdot 5} T^{5} e^{-T^{2}}+\frac{2^{3}}{3 \cdot 5} I_{3} \\
& =T e^{-T^{2}}+\frac{2}{3} T^{3} e^{-T^{2}}+\frac{2^{2}}{3 \cdot 5} T^{5} e^{-T^{2}}+\frac{2^{3}}{3 \cdot 5}\left(\frac{T^{7}}{7} e^{-T^{2}}+\frac{2}{7} I_{4}\right) \\
& =T e^{-T^{2}}+\frac{2}{3} T^{3} e^{-T^{2}}+\frac{2^{2}}{3 \cdot 5} T^{5} e^{-T^{2}}+\frac{2^{3}}{3 \cdot 5 \cdot 7} T^{7} e^{-T^{2}}+\frac{2^{4}}{3 \cdot 5 \cdot 7} I_{4} \\
& =T e^{-T^{2}}+\frac{2}{3} T^{3} e^{-T^{2}}+\frac{2^{2}}{3 \cdot 5} T^{5} e^{-T^{2}}+\frac{2^{3}}{3 \cdot 5 \cdot 7} T^{7} e^{-T^{2}}+\frac{2^{4}}{3 \cdot 5 \cdot 7}\left(\frac{T^{9}}{9} e^{-T^{2}}+\frac{2}{9} I_{5}\right) \\
& =T e^{-T^{2}}+\frac{2}{3} T^{3} e^{-T^{2}}+\frac{2^{2}}{3 \cdot 5} T^{5} e^{-T^{2}}+\frac{2^{3}}{3 \cdot 5 \cdot 7} T^{7} e^{-T^{2}}+\frac{2^{4}}{3 \cdot 5 \cdot 7 \cdot 9} T^{9} e^{-T^{2}}+\frac{2^{5}}{3 \cdot 5 \cdot 7 \cdot 9} I_{5} .
\end{aligned}
$$

The general pattern here is

$$
\begin{equation*}
\int_{0}^{T} e^{-t^{2}} d t=e^{-T^{2}} \sum_{n=0}^{N} \frac{2^{n}}{1 \cdot 3 \cdot 5 \cdots(2 n+1)} T^{2 n+1}+\widetilde{R}_{N}, \tag{6}
\end{equation*}
$$

where the sum over $0 \leq n \leq N$ has all positive terms (it is not an alternating series) and

$$
\widetilde{R}_{N}:=\frac{2^{N+1}}{1 \cdot 3 \cdot 5 \cdots(2 N+1)} I_{N+1}=\frac{2^{N+1}}{1 \cdot 3 \cdot 5 \cdots(2 N+1)} \int_{0}^{T} t^{2(N+1)} e^{-t^{2}} d t .
$$

The remainder \widetilde{R}_{N} is positive. To bound it from above, let's bound the integrand $t^{2(N+1)} e^{-t^{2}}$ on $[0, T]$. Call that integrand $f_{N}(t)$. It vanishes at $t=0$, is positive when $t>0$, and a calculation left to the reader shows

$$
f_{N}^{\prime}(t)=2 t^{2 N+1} e^{-t^{2}}\left(N+1-t^{2}\right)
$$

so $f_{N}^{\prime}(t)>0$ when $0<t<\sqrt{N+1}, f_{N}^{\prime}(\sqrt{N+1})=0$, and $f_{N}^{\prime}(t)<0$ when $t>\sqrt{N+1}$. Thus f_{N} is increasing when $0<t<\sqrt{N+1}$ and is maximized at $t=\sqrt{N+1}$, so when $T \leq \sqrt{N+1}$ (equivalently, $N+1 \geq T^{2}$) and $0 \leq t \leq T$, we have

$$
0 \leq f_{N}(t) \leq f_{N}(T)=T^{2(N+1)} e^{-T^{2}}
$$

Therefore

$$
N+1 \geq T^{2} \Longrightarrow \int_{0}^{T} t^{2(N+1)} e^{-t^{2}} d t \leq T^{2(N+1)} e^{-T^{2}} \int_{0}^{T} d t=T^{2 N+3} e^{-T^{2}}
$$

so

$$
\begin{aligned}
\widetilde{R}_{N} & =\frac{2^{N+1}}{1 \cdot 3 \cdot 5 \cdots(2 N+1)} \int_{0}^{T} t^{2(N+1)} e^{-t^{2}} d t \\
& \leq \frac{2^{N+1}}{3 \cdot 5 \cdots(2 N+1)} T^{2 N+3} e^{-T^{2}} \\
& =T e^{-T^{2}} \frac{\left(2 T^{2}\right)^{N+1}}{1 \cdot 3 \cdot 5 \cdots(2 N+1)}
\end{aligned}
$$

when $N+1 \geq T^{2}$. This bound on \widetilde{R}_{N} (with fixed T) tends to 0 as $N \rightarrow \infty$, so letting $N \rightarrow \infty$ in (6) gives us a second formula for $\int_{0}^{T} e^{-t^{2}} d t$ using an infinite series of positive terms with a factor $e^{-T^{2}}$ out front:

$$
\begin{aligned}
\int_{0}^{T} e^{-t^{2}} d t & =e^{-T^{2}} \sum_{n \geq 0} \frac{2^{n}}{1 \cdot 3 \cdot 5 \cdots(2 n+1)} T^{2 n+1} \\
& =e^{-T^{2}}\left(T+\frac{2}{3} T^{3}+\frac{2^{2}}{3 \cdot 5} T^{5}+\frac{2^{3}}{3 \cdot 5 \cdot 7} T^{7}+\frac{2^{4}}{3 \cdot 5 \cdot 7 \cdot 9} T^{9}+\frac{2^{5}}{3 \cdot 5 \cdot 7 \cdot 9 \cdot 11} T^{11}+\cdots\right)
\end{aligned}
$$

Compare this to (1), which is an alternating series.
In (6) set $T=3$, so $\int_{0}^{3} e^{-t^{2}} d t=\widetilde{s}_{N}+\widetilde{R}_{N}$, where $\widetilde{s}_{N}=e^{-9} \sum_{n=0}^{N} \frac{2^{n}}{1 \cdot 3 \cdot 5 \cdots(2 n+1)} 3^{2 n+1}$ and $0<\widetilde{R}_{N} \leq 3 e^{-9} \frac{18^{N+1}}{1 \cdot 3 \cdot 5 \cdots(2 N+1)}$. The table below has these values when $N=10$, 20, 30, and 40 (so $N+1 \geq 3^{2}=9$).

N	\widetilde{s}_{N}	\widetilde{R}_{N} bound
10	.6712	1.7305
20	.885960	.0064787
30	.8862073445	$1.702 \cdot 10^{-7}$
40	.886207348259518	$1.676 \cdot 10^{-13}$

Using the error bound when $N=40$,

$$
.886207348259350<\int_{0}^{3} e^{-t^{2}} d t<.886207348259685
$$

which gives us the first 12 decimal places in the integral: . 886207348259 . Our previous estimate, with $N=40$ in (2), gave us the first 9 decimal places in this integral.

References

[1] W. Chauvenet, A Manual of Spherical and Practical Astronomy, Volume 1, J. B. Lippincott \& Co., Philadelphia, 1863. URL https://books.google.com/books?id=JeokvgAACAAJ.

[^0]: ${ }^{1}$ The standard bell curve is actually the graph of $\frac{1}{\sqrt{2 \pi}} e^{-t^{2} / 2}$ rather than $e^{-t^{2}}$, but we'll work with $e^{-t^{2}}$ to avoid extra constant factors in our calculations.

