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2
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KEITH CONRAD

The function e−t
2

is important since its graph defines the bell curve in probability theory1,

which relates the area under its graph to the normal distribution. However, e−t
2

has no

concrete antiderivative, so
∫ b
a e−t

2
dt when a < b is found by approximations.
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y

Figure 1. Plot of y = e−t
2
.

We will approximate
∫ T
0 e−t

2
dt when T > 0 in two ways, power series and integration by

parts, and apply each to estimate
∫ 3
0 e−t

2
dt. The methods are taken from a 19th century

astronomy book [1, pp. 154-155], where
∫ T
0 e−t

2
dt is used in calculations related not to

probability, but to light refraction (how light rays pass through our atmosphere). We will
bound errors in these approximations as in [1], where the author writes in the preface

When approximate methods are employed . . . their degree of accuracy is
carefully determined by . . . converging series, and only such terms [are] ne-
glected as can be shown to be insensitive in the cases to which the formulas
are to be applied.

Method 1: Series.

Since ex =
∑
n≥0

xn

n!
for all x, e−t

2
=
∑
n≥0

(−t2)n

n!
=
∑
n≥0

(−1)n

n!
t2n. By termwise integration,

∫ T

0
e−t

2
dt =

∫ T

0

∑
n≥0

(−1)n

n!
t2n

 dt

=
∑
n≥0

(−1)n

n!

∫ T

0
t2n dt

=
∑
n≥0

(−1)nT 2n+1

n!(2n + 1)
(1)

= T − T 3

3
+

T 5

2 · 5
− T 7

6 · 7
+

T 9

24 · 9
− T 11

120 · 11
+ · · · .

1The standard bell curve is actually the graph of 1√
2π

e−t
2/2 rather than e−t

2

, but we’ll work with e−t
2

to

avoid extra constant factors in our calculations.
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When T > 0 this is an alternating series whose successive terms decrease in absolute
value, so ∫ T

0
e−t

2
dt =

N∑
n=0

(−1)nT 2n+1

n!(2n + 1)
+ RN ,

where

|RN | ≤

∣∣∣∣∣ (−1)N+1T 2(N+1)+1

(N + 1)!(2(N + 1) + 1)

∣∣∣∣∣ =
T 2N+3

(N + 1)!(2N + 3)
.

Take T = 3, so
∫ 3
0 e−t

2
dt = sN + RN , where sN =

N∑
n=0

(−1)n32n+1

n!(2n + 1)
and |RN | ≤

32N+3

(N + 1)!(2N + 3)
. The table below presents these values when N = 10, 20, 30, and 40.

N sN |RN | bound

10 60.7 1127.9

20 .993 3.1377

30 .88620908 6.8491

40 .886207348260 5.89 · 10−11

Using the error bound when N = 40,

(2) .88620734820 <

∫ 3

0
e−t

2
dt < .88620734832,

which gives us the first 9 decimal places in the integral: .886207348.
Method 2: Integration by parts.

Apply integration by parts to
∫ T
0 e−t

2
dt with u = e−t

2
and dv = dt, so du = −2te−t

2
dt

and v = t:

(3)

∫ T

0
e−t

2
dt = uv

∣∣∣∣t=T

t=0

−
∫ T

0
v du = Te−T

2
+ 2

∫ T

0
t2e−t

2
dt.

Use integration by parts again in the new integral, with u = e−t
2

as before and dv = t2 dt,

so du = −2te−t
2
dt and v = t3/3:∫ T

0
t2e−t

2
dt = uv

∣∣∣∣t=T

t=0

−
∫ T

0
v du =

T 3

3
e−T

2
+

2

3

∫ T

0
t4e−t

2
dt.

Substituting this into (3),∫ T

0
e−t

2
dt = Te−T

2
+ 2

(
T 3

3
e−T

2
+

2

3

∫ T

0
t3e−t

2
dt

)
= Te−T

2
+

2

3
T 3e−T

2
+

22

3

∫ T

0
t4e−t

2
dt.(4)

We’ve faced
∫ T
0 e−t

2
dt,
∫ T
0 t2e−t

2
dt, and now

∫ T
0 t4e−t

2
dt. Let’s just consider the general

integral

In =

∫ T

0
t2ne−t

2
dt
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with an even exponent 2n, where n ≥ 0. Use integration by parts on this with u = e−t
2

and dv = t2n dt, so du = −2te−t
2
dt and v = t2n+1/(2n + 1):

In =

∫ T

0
t2ne−t

2
dt = uv

∣∣∣∣t=T

t=0

−
∫ T

0
v du =

T 2n+1

2n + 1
e−T

2
+

2

2n + 1

∫ T

0
t2(n+1)e−t

2
dt,

so

(5) In =
T 2n+1

2n + 1
e−T

2
+

2

2n + 1
In+1.

We’ll use this recursion to recover (3) and (4) and go further:∫ T

0
e−t

2
dt = I0

= Te−T
2

+ 2I1

= Te−T
2

+ 2

(
T 3

3
e−T

2
+

2

3
I2

)
= Te−T

2
+

2

3
T 3e−T

2
+

22

3
I2

= Te−T
2

+
2

3
T 3e−T

2
+

22

3

(
T 5

5
e−T

2
+

2

5
I3

)
= Te−T

2
+

2

3
T 3e−T

2
+

22

3 · 5
T 5e−T

2
+

23

3 · 5
I3

= Te−T
2

+
2

3
T 3e−T

2
+

22

3 · 5
T 5e−T

2
+

23

3 · 5

(
T 7

7
e−T

2
+

2

7
I4

)
= Te−T

2
+

2

3
T 3e−T

2
+

22

3 · 5
T 5e−T

2
+

23

3 · 5 · 7
T 7e−T

2
+

24

3 · 5 · 7
I4

= Te−T
2

+
2

3
T 3e−T

2
+

22

3 · 5
T 5e−T

2
+

23

3 · 5 · 7
T 7e−T

2
+

24

3 · 5 · 7

(
T 9

9
e−T

2
+

2

9
I5

)
= Te−T

2
+

2

3
T 3e−T

2
+

22

3 · 5
T 5e−T

2
+

23

3 · 5 · 7
T 7e−T

2
+

24

3 · 5 · 7 · 9
T 9e−T

2
+

25

3 · 5 · 7 · 9
I5.

The general pattern here is

(6)

∫ T

0
e−t

2
dt = e−T

2
N∑

n=0

2n

1 · 3 · 5 · · · (2n + 1)
T 2n+1 + R̃N ,

where the sum over 0 ≤ n ≤ N has all positive terms (it is not an alternating series) and

R̃N :=
2N+1

1 · 3 · 5 · · · (2N + 1)
IN+1 =

2N+1

1 · 3 · 5 · · · (2N + 1)

∫ T

0
t2(N+1)e−t

2
dt.

The remainder R̃N is positive. To bound it from above, let’s bound the integrand t2(N+1)e−t
2

on [0, T ]. Call that integrand fN (t). It vanishes at t = 0, is positive when t > 0, and a
calculation left to the reader shows

f ′N (t) = 2t2N+1e−t
2
(N + 1− t2),

so f ′N (t) > 0 when 0 < t <
√
N + 1, f ′N (

√
N + 1) = 0, and f ′N (t) < 0 when t >

√
N + 1.

Thus fN is increasing when 0 < t <
√
N + 1 and is maximized at t =

√
N + 1, so when

T ≤
√
N + 1 (equivalently, N + 1 ≥ T 2) and 0 ≤ t ≤ T , we have

0 ≤ fN (t) ≤ fN (T ) = T 2(N+1)e−T
2
.
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Therefore

N + 1 ≥ T 2 =⇒
∫ T

0
t2(N+1)e−t

2
dt ≤ T 2(N+1)e−T

2

∫ T

0
dt = T 2N+3e−T

2
,

so

R̃N =
2N+1

1 · 3 · 5 · · · (2N + 1)

∫ T

0
t2(N+1)e−t

2
dt

≤ 2N+1

3 · 5 · · · (2N + 1)
T 2N+3e−T

2

= Te−T
2 (2T 2)N+1

1 · 3 · 5 · · · (2N + 1)

when N + 1 ≥ T 2. This bound on R̃N (with fixed T ) tends to 0 as N → ∞, so letting

N → ∞ in (6) gives us a second formula for
∫ T
0 e−t

2
dt using an infinite series of positive

terms with a factor e−T
2

out front:∫ T

0
e−t

2
dt = e−T

2
∑
n≥0

2n

1 · 3 · 5 · · · (2n + 1)
T 2n+1

= e−T
2

(
T +

2

3
T 3 +

22

3 · 5
T 5 +

23

3 · 5 · 7
T 7 +

24

3 · 5 · 7 · 9
T 9 +

25

3 · 5 · 7 · 9 · 11
T 11 + · · ·

)
.

Compare this to (1), which is an alternating series.

In (6) set T = 3, so
∫ 3
0 e−t

2
dt = s̃N + R̃N , where s̃N = e−9

N∑
n=0

2n

1 · 3 · 5 · · · (2n + 1)
32n+1

and 0 < R̃N ≤ 3e−9
18N+1

1 · 3 · 5 · · · (2N + 1)
. The table below has these values when N = 10,

20, 30, and 40 (so N + 1 ≥ 32 = 9).

N s̃N R̃N bound

10 .6712 1.7305

20 .885960 .0064787

30 .8862073445 1.702 · 10−7

40 .886207348259518 1.676 · 10−13

Using the error bound when N = 40,

.886207348259350 <

∫ 3

0
e−t

2
dt < .886207348259685,

which gives us the first 12 decimal places in the integral: .886207348259. Our previous
estimate, with N = 40 in (2), gave us the first 9 decimal places in this integral.
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